
jBPM Documentation

The JBoss jBPM team [http://www.jbpm.org/community/team.html]

http://www.jbpm.org/community/team.html
http://www.jbpm.org/community/team.html

jBPM Documentation
by

Version 6.5.0.CR1

iii

... xii

I. Getting Started ... 1

1. Overview .. 2

1.1. What is jBPM? ... 2

1.2. Overview .. 4

1.3. Core Engine ... 5

1.4. Process Designer ... 6

1.5. Data Modeler .. 6

1.6. Form Modeler ... 7

1.7. Process Instance and Task Management ... 8

1.8. Business Activity Monitoring .. 8

1.9. Workbench ... 10

1.10. Eclipse Developer Tools .. 10

2. Getting Started .. 12

2.1. Downloads .. 12

2.2. Getting Started ... 12

2.3. Community ... 12

2.4. Sources .. 13

2.4.1. License .. 13

2.4.2. Source code .. 13

2.4.3. Building from source ... 14

2.5. Getting Involved .. 14

2.5.1. Sign up to jboss.org ... 14

2.5.2. Sign the Contributor Agreement .. 15

2.5.3. Submitting issues via JIRA ... 15

2.5.4. Fork GitHub ... 16

2.5.5. Writing Tests .. 16

2.5.6. Commit with Correct Conventions .. 18

2.5.7. Submit Pull Requests ... 19

2.6. What to do if I encounter problems or have questions? 21

3. jBPM Installer .. 22

3.1. Prerequisites ... 22

3.2. Downloading the Installer .. 22

3.3. Demo Setup ... 22

3.4. 10-Minute Tutorial using the Workbench ... 25

3.5. 10-Minute Tutorial using Eclipse .. 27

3.6. Configuration .. 28

3.6.1. Playgrounds ... 28

3.6.2. Workbench Authentication .. 29

3.6.3. Using your own database with the jBPM installer 30

3.6.4. jBPM database schema scripts (DDL scripts) 37

3.6.5. jBPM installer script .. 37

3.7. Frequently Asked Questions .. 38

4. Examples ... 40

jBPM Documentation

iv

4.1. Introduction ... 40

4.2. Importing Projects through Git ... 40

4.3. Human Resources Example .. 41

4.3.1. The Kie Project: human-resources ... 43

4.3.2. Building the Human Resources Example ... 43

4.3.3. Create a new Process Instance ... 45

4.4. Examples zip .. 46

II. jBPM Core .. 47

5. Core Engine API .. 48

5.1. Overview .. 48

5.2. KieBase .. 49

5.3. KieSession ... 50

5.3.1. ProcessRuntime ... 50

5.3.2. Event Listeners .. 52

5.3.3. Correlation Keys .. 54

5.3.4. Threads ... 55

5.4. RuntimeManager ... 56

5.4.1. Overview ... 56

5.4.2. Strategies .. 58

5.4.3. Usage .. 60

5.4.4. Configuration .. 62

5.5. Services ... 69

5.5.1. Deployment Service ... 70

5.5.2. Definition Service ... 71

5.5.3. Process Service ... 72

5.5.4. Runtime Data Service ... 74

5.5.5. User Task Service .. 77

5.5.6. QueryService ... 78

5.5.7. ProcessInstanceMigrationService .. 83

5.5.8. Working with deployments .. 87

5.6. Configuration .. 89

6. Processes .. 93

6.1. What is BPMN 2.0 .. 93

6.2. Process .. 98

6.2.1. Creating a process ... 98

6.3. Activities ... 103

6.3.1. Script task .. 103

6.3.2. Service task ... 105

6.3.3. User task ... 106

6.3.4. Reusable sub-process .. 108

6.3.5. Business rule task .. 109

6.3.6. Embedded sub-process .. 110

6.3.7. Multi-instance sub-process .. 111

6.4. Events .. 112

jBPM Documentation

v

6.4.1. Start event ... 112

6.4.2. End events .. 113

6.4.3. Intermediate events .. 115

6.5. Gateways ... 118

6.5.1. Diverging gateway .. 118

6.5.2. Converging gateway ... 120

6.6. Others .. 121

6.6.1. Variables .. 121

6.6.2. Scripts ... 123

6.6.3. Constraints ... 124

6.6.4. Timers ... 125

6.7. Process Fluent API ... 128

6.7.1. Example .. 128

6.8. Testing ... 129

6.8.1. Unit testing .. 129

7. Human Tasks ... 136

7.1. Introduction ... 136

7.2. Using User Tasks in our Processes .. 136

7.2.1. Swimlanes ... 138

7.3. Data Mappings .. 139

7.4. Task Lifecycle ... 141

7.5. Task Permissions .. 142

7.5.1. Task Permissions Matrix ... 142

7.6. Task Service and The Process Engine ... 144

7.7. Task Service API .. 145

7.7.1. Task event listener ... 146

7.7.2. Data model of task service .. 147

7.8. Interacting with the Task Service .. 148

8. Persistence and Transactions .. 150

8.1. Process Instance State .. 150

8.1.1. Runtime State .. 150

8.2. Audit Log .. 155

8.2.1. The jBPM Audit data model .. 156

8.2.2. Storing Process Events in a Database ... 160

8.2.3. Storing Process Events in a JMS queue for further processing 162

8.2.4. Variables auditing ... 162

8.3. Transactions ... 166

8.3.1. Container managed transactions ... 167

8.4. Configuration .. 169

8.4.1. Adding dependencies ... 169

8.4.2. Manually configuring the engine to use persistence 170

8.4.3. Configuring the engine to use persistence using JBPMHelper - for

tests only ... 172

III. Workbench ... 175

jBPM Documentation

vi

9. Workbench (General) ... 176

9.1. Installation .. 176

9.1.1. War installation .. 176

9.1.2. Workbench data ... 176

9.1.3. System properties .. 177

9.1.4. Trouble shooting .. 178

9.2. Quick Start ... 179

9.2.1. Add repository .. 179

9.2.2. Add project .. 181

9.2.3. Define Data Model ... 185

9.2.4. Define Rule .. 188

9.2.5. Build and Deploy .. 191

9.3. Administration ... 192

9.3.1. Administration overview .. 192

9.3.2. Organizational unit .. 192

9.3.3. Repositories ... 193

9.4. Configuration .. 195

9.4.1. Basic user management ... 195

9.4.2. Roles ... 195

9.4.3. Restricting access to repositories .. 197

9.4.4. Command line config tool ... 197

9.5. Introduction ... 198

9.5.1. Log in and log out .. 198

9.5.2. Home screen ... 199

9.5.3. Workbench concepts .. 199

9.5.4. Initial layout .. 199

9.6. Changing the layout .. 200

9.6.1. Resizing ... 201

9.6.2. Repositioning ... 201

9.7. Authoring (General) ... 203

9.7.1. Artifact Repository .. 203

9.7.2. Asset Editor ... 205

9.7.3. Tags Editor .. 209

9.7.4. Project Explorer .. 211

9.7.5. Project Editor ... 224

9.7.6. Validation ... 231

9.7.7. Data Modeller .. 233

9.7.8. Data Sets .. 273

9.8. User and group management .. 287

9.8.1. Introduction .. 287

9.8.2. Security management providers .. 287

9.8.3. Installation and setup .. 290

9.8.4. Usage .. 292

9.9. Embedding Workbench In Your Application ... 302

jBPM Documentation

vii

9.10. Asset Management .. 303

9.10.1. Asset Management Overview .. 303

9.10.2. Managed vs Unmanaged Repositories ... 304

9.10.3. Asset Management Processes .. 304

9.10.4. Usage Flow .. 306

9.10.5. Repository Structure ... 308

9.10.6. Managed Repositories Operations ... 309

9.11. Execution Server Management UI .. 315

9.11.1. Server Templates ... 315

9.11.2. Container ... 317

9.11.3. Remote Server ... 321

10. Workbench Integration ... 323

10.1. REST ... 323

10.1.1. Job calls .. 323

10.1.2. Repository calls .. 324

10.1.3. Organizational unit calls .. 327

10.1.4. Maven calls .. 328

10.1.5. REST summary .. 329

10.2. Keycloak SSO integration .. 330

10.2.1. Scenario .. 331

10.2.2. Install and setup a Keycloak server .. 332

10.2.3. Create and setup the demo realm .. 332

10.2.4. Install and setup jBPM Workbench .. 334

10.2.5. Securing workbench remote services via Keycloak 337

10.2.6. Execution server ... 338

10.2.7. Consuming remote services .. 341

11. Workbench High Availability .. 343

11.1. .. 343

11.1.1. VFS clustering .. 343

11.1.2. jBPM clustering .. 346

12. Designer ... 347

12.1. Designer UI Explained ... 348

12.2. Getting started with Modelling .. 349

12.3. Designer Toolbar ... 353

13. Forms ... 375

13.1. Configure process and human tasks ... 377

13.2. Generate forms from task definitions .. 379

13.3. Edit forms ... 382

13.3.1. Form generated description ... 382

13.3.2. Customizing form .. 382

13.3.3. Field types ... 410

13.4. Document attachments .. 419

13.4.1. Process and forms configuration .. 419

13.4.2. Marshalling strategy and deployment configuration 421

jBPM Documentation

viii

13.5. Using forms on client applications .. 424

13.5.1. What does the API provides? .. 424

13.5.2. Sample usage .. 426

14. Runtime Management .. 431

14.1. Deployments ... 431

14.1.1. Deployment descriptors ... 431

14.2. Process Deployments .. 440

14.3. Jobs ... 442

15. Process and Task Management ... 445

15.1. Process Management .. 445

15.1.1. Process Definitions ... 445

15.1.2. Process Instances .. 448

15.2. Tasks ... 456

15.2.1. Task List .. 457

15.2.2. New Task (Ad-Hoc Task) .. 463

16. Business Activity Monitoring ... 466

16.1. Overview .. 466

16.2. Business Dashboards .. 467

16.3. Process Dashboard ... 469

16.3.1. Task Dashboard ... 473

17. Remote API .. 475

17.1. Remote Java API .. 475

17.1.1. Remote REST Java API Client Configuration 477

17.1.2. Remote JMS Java API Client Configuration 479

17.1.3. Remote CommandWebService Java API Client Configuration 486

17.1.4. Supported methods .. 490

17.2. REST ... 501

17.2.1. REST permissions .. 502

17.2.2. Runtime calls ... 509

17.2.3. Task calls .. 517

17.2.4. Deployment Calls ... 521

17.2.5. Deployment call details ... 523

17.2.6. Execute calls .. 525

17.2.7. REST summary .. 531

17.3. REST Query API ... 537

17.3.1. Query URL layout ... 537

17.3.2. Query Parameters .. 539

17.3.3. Parameter Table ... 542

17.3.4. Parameter examples ... 545

17.3.5. Query Output Format .. 546

17.4. JMS .. 547

17.4.1. JMS Queue setup ... 548

17.4.2. Using the remote Java API ... 548

17.4.3. Example JMS usage ... 549

jBPM Documentation

ix

17.5. Additional Information .. 554

17.5.1. REST Serialization: JAXB or JSON .. 554

17.5.2. Sending and receiving user class instances 554

17.5.3. Including the deployment id ... 556

17.5.4. REST Pagination .. 557

17.5.5. REST Map query parameters .. 563

17.5.6. REST Number query parameters ... 564

17.5.7. Runtime strategies .. 564

IV. Eclipse ... 567

18. jBPM Eclipse Plugin ... 568

18.1. jBPM Eclipse Plugin .. 568

18.1.1. Installation .. 568

18.1.2. jBPM Project Wizard ... 570

18.1.3. New BPMN2 Process Wizard .. 573

18.1.4. jBPM Runtime .. 573

18.1.5. jBPM Maven Project Wizard .. 578

18.1.6. Drools Eclipse plugin .. 581

18.1.7. Kie Navigator View ... 581

18.2. Debugging .. 599

18.2.1. The Process Instances View ... 600

18.2.2. The Audit View ... 601

18.3. Synchronizing with Workbench Repositories ... 602

18.3.1. Importing a workbench repository .. 603

18.3.2. Committing changes to the workbench ... 606

18.3.3. Updating from to the workbench .. 608

18.3.4. Working on individual projects ... 610

19. Eclipse BPMN 2.0 Modeler ... 614

19.1. Overview .. 614

19.2. Installation .. 614

19.3. Documentation .. 615

V. Integration ... 618

20. Integration .. 619

20.1. Maven .. 619

20.1.1. Maven artifacts as deployment units .. 619

20.1.2. Use Maven for dependency management 621

20.2. CDI ... 623

20.2.1. Overview .. 623

20.2.2. Configuring CDI integration ... 627

20.2.3. RuntimeManager as CDI bean .. 630

20.3. Spring ... 632

20.3.1. Direct use of Runtime Manager API ... 633

20.3.2. jBPM services with Spring ... 637

20.4. Ejb ... 640

20.4.1. Ejb services implementation .. 641

jBPM Documentation

x

20.4.2. Local interface .. 643

20.4.3. Remote interface .. 644

20.5. OSGi .. 647

VI. Advanced Topics .. 648

21. Domain-specific Processes .. 649

21.1. Introduction ... 649

21.2. Overview .. 650

21.2.1. Work Item Definitions .. 650

21.2.2. Work Item Handlers .. 650

21.3. Example: Notifications ... 652

21.3.1. The Notification Work Item Definition ... 653

21.3.2. The NotificationWorkItemHandler ... 658

21.4. Service Repository .. 660

21.4.1. Public jBPM service repository .. 662

21.4.2. Setting up your own service repository ... 662

22. Exception Management .. 665

22.1. Overview .. 665

22.2. Introduction ... 665

22.3. .. 665

22.3.1. Technical Exceptions .. 665

22.3.2. Technical Exception Examples .. 668

22.4. .. 676

22.4.1. Business Exceptions ... 677

23. Flexible Processes ... 680

24. Concurrency and asynchronous execution .. 683

24.1. Concurrency .. 683

24.1.1. Engine execution .. 683

24.1.2. Multiple knowledge sessions and persistence 684

24.2. Asynchronous execution .. 685

24.2.1. Asynchronous handlers ... 685

24.2.2. jbpm executor .. 685

25. Release Notes .. 692

25.1. jBPM 6.5 .. 692

25.1.1. New and Noteworthy in jBPM 6.5.0 ... 692

25.1.2. New and Noteworthy in KIE Workbench 6.5.0 693

25.2. jBPM 6.4 .. 694

25.2.1. New and Noteworthy in jBPM 6.4.0 ... 694

25.2.2. New and Noteworthy in KIE Workbench 6.4.0 699

25.3. jBPM 6.3 .. 710

25.3.1. New and Noteworthy in jBPM 6.3.0 ... 710

25.3.2. New and Noteworthy in KIE Workbench 6.3.0 718

25.4. jBPM 6.2 .. 725

25.4.1. New and Noteworthy in jBPM 6.2.0 ... 725

25.4.2. New and Noteworthy in KIE Workbench 6.2.0 728

jBPM Documentation

xi

25.5. jBPM 6.1 .. 748

25.5.1. New and Noteworthy in jBPM 6.1.0 ... 748

25.5.2. New and Noteworthy in KIE Workbench 6.1.0 750

25.6. jBPM 6.0 .. 752

25.6.1. New and Noteworthy in KIE API 6.0.0 .. 752

25.6.2. New and Noteworthy in jBPM 6.0.0 ... 756

25.6.3. New and Noteworthy in KIE Workbench 6.0.0 759

25.6.4. New and Noteworthy in Integration 6.0.0 .. 762

xii

Part I. Getting Started
Introduction and getting started with jBPM

2

Chapter 1. Overview

1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It is light-weight, fully open-source

(distributed under Apache license) and written in Java. It allows you to model, execute, and monitor

business processes throughout their life cycle.

A business process allows you to model your business goals by describing the steps that need to

be executed to achieve those goals, and the order of those goals are depicted using a flow chart.

This process greatly improves the visibility and agility of your business logic. jBPM focuses on

executable business processes, which are business processes that contain enough detail so they

can actually be executed on a BPM engine. Executable business processes bridge the gap be-

tween business users and developers as they are higher-level and use domain-specific concepts

that are understood by business users but can also be executed directly.

Business processes need to be supported throughout their entire life cycle: authoring, deployment,

process management and task lists, and dashboards and reporting.

The core of jBPM is a light-weight, extensible workflow engine written in pure Java that allows you

to execute business processes using the latest BPMN 2.0 specification. It can run in any Java

environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes

throughout their entire life cycle:

• Pluggable human task service based on WS-HumanTask for including tasks that need to be

performed by human actors.

• Pluggable persistence and transactions (based on JPA / JTA).

• Web-based process designer to support the graphical creation and simulation of your business

processes (drag and drop).

• Web-based data modeler and form modeler to support the creation of data models and process

and task forms

Overview

3

• Web-based, customizable dashboards and reporting

• All combined in one web-based workbench, supporting the complete BPM life cycle:

• Modeling and deployment - author your processes, rules, data models, forms and other assets

• Execution - execute processes, tasks, rules and events on the core runtime engine

• Runtime Management - work on assigned task, manage process instances, etc

• Reporting - keep track of the execution using Business Activity Monitoring capabilities

• Eclipse-based developer tools to support the modeling, testing and debugging of processes

• Remote API to process engine as a service (REST, JMS, Remote Java API)

• Integration with Maven, Spring, OSGi, etc.

BPM creates the bridge between business analysts, developers and end users by offering process

management features and tools in a way that both business users and developers like. Do-

main-specific nodes can be plugged into the palette, making the processes more easily under-

stood by business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-life

situations that cannot easily be described using a rigid process. We bring control back to the

end users by allowing them to control which parts of the process should be executed; this allows

dynamic deviation from the process.

jBPM is not just an isolated process engine. Complex business logic can be modeled as a com-

bination of business processes with business rules and complex event processing. jBPM can be

combined with the Drools project to support one unified environment that integrates these para-

digms where you model your business logic as a combination of processes, rules and events.

Overview

4

1.2. Overview

Figure 1.1.

This figure gives an overview of the different components of the jBPM project.

• The core engine is the heart of the project and allows you to execute business processes in

a flexible manner. It is a pure Java component that you can choose to embed as part of your

application or deploy it as a service and connect to it through the web-based UI or remote APIs.

• An optional core service is the human task service that will take care of the human task life

cycle if human actors participate in the process.

• Another optional core service is runtime persistence; this will persist the state of all your

process instances and log audit information about everything that is happening at runtime.

• Applications can connect to the core engine by through its Java API or as a set of CDI ser-

vices, but also remotely through a REST and JMS API.

• Web-based tools allows you to model, simulate and deploy your processes and other related

artifacts (like data models, forms, rules, etc.):

• The process designer allows business users to design and simulate business processes in

a web-based environment.

Overview

5

• The data modeler allows non-technical users to view, modify and create data models for use

in your processes.

• A web-based form modeler also allows you to create, generate or edit forms related to your

processes (to start the process or to complete one of the user tasks).

• Rule authoring allows you to specify different types of business rules (decision tables, guided

rules, etc.) for combination with your processes.

• All assets are stored and managed on the Guvnor repository (exposed through Git) and can

be managed (versioning), built and deployed.

• The web-based management console allows business users to manage their runtime (manage

business processes like start new processes, inspect running instances, etc.), to manage their

task list and to perform Business Activity Monitoring (BAM) and see reports.

• The Eclipse-based developer tools are an extension to the Eclipse IDE, targeted towards de-

velopers, and allows you to create business processes using drag and drop, test and debug

your processes, etc.

Each of the components are described in more detail below.

1.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes

your business processes. It can be embedded as part of your application or deployed as a service

(possibly on the cloud). Its most important features are the following:

• Solid, stable core engine for executing your process instances.

• Native support for the latest BPMN 2.0 specification for modeling and executing business

processes.

• Strong focus on performance and scalability.

• Light-weight (can be deployed on almost any device that supports a simple Java Runtime En-

vironment; does not require any web container at all).

• (Optional) pluggable persistence with a default JPA implementation.

• Pluggable transaction support with a default JTA implementation.

• Implemented as a generic process engine, so it can be extended to support new node types

or other process languages.

• Listeners to be notified of various events.

• Ability to migrate running process instances to a new version of their process definition

Overview

6

The core engine can also be integrated with a few other (independent) core services:

• The human task service can be used to manage human tasks when human actors need to

participate in the process. It is fully pluggable and the default implementation is based on the

WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms,

and some more advanced features like escalation, delegation, rule-based assignments, etc.

• The history log can store all information about the execution of all the processes in the engine.

This is necessary if you need access to historic information as runtime persistence only stores

the current state of all active process instances. The history log can be used to store all current

and historic states of active and completed process instances. It can be used to query for any

information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Process Designer

The web-based designer allows you to model your business processes in a web-based environ-

ment. It is targeted towards business users and offers a graphical editor for viewing and editing

your business processes (using drag and drop), similar to the Eclipse plugin. It supports round-

tripping between the Eclipse editor and the web-based designer. It also supports simulation of

processes.

Figure 1.2. Web-based designer for creating BPMN2 processes

1.5. Data Modeler

Processes almost always have some kind of data to work with. The data modeler allows non-

technical users to view, edit or create these data models.

Overview

7

Typically, a business process analyst or data analyst will capture the requirements for a process or

application and turn these into a formal set of interrelated data structures. The new Data Modeler

tool provides an easy, straightforward and visual aid for building both logical and physical data

models, without the need for advanced development skills or explicit coding. The data modelers

is transparently integrate into the workbench. Its main goals are to make data models into first

class citizens in the process improvement cycle and allow for full process automation through the

integrated use of data structures (and the forms that will be used to interact with them).

1.6. Form Modeler

The jBPM Form Modeler is a form engine and editor that enables users to create forms to capture

and display information during process or task execution, without needing any coding or template

markup skills.

It provides a WYSIWYG environment to model forms that it's easy to use for less technical users.

Figure 1.3. Form Modeler

Key features:

• Form Modeling WYSIWYG UI for forms

• Form autogeneration from data model / Java objects

• Data binding for Java objects

Overview

8

• Formula and expressions

• Customized forms layouts

• Forms embedding

The form modeler's user interfaces is aimed both at process analyst and developers for building

and testing forms.

Developers or advanced used will also have some advanced features to customize form behavior

and look&feel.

1.7. Process Instance and Task Management

Business processes can be managed through a web-based management console. It is targeted

towards business users and its main features are the following:

• Process instance management: the ability to start new process instances, get a list of running

process instances, visually inspect the state of a specific process instances.

• Human task management: being able to get a list of all your current tasks (either assigned to you

or that you might be able to claim), and completing tasks on your task list (using customizable

task forms).

Figure 1.4. Managing your process instances

1.8. Business Activity Monitoring

As of version 6.0, jBPM comes with a full-featured BAM tooling which allows non-technical users to

visually compose business dashboards. With this brand new module, to develop business activity

monitoring and reporting solutions on top of jBPM has never been so easy!

Overview

9

Figure 1.5. Business Activity Monitoring

Key features:

• Visual configuration of dashboards (Drag'n'drop).

• Graphical representation of KPIs (Key Performance Indicators).

• Configuration of interactive report tables.

• Data export to Excel and CSV format.

• Filtering and search, both in-memory or SQL based.

• Data extraction from external systems, through different protocols.

• Granular access control for different user profiles.

• Look'n'feel customization tools.

• Pluggable chart library architecture.

• Chart libraries provided: NVD3 & OFC2.

Target users:

• Managers / Business owners. Consumer of dashboards and reports.

• IT / System architects. Connectivity and data extraction.

• Analysts. Dashboard composition & configuration.

To get further information about the new and noteworthy BAM capabilities of jBPM please read

the chapter Business Activity Monitoring.

Overview

10

1.9. Workbench

The workbench is the web-based application that combines all of the above web-based tools into

one configurable solution.

It supports the following:

• A repository service to store your business processes and related artefacts, using a Git reposi-

tory, which supports versioning, remote accessing (as a file system), and using REST services.

• A web-based user interface to manage your business processes, targeted towards business

users; it also supports the visualization (and editing) of your artifacts (the web-based editors

like designer, data and form modeler are integrated here), but also categorisation, build and

deployment, etc..

• Collaboration features to have multiple actors (for example business users and developers)

work together on the same project.

Workbench application covers complete life cycle of BPM projects starting at authoring phase,

going through implementation, execution and monitoring.

Figure 1.6. KIE workbench application

1.10. Eclipse Developer Tools

The Eclipse-based tools are a set of plugins to the Eclipse IDE and allow you to integrate your

business processes in your development environment. It is targeted towards developers and has

some wizards to get started, a graphical editor for creating your business processes (using drag

and drop) and a lot of advanced testing and debugging capabilities.

Overview

11

Figure 1.7. Eclipse editor for creating BPMN2 processes

It includes the following features:

• Wizard for creating a new jBPM project

• A graphical editor for BPMN 2.0 processes

• The ability to plug in your own domain-specific nodes

• Validation

• Runtime support (so you can select which version of jBPM you would like to use)

• Graphical debugging to see all running process instances of a selected session, to visualize the

current state of one specific process instance, etc.

12

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].

Select the version you want to download and then select which artifact you want:

• bin: all the jBPM binaries (JARs) and their dependencies

• src: the sources of the core components

• docs: the documentation

• examples: some jBPM examples, can be imported into Eclipse

• installer: the jbpm-installer, downloads and installs a demo setup of jBPM

• installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains

a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Getting Started

If you like to take a quick tutorial that will guide you through most of the components using a simple

example, take a look at the Installer chapter. This will teach you how to download and use the

installer to create a demo setup, including most of the components. It uses a simple example to

guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine

(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more

complex topics like domain-specific processes, flexible processes, etc. After reading the core

chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.

Check out the examples chapter to see how to start playing with these.

After reading through these chapters, you should be ready to start creating your own processes

and integrate the engine with your application. These processes can be started from the installer

or be started from scratch.

2.3. Community

Here are a lot of useful links part of the jBPM community:

• A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to

jBPM

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Getting Started

13

• The #jbossjbpm Twitter account [http://twitter.com/jbossjbpm].

• A user forum [http://www.jboss.com/index.html?module=bb&op=viewforum&f=217]

for asking questions and giving answers

• A JIRA bug tracking system [https://jira.jboss.org/jira/browse/JBPM] for bugs, feature requests

and roadmap

• A continuous build server [https://hudson.jboss.org/hudson/job/jBPM/] for getting the latest

snapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distrib-

ution/target/]

Please feel free to join us in our IRC channel at chat.freenode.net #jbpm. This is where most

of the real-time discussion about the project takes place and where you can find most of the

developers most of their time as well. Don't have an IRC client installed? Simply go to http://

webchat.freenode.net/, input your desired nickname, and specify #jbpm. Then click login to join

the fun.

2.4. Sources

2.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

• The new Eclipse BPMN2 plugin is Eclipse Public License (EPL) v1.0.

• The web-based designer is based on Oryx/Wapama and is MIT License

• The Drools project is Apache License v2.0.

2.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the jBPM project

can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

• Other components related to the jBPM and Drools project can be found here [https://github.com/

droolsjbpm].

• The new Eclipse BPMN2 plugin can be found here [https://git.eclipse.org/c/bpmn2-model-

er/org.eclipse.bpmn2-modeler.git].

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://webchat.freenode.net/
http://webchat.freenode.net/
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

Getting Started

14

• The web-based designer can be found here [https://github.com/droolsjbpm/jbpm-designer]

• The kie workbench can be found here [https://github.com/droolsjbpm/kie-wb-distribution-wars]

note this is an aggregate of other projects (drools-wb, jbpm-console-ng)

2.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this

README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

2.5. Getting Involved

We are often asked "How do I get involved". Luckily the answer is simple, just write some code

and submit it :) There are no hoops you have to jump through or secret handshakes. We have

a very minimal "overhead" that we do request to allow for scalable project development. Below

we provide a general overview of the tools and "workflow" we request, along with some general

advice.

If you contribute some good work, don't forget to blog about it :)

2.5.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http://

www.jboss.org/ and click "Register".

https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
http://www.jboss.org/
http://www.jboss.org/

Getting Started

15

2.5.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.

As the image below says "This establishes the terms and conditions for your contributions and

ensures that source code can be licensed appropriately"

https://cla.jboss.org/

2.5.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.

This ensures that all requests are logged and allocated to a release schedule and all discussions

captured in one place. Bug reports, bug fixes, feature requests and feature submissions should

all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue

created.

https://issues.jboss.org/browse/JBRULES [https://issues.jboss.org/browse/JBRULES](Drools)

https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

https://cla.jboss.org/
https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Getting Started

16

2.5.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be

ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.

The fork will create a copy in your own GitHub space which you can work on at your own pace.

If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository

provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm

2.5.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL

fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Getting Started

17

then using a String is not practical so then by all means place them in separate DRL files instead

to be loaded from the classpath. If your tests need to use a model, please try to use those that

already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have

the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/

integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Getting Started

18

2.5.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the

JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,

so we can see all commits for a given issue in the same place. After the id the title of the issue

should come next. Then use a newline, indented with a dash, to provide additional information

Getting Started

19

related to this commit. Use an additional new line and dash for each separate point you wish to

make. You may add additional JIRA cross references to the same commit, if it's appropriate. In

general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back

to your fork.

2.5.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can

now submit your work as a pull request. If you look at the top of the page in GitHub for your work

area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the

submission of your pull request.

Getting Started

20

The pull request then goes into a queue for everyone to see and comment on. Below you can see

a typical pull request. The pull requests allow for discussions and it shows all associated commits

and the diffs for each commit. The discussions typically involve code reviews which provide helpful

suggestions for improvements, and allows for us to leave inline comments on specific parts of the

code. Don't be disheartened if we don't merge straight away, it can often take several revisions

before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do

some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted

tests that come with a fix will generally be applied quite quickly, where as just tests will often way

until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request

from time to time, otherwise over time it will have merge conflicts and core developers will general

ignore those.

Getting Started

21

2.6. What to do if I encounter problems or have ques-

tions?

You can always contact the jBPM community for assistance.

IRC: #jbpm at chat.freenode.net

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

22

Chapter 3. jBPM Installer

3.1. Prerequisites

This script assumes you have Java JDK 1.6+ (set as JAVA_HOME), and Ant 1.7+ installed. If you

don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

Tip

To check whether Java and Ant are installed correctly, type the following com-

mands inside a command prompt:

java -version

ant -version

This should return information about which version of Java and Ant you are cur-

rently using.

3.2. Downloading the Installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/jBPM%206/] the in-

staller and unzip it to your local file system. There are two versions

• full installer - which already contains a lot of the dependencies that are necessary during the

installation

• minimal installer - which only contains the installer and will download all dependencies

In general, it is probably best to download the full installer: jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

[https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/]

3.3. Demo Setup

The easiest way to get started is to simply run the installation script to install the demo setup.

The demo install will setup all the web tooling (on top of WildFly) and Eclipse tooling in a pre-

configured setup. Go into the jbpm-installer folder where you unzipped the installer and (from a

command prompt) run:

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

jBPM Installer

23

ant install.demo

This will:

• Download WildFly application server

• Configure and deploy the web tooling

• Download Eclipse

• Install the Drools and jBPM Eclipse plugin

• Install the Eclipse BPMN 2.0 Modeler

Running this command could take a while (REALLY, not kidding, we are for example downloading

an Eclipse installation, even if you downloaded the full installer, specifically for your operating

system).

Tip

The script always shows which file it is downloading (you could for example check

whether it is still downloading by checking the whether the size of the file in question

in the jbpm-installer/lib folder is still increasing). If you want to avoid downloading

specific components (because you will not be using them or you already have them

installed somewhere else), check below for running only specific parts of the demo

or directing the installer to an already installed component.

Once the demo setup has finished, you can start playing with the various components by starting

the demo setup:

ant start.demo

This will:

• Start H2 database server

• Start WildFly application server

• Start Eclipse

Now wait until the process management console comes up:

http://localhost:8080/jbpm-console

http://localhost:8080/jbpm-console

jBPM Installer

24

Note

It could take a minute to start up the application server and web application. If

the web page doesn't show up after a while, make sure you don't have a firewall

blocking that port, or another application already using the port 8080. You can al-

ways take a look at the server log jbpm-installer/wildfly-8.1.0.Final/standalone/log/

server.log

Finally, if you also want to use the DashBuilder for reporting (which is implemented as a separate

war), you can now also install this:

ant install.dashboard.into.jboss

Once everything is started, you can start playing with the Eclipse and web tooling, as explained

in the following sections.

If you only want to try out the web tooling and do not wish to download and install the Eclipse

tooling, you can use these alternative commands:

ant install.demo.noeclipse

ant start.demo.noeclipse

Similarly, if you only want to try out the Eclipse tooling and do not wish to download and install

the web tooling, you can use these alternative commands:

ant install.demo.eclipse

ant start.demo.eclipse

Now continue with the 10-minute tutorials. Once you're done playing and you want to shut down

the demo setup, you can use:

ant stop.demo

If at any point in time would like to start over with a clean demo setup - meaning all changes you did

inside the web tooling and/or saved in the database will be lost, you can run the following command

(after which you can run the installer again from scratch, note that this cannot be undone):

ant clean.demo

jBPM Installer

25

3.4. 10-Minute Tutorial using the Workbench

Open up the process management console:

http://localhost:8080/jbpm-console

Note

It could take a minute to start up the AS and web application. If the web page

doesn't show up after a while, make sure you don't have a firewall blocking that

port, or another application already using the port 8080. You can always take a

look at the server log jbpm-installer/jboss-as-7.1.1.Final/standalone/log/server.log

Log in, using krisv / krisv as username / password.

Using a prebuilt Evaluation example, the following screencast [http://people.redhat.com/kver-

laen/jbpm6F-installer-console.swf] gives an overview of how to manage your process instances.

It shows you:

• How to build and deploy a process

• How to start a new process instance

• How to look up the current status of a running process instance

• How to look up your tasks

• How to complete a task

• How to generate reports to monitor your process execution

http://localhost:8080/jbpm-console
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf

jBPM Installer

26

Figure 3.1.[http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf]

The workbench supports the entire life cycle of your business processes: authoring, deployment,

process management, tasks and dashboards.

• The project authoring perspective allows you to look at existing repositories, where each project

can contain business processes (but also business rules, data models, forms, etc.). By default,

the workbench will download two sample playground repositories, containing examples to look

at.

• In this screencast, the Evaluation project inside the jbpm-playground repository is used.

• The project explorer shows all available artefacts:

• evaluation: business process describing the evaluation process as a sequence of tasks

• evaluation-taskform: process form to start the evaluation process

• PerformanceEvaluation-taskform: task form to perform the evaluation tasks

• To make a process available for execution, you need to successfully build and deploy it first.

To do so, open up the Project Editor (from the Tools menu) and click Build & Deploy.

• To manage your process definitions and instances, click on the "Process Management" menu

option at the top menu bar an select one of available options depending on you interest:

• Process Definitions - lists all available process definitions

http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf

jBPM Installer

27

• Process Instances - lists all active process instances (allows to show completed, aborted as

well by changing filter criteria)

• Process definitions panel allow you to start a new process instance by clicking on the "Play"

button. The process form (as defined in the project) will be shown, where you need to fill in the

necessary information to start the process. In this case, you need to fill the user you want to

start an evaluation for (in this case use "krisv") and a reason for the request, after which you

can complete the form. Some details about the process instance that was just started will be

shown in the process instance details panel. From there you can access additional details:

• Process model - to visualize current state of the process

• Process variables - to see current values of process variables

The process instance that you just started is first requiring a self-evaluation of the user and is

waiting until the user has completed this task.

• To see the tasks that have been assigned to you, choose the "Tasks" menu option on the top

bar and select "Task List" (you may need to click refresh to update your task view). The personal

tasks table should show a "Performance Evaluation" task reserved for you. After starting the

task, you can complete the task, which will open up the task form related to this task. You can fill

in the necessary data and then complete the form and close the window. After completing the

task, you could check the "Process Instances" once more to check the progress of your process

instance. You should be able to see that the process is now waiting for your HR manager and

project manager to also perform an evaluation. You could log in as "john" / "john" and "mary" /

"mary" to complete these tasks.

• After starting and/or completing a few process instances and human tasks, you can generate a

report of what has happened so far. Under "Dashboards", select "Process & Task Dashboard".

This is a set of see predefined charts that allow users to spot what is going on in the system.

Charts can be fully customized as well, as explained in the Business Activity Monitoring chapter.

3.5. 10-Minute Tutorial using Eclipse

The following screencast [http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf] gives

an overview of how to use the Eclipse tooling. It shows you:

• How to import and execute the evaluation sample project

• Import the evaluation project (included in the jbpm-installer)

• Open the Evaluation.bpmn process

• Open the com.sample.ProcessTest Java class

• Execute the ProcessTest class to run the process

• How to create a new jBPM project (including sample process and JUnit test)

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf

jBPM Installer

28

Figure 3.2.[http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf]

You can import the evaluation project - a sample included in the jbpm-installer - by selecting "File ->

Import ...", select "Existing Projects into Workspace" and browse to the jbpm-installer/sample/eval-

uation folder and click "Finish". You can open up the evaluation process and the ProcessTest

class. To execute the class, right-click on it and select "Run as ... - Java Application". The console

should show how the process was started and how the different actors in the process completed

the tasks assigned to them, to complete the process instance.

You could also create a new project using the jBPM project wizard. The sample projects contain

a process and an associated Java file to start the process. Select "File - New ... - Project ..."

and under the "jBPM" category, select "jBPM project" and click "Next". Give the project a name

and click "Next". You can choose from a simple HelloWorld example or a slightly more advanced

example using persistence and human tasks. If you select the latter and click Finish, you should

see a new project containing a "sample.bpmn" process and a "com.sample.ProcessTest" JUnit

test class. You can open the BPMN2 process by double-clicking it. To execute the process, right-

click on ProcessTest.java and select "Run As - Java Application".

3.6. Configuration

3.6.1. Playgrounds

The workbench by default brings two sample playground repositories (by cloning the jbpm-play-

ground repository hosted on GitHub). In cases where this is not wanted (access to Internet might

not be available or there might be a need to start with a completely clean installation of the work-

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf

jBPM Installer

29

bench) this default behavior can be turned off. To do so, change the following system property in

the start.jboss target to false in the build.xml:

-Dorg.kie.demo=false

Note that this will create a completely empty version of the workbench. To be able to start modeling

processes, the following elements need to be created first:

• Organizational unit

• Repository (new or clone existing one)

• Project

3.6.2. Workbench Authentication

The workbench web application is using the "default" security domain for authenticating and au-

thorizing users (as specified in the WEB-INF/jboss-web.xml inside the WARs).

The application server is configured by default to use properties files for specifying users. Note

that this is for demo purposes only (as passwords and roles are stored in simple property files).

The security domain is configured in the standalone.xml configuration file as follows:

<security-domain name="other" cache-type="default"> <authentication> <login-

module code="UsersRoles" flag="required"> <module-option name="usersProperties"

 value="${jboss.server.config.dir}/users.properties"/> <module-option

 name="rolesProperties" value="${jboss.server.config.dir}/roles.properties"/> </login-module>

 </authentication></security-domain>

name="other" cache-

type="default"> <authentication> <login-module

 code="UsersRoles" flag="required"> <module-option name="usersProperties"

 value="${jboss.server.config.dir}/users.properties"/> <module-option name="rolesProperties"

 value="${jboss.server.config.dir}/roles.properties"/>

 </login-module>

 </

By default, these configuration files contain the following users:

Table 3.1. Default users

Name Password Workbench roles Task roles

admin admin admin,analyst

krisv krisv admin,analyst

john john analyst Accounting,PM

mary mary analyst HR

sales-rep sales-rep analyst sales

jBPM Installer

30

Name Password Workbench roles Task roles

jack jack analyst IT

katy katy analyst HR

salaboy salaboy admin,analyst IT,HR,Accounting

Authentication can be customized by editing the authentication and configuration files in the jbpm-

installer/auth folder and/or by changing the standalone-*.xml files in the jbpm-installer folder. Note

that you need to rerun the installer to make sure the modified files are copied and picked correctly.

3.6.3. Using your own database with the jBPM installer

3.6.3.1. Introduction

jBPM uses the Java Persistence API specification (v2) to allow users to configure whatever data-

source they want to use to persist runtime data. As a result, the instructions below describe how

you should configure a datasource when using JPA on JBoss application server (e.g. AS7, EAP6

or Wildfly8) using a persistence.xml file and configuring your datasource and driver in your ap-

plication server's standalone.xml, similar to how you would configure any other application using

JPA on JBoss application server. The installer automates some of this (like copying the right files

to the right location after installation).

By default, the jbpm-installer uses an H2 database for persisting runtime data. In this section we

will:

1. modify the persistence settings for runtime persistence of process instance state

2. test the startup with our new settings!

You will need a local instance of a database, in this case we will use MySQL.

3.6.3.2. Database setup

In the MySQL database used in this quickstart, create a single user:

• user/schema "jbpm" with password "jbpm" (which will be used to persist all entities)

If you end up using different names for your user/schemas, please make a note of where we insert

"jbpm" in the configuration files.

If you want to try this quickstart with another database, a section at the end of this quickstart

describes what you may need to modify.

3.6.3.3. Configuration

The following files define the persistence settings for the jbpm-installer demo:

• jbpm-installer/db/jbpm-persistence-JPA2.xml

jBPM Installer

31

• Application server configuration

• standalone-*.xml

Tip

There are multiple standalone.xml files available (depending on whether you are

using JBoss AS7, JBoss EAP6 or Wildfly8 and whether you are running the normal

or full profile). The full profile is required to use the JMS component for remote

integration, so will be used by default by the installer. Best practice is to update all

standalone.xml files to have consistent setup but most important is to have stand-

alone-full-wildfly-8.1.0.Final.xml properly configured as this is used by default by

the installer.

Do the following:

• Disable H2 default database and enable MySQL database in build.properties

default is H2# H2.version=1.3.168# db.name=h2# db.driver.jar.name=

${db.name}.jar# db.driver.download.url=http://repo1.maven.org/maven2/com/h2database/h2/

${H2.version}/h2-${H2.version}.jar#mysqldb.name=mysqldb.driver.module.prefix=com/

mysqldb.driver.jar.name=mysql-connector-java-5.1.18.jardb.driver.download.url=https://

repository.jboss.org/nexus/service/local/repositories/central/content/mysql/mysql-connector-

java/5.1.18/mysql-connector-java-5.1.18.jar

H2#

H2.version=1.3.168#

db.name=h2# db.driver.jar.name=

${db.name}.jar# db.driver.download.url=http://repo1.maven.org/maven2/com/h2database/h2/${H2.version}/

h2-

${H2.version}.jar

#mysql

db.name=mysqldb.driver.module.prefix=com/

mysqldb.driver.jar.name=mysql-connector-

java-5.1.18.jardb.driver.download.url=https://repository.jboss.org/nexus/service/local/

repositories/central/content/mysql/mysql-connector-java/5.1.18/mysql-connector-

java-5.1.18.jar

You might want to update the db driver jar name and download url to whatever version of the

jar matches your installation.

• db/jbpm-persistence-JPA2.xml:

This is the JPA persistence file that defines the persistence settings used by jBPM for both the

process engine information, the logging/BAM information and task service.

In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

jBPM Installer

32

<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

In the case of a MySQL database, you need to change it to:

<property name="hibernate.dialect" value="org.hibernate.dialect.MySQLDialect"/>

For those of you who decided to use another database, a list of the available hibernate dialect

classes can be found here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/ses-

sion-configuration.html#configuration-optional-dialects].

• standalone-full-wildfly-8.1.0.Final.xml:

Standalone.xml and standalone-full.xml are the configuration for the standalone JBoss

application server. When the installer installs the demo, it copies these files to the stand-

alone/configuration directory in the JBoss server directory. Since the installer uses Wild-

fly8 by default as application server, you probably need to change standalone-full-

wildfly-8.1.0.Final.xml.

We need to change the datasource configuration in standalone-full.xml so that the jBPM

process engine can use our MySQL database. The original file contains (something very similar

to) the following lines:

<datasource jta="true" jndi-name="java:jboss/datasources/jbpmDS" pool-name="H2DS"

 enabled="true" use-java-context="true" use-ccm="true"> <connection-url>jdbc:h2:tcp://

localhost/~/jbpm-db;MVCC=TRUE</connection-url> <driver>h2</driver> <security>

 <user-name>sa</user-name> </security></datasource><drivers> <driver name="h2"

 module="com.h2database.h2"> <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-

datasource-class> </driver></drivers>

va-context="true" use-ccm="true"> <connection-url>jdbc:h2:tcp://localhost/

~/jbpm-db;MVCC=TRUE</connection-url>

 <driver>h2</driver>

 <security>

 <user-name>sa</user-name>

</security></datasource><drivers>

<driver name="h2" module="com.h2database.h2"> <xa-

datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-class>

Change the lines to the following:

<datasource jta="true" jndi-name="java:jboss/datasources/jbpmDS" pool-name="MySQLDS"

 enabled="true" use-java-context="true" use-ccm="true"> <connection-url>

ccm="true"> <connection-jdbc:mysql://localhost:3306/jbpm</connection-url>

 <driver>mysql</driver>

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects

jBPM Installer

33

 <security>

 <user-name>jbpm</user-name>

 <password>jbpm</password>

 </security>

</datasource>

and add an additional driver configuration:

<driver name="mysql" module="com.mysql">

 <xa-datasource-class>com.mysql.jdbc.jdbc2.optional.MysqlXADataSource</xa-datasource-

class>

</driver>

• To install driver jars in JBoss application server (Wildfly8, EAP6, etc.), it is recommended to

install the driver jar as a module. The installer already takes care of this mostly: it will copy

the driver jar (you specified in the build.properties) to the right folder inside the modules

directory of your server and put a matching module.xml next to it. For MySQL, this file is called

db/mysql_module.xml. Open this file and make sure that the file name of the driver jar listed

there is identical the driver jar name you specified in the build.properties (including the

version). Note that, even if you simply uncommented the default MySQL configuration, you will

still need to add the right version here.

• Starting the demo

We've modified all the necessary files at this point. Now would be a good time to make sure

your database is started up as well!

The installer script copies this file into the jbpm-console WAR before the WAR is installed on

the server. If you have already run the installer, it is recommended to stop the installer and

clean it first using

ant stop.demo

and

ant clean.demo

before continuing.

Run

ant install.demo

jBPM Installer

34

to (re)install the wars and copy the necessary configuration files. Once you've done that, (re)start

the demo using

ant start.demo

• Problems?

If this isn't working for you, please try the following:

• Please double check the files you've modified: I wrote this, but still made mistakes when

changing files!

• Please make sure that you don't secretly have another (unmodified) instance of JBoss AS

running.

• If neither of those work (and you're using MySQL), please do then let us know.

3.6.3.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when

going through the steps above:

• Configuring the jBPM datasource in standalone.xml:

• After locating the java:jboss/datasources/jbpmDS datasource, you need to provide the

following properties specific to your database:

• Change url of your database

• Change the user-name and password

• Change the name of the driver (which you'll create next)

For example:

<datasource jta="true" jndi-name="java:jboss/datasources/jbpmDS" pool-name="PostgreSQLDS"

 enabled="true" use-java-context="true" use-ccm="true"> <connection-

url>jdbc:postgresql://localhost:5432/jbpm</connection-url> <driver>postgresql</driver>

 <security> <user-name>jbpm</user-name> <password>jbpm</password>

 </security></datasource>

va-context="true" use-ccm="true"> <connection-

url>jdbc:postgresql://localhost:5432/jbpm</connection-url>

 <driver>postgresql</driver>

 <security>

 <user-name>jbpm</user-name>

 <password>jbpm</password>

• Add an additional driver configuration:

jBPM Installer

35

• Change the name of the driver to match the name you specified when configuring the

datasource in the previous step

• Change the module of the driver: the database driver jar should be installed as a module

(see below) and here you should reference the unique name of the module. Since the

installer can take care of automatically generating this module for you (see below), this

should match the db.driver.module.prefix property in build.properties (where for-

ward slashes are replaced by a point). In the example below, I used “org/postgresql”

as db.driver.module.prefix which means that I should then use org.postgresql as

module name for the driver.

• Fill in the correct name of the XA datasource class to use

For example:

<driver name="postgresql" module="org.postgresql">

 <xa-datasource-class>org.postgresql.xa.PGXADataSource</xa-datasource-class>

</driver>

• You need to change the dialect in persistence.xml to the dialect for your database, for ex-

ample:

<property name="hibernate.dialect" value="org.hibernate.dialect.PostgreSQLDialect"/>

• In order to make sure your driver will be correctly installed in the JBoss application server, there

are typically multiple options, like install as a module or as a deployment. It is recommended to

install the driver as a module for AS7, EAP6 and Wildfly8. For example, for AS7 both ways are

explained here [https://community.jboss.org/wiki/DataSourceConfigurationinAS7].

• Install [https://community.jboss.org/wi-

ki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module] the driver JAR

as a module, which is what the install script does.

• Otherwise, you can modify and install [https://community.jboss.org/wi-

ki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment] the down-

loaded JAR as a deployment. In this case you will have to copy the JAR yourself to the

standalone/deployments directory.

If you choose to install driver as JBoss module (recommended), please do the following:

• In build.properties, disable the default H2 driver properties

default is H2# H2.version=1.3.168# db.name=h2# db.driver.jar.name=h2-

${H2.version}.jar# db.driver.download.url=http://repo1.maven.org/maven2/com/h2database/h2/

${H2.version}/h2-${H2.version}.jar

H2#

H2.version=1.3.168#

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment

jBPM Installer

36

db.name=h2# db.driver.jar.name=h2-

${H2.version}.jar# db.driver.download.url=http://repo1.maven.org/maven2/com/h2database/h2/${H2.version}/

h2-

• Uncomment one of the other example configs (mysql or postgresql) or create your own:

#postgresqldb.name=postgresqldb.driver.module.prefix=org/

postgresqldb.driver.jar.name=postgresql-9.1-902.jdbc4.jardb.driver.download.url=https://

repository.jboss.org/nexus/content/repositories/thirdparty-uploads/postgresql/

postgresql/9.1-902.jdbc4/postgresql-9.1-902.jdbc4.jar

gresql

db.name=postgresqldb.driver.module.prefix=org/

postgresql

db.driver.jar.name=postgresql-9.1-902.jdbc4.jardb.driver.download.url=https://repository.jboss.org/nexus/content/repositories/

thirdparty-uploads/postgresql/postgresql/9.1-902.jdbc4/

• Change the db.name property in build.properties to a name for your database.

• Change the db.driver.module.prefix property to a name for the module of your dri-

ver. Note that this should match the module property when configuring the driver in

standalone.xml (where forward slashes in the prefix here are replaced by a point). In the

example above, I used “org/postgresql” as db.driver.module.prefix which means

that I should then use org.postgresql as module name for the driver.

• Change the db.driver.jar.name property to the name of the jar that contains your data-

base driver.

• Change the db.driver.download.url property to where the driver jar can be downloaded.

Alternatively, you could manually download the jar yourself, and place it in the db/drivers

folder, using the same name as you specified in the db.driver.jar.name property.

• Lastly, you'll have to create the db/${db.name}_module.xml file. As an example you can

use db/mysql_module.xml, so just make a copy of it and:

• Change the name of the module to match the driver module name above

• Change the name of the module resource path to the name of the db.driver.jar.name

property.

For example, the top of the file would look like:

<module xmlns="urn:jboss:module:1.0" name="org.postgresql">

 <resources>

 <resource-root path="postgresql-9.1-902.jdbc4.jar"/>

 </resources>

jBPM Installer

37

3.6.4. jBPM database schema scripts (DDL scripts)

By default the demo setup makes use of Hibernate auto DDL generation capabilities to build up

the complete database schema, including all tables, sequences, etc. This might not always be

welcomed (by your database administrator), and thus the installer provides DDL scripts for most

popular databases.

Table 3.2. DDL scripts

Database name Location

db2 jbpm-installer/db/ddl-scripts/db2

derby jbpm-installer/db/ddl-scripts/derby

h2 jbpm-installer/db/ddl-scripts/h2

hsqldb jbpm-installer/db/ddl-scripts/hsqldb

mysql5 jbpm-installer/db/ddl-scripts/mysql5

mysqlinnodb jbpm-installer/db/ddl-scripts/mysqlinnodb

oracle jbpm-installer/db/ddl-scripts/oracle

postgresql jbpm-installer/db/ddl-scripts/postgresql

sqlserver jbpm-installer/db/ddl-scripts/sqlserver

sqlserver2008 jbpm-installer/db/ddl-scripts/sqlserver2008

DDL scripts are provided for both jBPM and Quartz schemas although Quartz schema DDL script

is only required when the timer service should be configured with Quartz database job store. See

the section on timers for additional details.

This can be used to initially create the database schema, but it can also serve as the basis for

any\ optimization that needs to be applied - such as indexes, etc.

3.6.5. jBPM installer script

jBPM installer ant script performs most of the work automatically and usually does not require

additional attention but in case it does, here is a list of available targets that might be needed to

perform some of the steps manually.

Table 3.3. jBPM installer available targets

Target Description

clean.db cleans up database used by jBPM demo (ap-

plies only to H2 database)

clean.demo cleans up entire installation so new installation

can be performed

clean.demo.noeclipse same as clean.demo but does not remove

Eclipse

jBPM Installer

38

Target Description

clean.eclipse removes Eclipse and its workspace

clean.generated.ddl removes DDL scripts generated if any

clean.jboss removes application server with all its deploy-

ments

clean.jboss.repository removes repository content for demo setup

(guvnor Maven repo, niogit, etc)

download.dashboard downloads jBPM dashboard component (BAM)

download.db.driver downloads DB driver configured in

build.properties

download.ddl.dependencies downloads all dependencies required to run

DDL script generation tool

download.droolsjbpm.eclipse downloads Drools and jBPM Eclipse plugin

download.eclipse downloads Eclipse distribution

download.jboss downloads JBoss Application Server

download.jBPM.bin downloads jBPM binary distribution (jBPM libs

and its dependencies)

download.jBPM.console downloads jBPM console for JBoss AS

install.dashboard.into.jboss installs jBPM dashboard into JBoss AS

install.db.files installs DB driver as JBoss module

install.demo installs complete demo environment

install.demo.eclipse installs Eclipse with all jBPM plugins, no server

installation

install.demo.noeclipse similar to install.demo but skips Eclipse instal-

lation

install.dependencies installs custom libraries (such as work item

handlers, etc) into the jBPM console

install.droolsjbpm-eclipse.into.eclipse installs droolsjbpm Eclipse plugin into Eclipse

install.eclipse install Eclipse IDE

install.jboss installs JBoss AS

install.jBPM-console.into.jboss installs jBPM console application into JBoss

AS

3.7. Frequently Asked Questions

Some common issues are explained below.

Q: What if the installer complains it cannot download component X?

jBPM Installer

39

A: Are you connected to the Internet? Do you have a firewall turned on? Do you require a proxy? It

might be possible that one of the locations we're downloading the components from is temporarily

offline. Try downloading the components manually (possibly from alternate locations) and put

them in the jbpm-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain JAR/WAR/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying

to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder

and reinstall, so it will be downloaded again.

Q: What if I have been changing my installation (and it no longer works) and I want to start over

again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a

fresh installation again.

Q: I sometimes see exceptions when trying to stop or restart certain services, what should I do?

A: If you see errors during shutdown, are you sure the services were still running? If you see

exceptions during restart, are you sure the service you started earlier was successfully shutdown?

Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but I have no idea what. What

can I do?

A: Always check the consoles for output like error messages or stack traces. You can also check

the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's

happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-

console. What can I do?

A: You can check the server log for possible exceptions: jbpm-installer/jboss-as-{version}/stand-

alone/log/server.log (for JBoss AS7).

For all other questions, try contacting the jBPM community as described in the Getting Started

chapter.

40

Chapter 4. Examples

4.1. Introduction

The web-based workbench by default will install two sample repositories that contain various sam-

ple projects that help you getting started. This section shows different examples that can be found

in the jbpm-playground repository (also available here: https://github.com/droolsjbpm/jbpm-play-

ground). All these examples are high level and business oriented.

If you want to contribute with these examples please get in touch with any member of the jBPM/

Drools Team.

4.2. Importing Projects through Git

To import the Human Resources example, as well as other examples, follow these steps:

1. Logging into Workbench

a. On the command line, change into the $SERVER_HOME/bin/ directory and execute the

following command:

• for Unix environment:

./standalone.sh

• for Windows environment:

./standalone.bat

b. Once your server is up and running, open the following address in a web browser:

http://localhost:8080/business-central

This opens the login page.

c. Log into Workbench with the user credentials created during installation.

2. Importing Projects Through Git

a. Click Authoring → Administration.

https://github.com/droolsjbpm/jbpm-playground
https://github.com/droolsjbpm/jbpm-playground

Examples

41

b. Click Repositories → Clone repository.

c. In the New Repository dialogue, enter following information:

• Repository Name: for example, playground.

• Organizational Unit: select your organizational unit, for example example.

• Git URL: enter the Git URL you want to import, for example: https://github.com/drool-

sjbpm/jbpm-playground.

d. Click Clone.

This will import a number of premade examples into your instance of jBPM.

4.3. Human Resources Example

The Human Resource Example's use case can be described as follows: A company wants to

hire new developers. In this process, three departments (that is the Human resources, IT, and

Accounting) are involved. These departments are represented by three users: Katy, Jack, and

John respectively.

Examples

42

Business process designed for the Human Resource Example's use case

Figure 4.1. Business Process

Note that only four out of the six defined activities within the business process are User Tasks. User

Tasks require human interaction. The other two tasks are Service Tasks, which are automated

and connected to other systems.

Each instance of the process will follow certain actions:

• The human resources team performs the initial interview with the candidate.

• The IT department team performs the technical interview.

Examples

43

• Based on the output from the previous two steps, the accounting team creates a job proposal.

• When the proposal has been drafted, it is automatically sent to the candidate via email.

• If the candidate accepts the proposal, a new meeting to sign the contract is scheduled.

• Finally, if the candidate accepts the proposal, the system posts a message about the new hire

using Twitter service connector.

Note, that Jack, John, and Katy represent any employee within the company with appropriate role

assigned.

4.3.1. The Kie Project: human-resources

To start exploring the project:

1. Click Authoring → Project Authoring.

2. Click BUSINESS PROCESSES → hiring.

The authoring perspective contains the hiring.bpmn2 process and a set of forms for each human

task. Click these assets to explore. Notice that different editors open for different types of assets.

4.3.2. Building the Human Resources Example

To build the Project:

1. Click Authoring → Project Authoring.

2. Click Open Project Editor.

3. Click Build → Build & Deploy.

Build & Deploy creates a new JAR artifact that is deployed to the runtime environment as a new

deployment unit.

Examples

44

After successfully building and deploying your project, you can verify its presence in the Deploy-

ments tab. Click Deploy → Deployments to do so.

Figure 4.2. Deployment Units Section

You can find all the deployed units in the Deployments tab. When you Build & Deploy a project from

the Project Editor, it is deployed using the default configurations. That means using the Singleton

Strategy, the default Kie Base and the default Kie Session.

Examples

45

If you want a more advanced deployment, undeploy and re-deploy your artifacts using their GAV

and selecting non-default settings. Then, you will be able to set a different strategy, or use a non-

default Kie Base or Kie Session.

Once your artifact that contains the process definition is deployed, the Process Definition will

become available in Process Management → Process Definitions.

4.3.3. Create a new Process Instance

To create new process instances:

1. Click Process Management → Process Definitions.

2. Start your instance:

You can start process instances using any of the two highlighted options.

Figure 4.3. Starting Process Instances

The Process Definitions tab contains all the available process definitions in the runtime environ-

ment. In order to add new process definitions, build and deploy a new project.

Most processes require additional information to create a new process instance. This is done

through forms. For this project, fill in the name of the candidate that is to be interviewed.

When you click Submit, you create a new process instance. This creates the first task, that is

available for the Human Resources team. To see the task, you need to logout and log in as a user

with the appropriate role assigned, that is someone from the Human Resources.

When you start the process, you can interact with the human tasks. To do so, click Task → Tasks.

Note that in order to see the tasks in the task list, you need to belong to specific user groups, for

which the task is designed. For example, the HR Interview task is visible only for the members of

the HR group, and the Tech Interview Task is visible only to the members of the IT group.

Examples

46

4.4. Examples zip

A zip file of examples can also be downloaded from the downloads page, containing various

examples that can be opened in the Eclipse-based Developers Tools. Simply download and unzip

the examples artefact and import into your Eclipse workspace.

Part II. jBPM Core
Using the jBPM Core Engine

48

Chapter 5. Core Engine API

5.1. Overview

This chapter introduces the API you need to load processes and execute them. For more detail

on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.

This session will be used to communicate with the process engine. A session needs to have a

reference to a knowledge base, which contains a reference to all the relevant process definitions.

This knowledge base is used to look up the process definitions whenever necessary. To create

a session, you first need to create a knowledge base, load all the necessary process definitions

(this can be from various sources, like from classpath, file system or process repository) and then

instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process

is started, a new process instance is created (for that process definition) that maintains the state

of that specific instance of the process.

For example, imagine you are writing an application to process sales orders. You could then define

one or more process definitions that define how the order should be processed. When starting up

your application, you first need to create a knowledge base that contains those process definitions.

You can then create a session based on this knowledge base so that, whenever a new sales order

Core Engine API

49

comes in, a new process instance is started for that sales order. That process instance contains

the state of the process for that specific sales request.

A knowledge base can be shared across sessions and usually is only created once, at the start of

the application (as creating a knowledge base can be rather heavy-weight as it involves parsing

and compiling the process definitions). Knowledge bases can be dynamically changed (so you

can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and

interact with the engine. You can create as many independent session as you need and creating

a session is considered relatively lightweight. How many sessions you create is up to you. In

general, most simple cases start out with creating one session that is then called from various

places in your application. You could decide to create multiple sessions if for example you want

to have multiple independent processing units (for example, if you want all processes from one

customer to be completely independent from processes for another customer, you could create an

independent session for each customer) or if you need multiple sessions for scalability reasons.

If you don't know what to do, simply start by having one knowledge base that contains all your

process definitions and create one session that you then use to execute all your processes.

The jBPM project has a clear separation between the API the users should be interacting with

and the actual implementation classes. The public API exposes most of the features we believe

"normal" users can safely use and should remain rather stable across releases. Expert users can

still access internal classes but should be aware that they should know what they are doing and

that the internal API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that

contains your process definitions, and to (2) create a session to start new process instances,

signal existing ones, register listeners, etc.

5.2. KieBase

The jBPM API allows you to first create a knowledge base. This knowledge base should include

all your process definitions that might need to be executed by that session. To create a knowledge

base, use a KieHelper to load processes from various resources (for example from the classpath

or from the file system), and then create a new knowledge base from that helper. The following

code snippet shows how to create a knowledge base consisting of only one process definition

(using in this case a resource from the classpath).

 KieHelper kieHelper = new KieHelper();

 KieBase kieBase = kieHelper

 .addResource(ResourceFactory.newClassPathResource("MyProcess.bpmn"))

 .build();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,

Reader, etc.

Core Engine API

50

This is considered manual creation of knowledge base and while it is simple it is not recommend-

ed for real application development but more for try outs. Following you'll find recommended and

much more powerful way of building knowledge base, knowledge session and more - Runtime-

Manager.

5.3. KieSession

Once you've loaded your knowledge base, you should create a session to interact with the engine.

This session can then be used to start new processes, signal events, etc. The following code

snippet shows how easy it is to create a session based on the previously created knowledge base,

and to start a process (by id).

KieSession ksession = kbase.newKieSession();

ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

5.3.1. ProcessRuntime

The ProcessRuntime interface defines all the session methods for interacting with processes, as

shown below.

 /**

 * Start a new process instance. The process (definition) that should

 * be used is referenced by the given process id.

 *

 * @param processId The id of the process that should be started

 * @return the that represents the instance of the process that was started

 */

 ProcessInstance startProcess(String processId);

 /**

 * Start a new process instance. The process (definition) that should

 * be used is referenced by the given process id. Parameters can be passed

 * to the process instance (as name-value pairs), and these will be set

 * as variables of the process instance.

 *

 * @param processId the id of the process that should be started

 * @param parameters the process variables that should be set when starting the process instance

 * @return the that represents the instance of the process that was started

 */

 ProcessInstance startProcess(String processId,

 Map<String, Object> parameters);

 /**

 * Signals the engine that an event has occurred. The type parameter defines

 * which type of event and the event parameter can contain additional information

 * related to the event. All process instances that are listening to this type

 * of (external) event will be notified. For performance reasons, this type of event

 * signaling should only be used if one process instance should be able to notify

 * other process instances. For internal event within one process instance, use the

Core Engine API

51

 * signalEvent method that also include the processInstanceId of the process instance

 * in question.

 *

 * @param type the type of event

 * @param event the data associated with this event

 */

 void signalEvent(String type,

 Object event);

 /**

 * Signals the process instance that an event has occurred. The type parameter defines

 * which type of event and the event parameter can contain additional information

 * related to the event. All node instances inside the given process instance that

 * are listening to this type of (internal) event will be notified. Note that the event

 * will only be processed inside the given process instance. All other process instances

 * waiting for this type of event will not be notified.

 *

 * @param type the type of event

 * @param event the data associated with this event

 * @param processInstanceId the id of the process instance that should be signaled

 */

 void signalEvent(String type,

 Object event,

 long processInstanceId);

 /**

 * Returns a collection of currently active process instances. Note that only process

 * instances that are currently loaded and active inside the engine will be returned.

 * When using persistence, it is likely not all running process instances will be loaded

 * as their state will be stored persistently. It is recommended not to use this

 * method to collect information about the state of your process instances but to use

 * a history log for that purpose.

 *

 * @return a collection of process instances currently active in the session

 */

 Collection<ProcessInstance> getProcessInstances();

 /**

 * Returns the process instance with the given id. Note that only active process instances

 * will be returned. If a process instance has been completed already, this method will return

 * null.

 *

 * @param id the id of the process instance

 * @return the process instance with the given id or null if it cannot be found

 */

 ProcessInstance getProcessInstance(long processInstanceId);

 /**

 * Aborts the process instance with the given id. If the process instance has been completed

 * (or aborted), or the process instance cannot be found, this method will throw an

 * IllegalArgumentException.

 *

 * @param id the id of the process instance

 */

 void abortProcessInstance(long processInstanceId);

 /**

 * Returns the WorkItemManager related to this session. This can be used to

 * register new WorkItemHandlers or to complete (or abort) WorkItems.

Core Engine API

52

 *

 * @return the WorkItemManager related to this session

 */

 WorkItemManager getWorkItemManager();

5.3.2. Event Listeners

The session provides methods for registering and removing listeners. A ProcessEventListener

can be used to listen to process-related events, like starting or completing a process, entering

and leaving a node, etc. Below, the different methods of the ProcessEventListener class are

shown. An event object provides access to related information, like the process instance and node

instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);

 void afterProcessStarted(ProcessStartedEvent event);

 void beforeProcessCompleted(ProcessCompletedEvent event);

 void afterProcessCompleted(ProcessCompletedEvent event);

 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);

 void afterNodeTriggered(ProcessNodeTriggeredEvent event);

 void beforeNodeLeft(ProcessNodeLeftEvent event);

 void afterNodeLeft(ProcessNodeLeftEvent event);

 void beforeVariableChanged(ProcessVariableChangedEvent event);

 void afterVariableChanged(ProcessVariableChangedEvent event);

}

A note about before and after events: these events typically act like a stack, which means that any

events that occur as a direct result of the previous event, will occur between the before and the

after of that event. For example, if a subsequent node is triggered as result of leaving a node, the

node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodeLeftEvent

of the node that is left (as the triggering of the second node is a direct result of leaving the first

node). Doing that allows us to derive cause relationships between events more easily. Similarly,

all node triggered and node left events that are the direct result of starting a process will occur

between the beforeProcessStarted and afterProcessStarted events. In general, if you just want

to be notified when a particular event occurs, you should be looking at the before events only (as

they occur immediately before the event actually occurs). When only looking at the after events,

one might get the impression that the events are fired in the wrong order, but because the after

events are triggered as a stack (after events will only fire when all events that were triggered as

a result of this event have already fired). After events should only be used if you want to make

sure that all processing related to this has ended (for example, when you want to be notified when

starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending

on the type of node, some nodes might only generate node left events, others might only generate

node triggered events. Catching intermediate events for example are not generating triggered

Core Engine API

53

events (they are only generating left events, as they are not really triggered by another node, rather

activated from outside). Similarly, throwing intermediate events are not generating left events

(they are only generating triggered events, as they are not really left, as they have no outgoing

connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the

console or the a file on the file system). This audit log contains all the different events that occurred

at runtime so it's easy to figure out what happened. Note that these loggers should only be used

for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This

log file might then be used in the IDE to generate a tree-based visualization of the events that

occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the

logger or when the number of events in the logger reaches a predefined level, it cannot be

used when debugging processes at runtime. A threaded file logger writes the events to a file

after a specified time interval, making it possible to use the logger to visualize the progress in

realtime, while debugging processes.

The KieServices lets you add a KieRuntimeLogger to your session, as shown below. When

creating a console logger, the knowledge session for which the logger needs to be created must

be passed as an argument. The file logger also requires the name of the log file to be created,

and the threaded file logger requires the interval (in milliseconds) after which the events should

be saved. You should always close the logger at the end of your application.

 import org.kie.api.KieServices;

 import org.kie.api.logger.KieRuntimeLogger;

 ...

 KieRuntimeLogger logger = KieServices.Factory.get().getLoggers().newFileLogger(ksession, "test");

 // add invocations to the process engine here,

 // e.g. ksession.startProcess(processId);

 ...

 logger.close();

The log file that is created by the file-based loggers contains an XML-based overview of all the

events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools

Eclipse plugin, where the events are visualized as a tree. Events that occur between the before

and after event are shown as children of that event. The following screenshot shows a simple

example, where a process is started, resulting in the activation of the Start node, an Action node

and an End node, after which the process was completed.

Core Engine API

54

5.3.3. Correlation Keys

A common requirement when working with processes is ability to assign a given process instance

some sort of business identifier that can be later on referenced without knowing the actual (gen-

erated) id of the process instance. To provide such capabilities, jBPM allows to use Correlation-

Key that is composed of CorrelationProperties. CorrelationKey can have either single property

describing it (which is in most cases) but it can be represented as multi valued properties set.

Correlation capabilities are provided as part of interface

CorrelationAwareProcessRuntime

that exposes following methods:

 /**

 * Start a new process instance. The process (definition) that should

 * be used is referenced by the given process id. Parameters can be passed

 * to the process instance (as name-value pairs), and these will be set

 * as variables of the process instance.

 *

 * @param processId the id of the process that should be started

 * @param correlationKey custom correlation key that can be used to identify process instance

 * @param parameters the process variables that should be set when starting the process instance

 * @return the that represents the instance of the process that was started

 */

 ProcessInstance startProcess(String processId, CorrelationKey correlationKey, Map<String, Object> parameters);

 /**

 * Creates a new process instance (but does not yet start it). The process

 * (definition) that should be used is referenced by the given process id.

 * Parameters can be passed to the process instance (as name-value pairs),

 * and these will be set as variables of the process instance. You should only

 * use this method if you need a reference to the process instance before actually

 * starting it. Otherwise, use startProcess.

 *

 * @param processId the id of the process that should be started

 * @param correlationKey custom correlation key that can be used to identify process instance

 * @param parameters the process variables that should be set when creating the process instance

 * @return the that represents the instance of the process that was created (but not yet started)

 */

 ProcessInstance createProcessInstance(String processId, CorrelationKey correlationKey, Map<String, Object> parameters);

Core Engine API

55

 /**

 * Returns the process instance with the given correlationKey. Note that only active process instances

 * will be returned. If a process instance has been completed already, this method will return

 * .

 *

 * @param correlationKey the custom correlation key assigned when process instance was created

 * @return the process instance with the given id or if it cannot be found

 */

 ProcessInstance getProcessInstance(CorrelationKey correlationKey);

Correlation is usually used with long running processes and thus require persistence to be enabled

to be able to permanently store correlation information.

5.3.4. Threads

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical

multi-threading is what happens when multiple threads or processes are started on a computer,

for example by a Java or C program. Logical multi-threading is what we see in a BPM process after

the process reaches a parallel gateway, for example. From a functional standpoint, the original

process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include

a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM

process that includes logical multi-threading will only be executed in one technical thread. The

main reason for doing this is that multiple (technical) threads need to be be able to communicate

state information with each other if they are working on the same process. This requirement brings

with it a number of complications. While it might seem that multi-threading would bring perfor-

mance benefits with it, the extra logic needed to make sure the different threads work together

well means that this is not guaranteed. There is also the extra overhead incurred because we

need to avoid race conditions and deadlocks.

In general, the jBPM engine executes actions in serial. For example, when the engine encounters

a script task in a process, it will synchronously execute that script and wait for it to complete before

continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially

trigger each of the outgoing branches, one after the other. This is possible since execution is

almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.

As a result, the user will usually not even notice this. Similarly, action scripts in a process are also

synchronously executed, and the engine will wait for them to finish before continuing the process.

For example, doing a Thread.sleep(...) as part of a script will not make the engine continue

execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the

engine will also invoke the handler of this service synchronously. The engine will wait for the

completeWorkItem(...) method to return before continuing execution. It is important that your

service handler executes your service asynchronously if its execution is not instantaneous.

Core Engine API

56

An example of this would be a service task that invokes an external service. Since the delay in

invoking this service remotely and waiting for the results might be too long, it might be a good idea

to invoke this service asynchronously. This means that the handler will only invoke the service and

will notify the engine later when the results are available. In the mean time, the process engine

then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we

don't want the engine to wait until a human actor has responded to the request. The human task

handler will only create a new task (on the task list of the assigned actor) when the human task

node is triggered. The engine will then be able to continue execution on the rest of the process (if

necessary) and the handler will notify the engine asynchronously when the user has completed

the task.

5.4. RuntimeManager

5.4.1. Overview

RuntimeManager has been introduced to simplify and empower usage of knowledge API espe-

cially in context of processes. It provides configurable strategies that control actual runtime exe-

cution (how KieSessions are provided) and by default provides following:

• Singleton - runtime manager maintains single KieSession regardless of number of processes

available

• Per Request - runtime manager delivers new KieSession for every request

• Per Process Instance - runtime manager maintains mapping between process instance and

KieSession and always provides same KieSession whenever working with given process in-

stance

Runtime Manager is primary responsible for managing and delivering instances of RuntimeEngine

to the caller. In turn, RuntimeEngine encapsulates two the most important elements of jBPM en-

gine:

• KieSession

• TaskService

Both of these components are already configured to work with each other smoothly without addi-

tional configuration from end user. No more need to register human task handler or keeping track

if it's connected to the service or not.

public interface RuntimeManager {

 /**

 * Returns <code>RuntimeEngine</code> instance that is fully initialized:

 *

 * KiseSession is created or loaded depending on the strategy

 * TaskService is initialized and attached to ksession (via listener)

Core Engine API

57

 * WorkItemHandlers are initialized and registered on ksession

 * EventListeners (process, agenda, working memory) are initialized and added to ksession</

li>

 *

 * @param context the concrete implementation of the context that is supported by given <code>RuntimeManager</

code>

 * @return instance of the <code>RuntimeEngine</code>

 */

 RuntimeEngine getRuntimeEngine(Context<?> context);

 /**

 * Unique identifier of the <code>RuntimeManager</code>

 * @return

 */

 String getIdentifier();

 /**

 * Disposes <code>RuntimeEngine</code> and notifies all listeners about that fact.

 * This method should always be used to dispose <code>RuntimeEngine</code> that is not needed

 * anymore.

 * ksession.dispose() shall never be used with RuntimeManager as it will break the internal

 * mechanisms of the manager responsible for clear and efficient disposal.

 * Dispose is not needed if <code>RuntimeEngine</

code> was obtained within active JTA transaction,

 * this means that when getRuntimeEngine method was invoked during active JTA transaction then dispose of

 * the runtime engine will happen automatically on transaction completion.

 * @param runtime

 */

 void disposeRuntimeEngine(RuntimeEngine runtime);

 /**

 * Closes <code>RuntimeManager</code> and releases its resources. Shall always be called when

 * runtime manager is not needed any more. Otherwise it will still be active and operational.

 */

 void close();

}

RuntimeEngine interface provides the most important methods to get access to engine compo-

nents:

public interface RuntimeEngine {

 /**

 * Returns <code>KieSession</code> configured for this <code>RuntimeEngine</code>

 * @return

 */

 KieSession getKieSession();

 /**

 * Returns <code>TaskService</code> configured for this <code>RuntimeEngine</code>

 * @return

 */

 TaskService getTaskService();

}

Core Engine API

58

RuntimeManager will ensure that regardless of the strategy it will provide same capabilities when

it comes to initialization and configuration of the RuntimeEngine. That means

• KieSession will be loaded with same factories (either in memory or JPA based)

• WorkItemHandlers will be registered on every KieSession (either loaded from db or newly cre-

ated)

• Event listeners (Process, Agenda, WorkingMemory) will be registered on every KieSession (ei-

ther loaded from db or newly created)

• TaskService will be configured with:

• JTA transaction manager

• same entity manager factory as for the KieSession

• UserGroupCallback from environment

On the other hand, RuntimeManager maintains the engine disposal as well by providing dedicated

methods to dispose RuntimeEngine when it's no more needed to release any resources it might

have acquired.

Note

RuntimeManager's identifier is used as "deploymentId" during runtime execution.

For example, the identifier is persisted as "deploymentId" of a Task when the Task

is persisted. Task's deploymentId is used to associate the RuntimeManager when

the Task is completed and its process instance is resumed. The deploymentId is al-

so persisted as "externalId" in history log tables. If you don't specify an identifier on

RuntimeManager creation, a default value is applied (e.g. "default-per-pinstance"

for PerProcessInstanceRuntimeManager). That means your application uses the

same deployment in its lifecycle. If you maintain multiple RuntimeManagers in

your application, you need to specify their identifiers. For example, jbpm-services

(DeploymentService) maintains multiple RuntimeManagers with identifiers of kjar's

GAV. kie-workbench web application too because it depends on jbpm-services.

5.4.2. Strategies

Singleton strategy - instructs RuntimeManager to maintain single instance of RuntimeEngine

(and in turn single instance of KieSession and TaskService). Access to the RuntimeEngine is

synchronized and by that thread safe although it comes with a performance penalty due to syn-

chronization. This strategy is similar to what was available by default in jBPM version 5.x and it's

considered easiest strategy and recommended to start with.

It has following characteristics that are important to evaluate while considering it for given scenario:

Core Engine API

59

• small memory footprint - single instance of runtime engine and task service

• simple and compact in design and usage

• good fit for low to medium load on process engine due to synchronized access

• due to single KieSession instance all state objects (such as facts) are directly visible to all

process instances and vice versa

• not contextual - meaning when retrieving instances of RuntimeEngine from singleton Runtime-

Manager Context instance is not important and usually EmptyContext.get() is used although

null argument is acceptable as well

• keeps track of id of KieSession used between RuntimeManager restarts to ensure it will use

same session - this id is stored as serialized file on disc in temp location that depends on the

environment can be one of following:

• value given by jbpm.data.dir system property

• value given by jboss.server.data.dir system property

• value given by java.io.tmpdir system property

Per request strategy - instructs RuntimeManager to provide new instance of RuntimeEngine for

every request. As request RuntimeManager will consider one or more invocations within single

transaction. It must return same instance of RuntimeEngine within single transaction to ensure

correctness of state as otherwise operation done in one call would not be visible in the other. This

is sort of "stateless" strategy that provides only request scope state and once request is completed

RuntimeEngine will be permanently destroyed - KieSession information will be removed from the

database in case persistence was used.

It has following characteristics:

• completely isolated process engine and task service operations for every request

• completely stateless, storing facts makes sense only for the duration of the request

• good fit for high load, stateless processes (no facts or timers involved that shall be preserved

between requests)

• KieSession is only available during life time of request and at the end is destroyed

• not contextual - meaning when retrieving instances of RuntimeEngine from per request Run-

timeManager Context instance is not important and usually EmptyContext.get() is used although

null argument is acceptable as well

Per process instance strategy - instructs RuntimeManager to maintain a strict relationship be-

tween KieSession and ProcessInstance. That means that KieSession will be available as long as

the ProcessInstance that it belongs to is active. This strategy provides the most flexible approach

to use advanced capabilities of the engine like rule evaluation in isolation (for given process in-

Core Engine API

60

stance only), maximum performance and reduction of potential bottlenecks intriduced by synchro-

nization; and at the same time reduces number of KieSessions to the actual number of process

instances rather than number of requests (in contrast to per request strategy).

It has following characteristics:

• most advanced strategy to provide isolation to given process instance only

• maintains strict relationship between KieSession and ProcessInstance to ensure it will always

deliver same KieSession for given ProcessInstance

• merges life cycle of KieSession with ProcessInstance making both to be disposed on process

instance completion (complete or abort)

• allows to maintain data (such as facts, timers) in scope of process instance - only process

instance will have access to that data

• introduces bit of overhead due to need to look up and load KieSession for process instance

• validates usage of KieSession so it cannot be (ab)used for other process instances, in such a

case exception is thrown

• is contextual - accepts following context instances:

• EmptyContext or null - when starting process instance as there is no process instance id

available yet

• ProcessInstanceIdContext - used after process instance was created

• CorrelationKeyContext - used as an alternative to ProcessInstanceIdContext to use custom

(business) key instead of process instance id

5.4.3. Usage

Regular usage scenario for RuntimeManager is:

• At application startup

• build RuntimeManager and keep it for entire life time of the application, it's thread safe and

can be (or even should be) accessed concurrently

• At request

• get RuntimeEngine from RuntimeManager using proper context instance dedicated to strat-

egy of RuntimeManager

• get KieSession and/or TaskService from RuntimeEngine

• perform operations on KieSession and/or TaskService such as startProcess, completeTask,

etc

Core Engine API

61

• once done with processing dispose RuntimeEngine using

RuntimeManager.disposeRuntimeEngine method

• At application shutdown

• close RuntimeManager

Note

When RuntimeEngine is obtained from RuntimeManager within an active JTA

transaction, then there is no need to dispose RuntimeEngine at the end, as Run-

timeManager will automatically dispose the RuntimeEngine on transaction com-

pletion (regardless of the completion status commit or rollback).

5.4.3.1. Example

Here is how you can build RuntimeManager and get RuntimeEngine (that encapsulates KieSes-

sion and TaskService) from it:

 // first configure environment that will be used by RuntimeManager

 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()

 .newDefaultInMemoryBuilder()

 .addAsset(ResourceFactory.newClassPathResource("BPMN2-

ScriptTask.bpmn2"), ResourceType.BPMN2)

 .get();

 // next create RuntimeManager - in this case singleton strategy is chosen

 RuntimeManager manager = RuntimeManagerFactory.Factory.get().newSingletonRuntimeManager(environment);

 // then get RuntimeEngine out of manager - using empty context as singleton does not keep track

 // of runtime engine as there is only one

 RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());

 // get KieSession from runtime runtimeEngine - already initialized with all handlers,

 listeners, etc that were configured

 // on the environment

 KieSession ksession = runtimeEngine.getKieSession();

 // add invocations to the process engine here,

 // e.g. ksession.startProcess(processId);

 // and last dispose the runtime engine

 manager.disposeRuntimeEngine(runtimeEngine);

This example provides simplest (minimal) way of using RuntimeManager and RuntimeEngine

although it provides few quite valuable information:

Core Engine API

62

• KieSession will be in memory only - by using newDefaultInMemoryBuilder

• there will be single process available for execution - by adding it as an asset

• TaskService will be configured and attached to KieSession via LocalHTWorkItemHandler to

support user task capabilities within processes

5.4.4. Configuration

The complexity of knowing when to create, dispose, register handlers, etc is taken away from the

end user and moved to the runtime manager that knows when/how to perform such operations

but still allows to have a fine grained control over this process by providing comprehensive con-

figuration of the RuntimeEnvironment.

 public interface RuntimeEnvironment {

 /**

 * Returns <code>KieBase</code> that shall be used by the manager

 * @return

 */

 KieBase getKieBase();

 /**

 * KieSession environment that shall be used to create instances of <code>KieSession</code>

 * @return

 */

 Environment getEnvironment();

 /**

 * KieSession configuration that shall be used to create instances of <code>KieSession</code>

 * @return

 */

 KieSessionConfiguration getConfiguration();

 /**

 * Indicates if persistence shall be used for the KieSession instances

 * @return

 */

 boolean usePersistence();

 /**

 * Delivers concrete implementation of <code>RegisterableItemsFactory</

code> to obtain handlers and listeners

 * that shall be registered on instances of <code>KieSession</code>

 * @return

 */

 RegisterableItemsFactory getRegisterableItemsFactory();

 /**

 * Delivers concrete implementation of <code>UserGroupCallback</

code> that shall be registered on instances

 * of <code>TaskService</code> for managing users and groups.

 * @return

 */

Core Engine API

63

 UserGroupCallback getUserGroupCallback();

 /**

 * Delivers custom class loader that shall be used by the process engine and task service instances

 * @return

 */

 ClassLoader getClassLoader();

 /**

 * Closes the environment allowing to close all depending components such as ksession factories, etc

 */

 void close();

5.4.4.1. Building RuntimeEnvironment

While RuntimeEnvironment interface provides mostly access to data kept as part of the environ-

ment and will be used by the RuntimeManager, users should take advantage of builder style class

that provides fluent API to configure RuntimeEnvironment with predefined settings.

public interface RuntimeEnvironmentBuilder {

 public RuntimeEnvironmentBuilder persistence(boolean persistenceEnabled);

 public RuntimeEnvironmentBuilder entityManagerFactory(Object emf);

 public RuntimeEnvironmentBuilder addAsset(Resource asset, ResourceType type);

 public RuntimeEnvironmentBuilder addEnvironmentEntry(String name, Object value);

 public RuntimeEnvironmentBuilder addConfiguration(String name, String value);

 public RuntimeEnvironmentBuilder knowledgeBase(KieBase kbase);

 public RuntimeEnvironmentBuilder userGroupCallback(UserGroupCallback callback);

 public RuntimeEnvironmentBuilder registerableItemsFactory(RegisterableItemsFactory factory);

 public RuntimeEnvironment get();

 public RuntimeEnvironmentBuilder classLoader(ClassLoader cl);

 public RuntimeEnvironmentBuilder schedulerService(Object globalScheduler);

Instances of the RuntimeEnvironmentBuilder can be obtained via RuntimeEnvironmentBuilder-

Factory that provides preconfigured sets of builder to simplify and help users to build the environ-

ment for the RuntimeManager.

public interface RuntimeEnvironmentBuilderFactory {

Core Engine API

64

 /**

 * Provides completely empty <code>RuntimeEnvironmentBuilder</

code> instance that allows to manually

 * set all required components instead of relying on any defaults.

 * @return new instance of <code>RuntimeEnvironmentBuilder</code>

 */

 public RuntimeEnvironmentBuilder newEmptyBuilder();

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newDefaultBuilder();

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

 * but it does not have persistence for process engine configured so it will only store process instances in memory

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newDefaultInMemoryBuilder();

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

 * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

 * @param groupId group id of kjar

 * @param artifactId artifact id of kjar

 * @param version version number of kjar

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newDefaultBuilder(String groupId, String artifactId, String version);

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

 * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

 * @param groupId group id of kjar

 * @param artifactId artifact id of kjar

 * @param version version number of kjar

 * @param kbaseName name of the kbase defined in kmodule.xml stored in kjar

Core Engine API

65

 * @param ksessionName name of the ksession define in kmodule.xml stored in kjar

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newDefaultBuilder(String groupId, String artifactId, String version, String kbaseName, String ksessionName);

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

 * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

 * @param releaseId <code>ReleaseId</code> that described the kjar

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newDefaultBuilder(ReleaseId releaseId);

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

 * This one is tailored to works smoothly with kjars as the notion of kbase and ksessions

 * @param releaseId <code>ReleaseId</code> that described the kjar

 * @param kbaseName name of the kbase defined in kmodule.xml stored in kjar

 * @param ksessionName name of the ksession define in kmodule.xml stored in kjar

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newDefaultBuilder(ReleaseId releaseId, String kbaseName, String ksessionName);

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

 * It relies on KieClasspathContainer that requires to have kmodule.xml present in META-

INF folder which

 * defines the kjar itself.

 * Expects to use default kbase and ksession from kmodule.

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newClasspathKmoduleDefaultBuilder();

 /**

 * Provides default configuration of <code>RuntimeEnvironmentBuilder</code> that is based on:

 *

 * DefaultRuntimeEnvironment

 *

Core Engine API

66

 * It relies on KieClasspathContainer that requires to have kmodule.xml present in META-

INF folder which

 * defines the kjar itself.

 * @param kbaseName name of the kbase defined in kmodule.xml

 * @param ksessionName name of the ksession define in kmodule.xml

 * @return new instance of <code>RuntimeEnvironmentBuilder</

code> that is already preconfigured with defaults

 *

 * @see DefaultRuntimeEnvironment

 */

 public RuntimeEnvironmentBuilder newClasspathKmoduleDefaultBuilder(String kbaseName, String ksessionName);

Besides KieSession Runtime Manager provides access to TaskService too as integrated compo-

nent of a RuntimeEngine that will always be configured and ready for communication between

process engine and task service.

Since the default builder was used, it will already come with predefined set of elements that con-

sists of:

• Persistence unit name will be set to org.jbpm.persistence.jpa (for both process engine and task

service)

• Human Task handler will be automatically registered on KieSession

• JPA based history log event listener will be automatically registered on KieSession

• Event listener to trigger rule task evaluation (fireAllRules) will be automatically registered on

KieSession

5.4.4.2. Registering handlers and listeners

To extend it with your own handlers or listeners a dedicated mechanism is provided that comes

as implementation of RegisterableItemsFactory

 /**

 * Returns new instances of <code>WorkItemHandler</

code> that will be registered on <code>RuntimeEngine</code>

 * @param runtime provides <code>RuntimeEngine</

code> in case handler need to make use of it internally

 * @return map of handlers to be registered - in case of no handlers empty map shall be returned.

 */

 Map<String, WorkItemHandler> getWorkItemHandlers(RuntimeEngine runtime);

 /**

 * Returns new instances of <code>ProcessEventListener</

code> that will be registered on <code>RuntimeEngine</code>

 * @param runtime provides <code>RuntimeEngine</

code> in case listeners need to make use of it internally

 * @return list of listeners to be registered - in case of no listeners empty list shall be returned.

 */

 List<ProcessEventListener> getProcessEventListeners(RuntimeEngine runtime);

Core Engine API

67

 /**

 * Returns new instances of <code>AgendaEventListener</

code> that will be registered on <code>RuntimeEngine</code>

 * @param runtime provides <code>RuntimeEngine</

code> in case listeners need to make use of it internally

 * @return list of listeners to be registered - in case of no listeners empty list shall be returned.

 */

 List<AgendaEventListener> getAgendaEventListeners(RuntimeEngine runtime);

 /**

 * Returns new instances of <code>WorkingMemoryEventListener</

code> that will be registered on <code>RuntimeEngine</code>

 * @param runtime provides <code>RuntimeEngine</

code> in case listeners need to make use of it internally

 * @return list of listeners to be registered - in case of no listeners empty list shall be returned.

 */

 List<WorkingMemoryEventListener> getWorkingMemoryEventListeners(RuntimeEngine runtime);

A best practice is to just extend those that come out of the box and just add your own. Extensions

are not always needed as the default implementations of RegisterableItemsFactory provides pos-

sibility to define custom handlers and listeners. Following is a list of available implementations

that might be useful (they are ordered in the hierarchy of inheritance):

• org.jbpm.runtime.manager.impl.SimpleRegisterableItemsFactory - simplest possible imple-

mentations that comes empty and is based on reflection to produce instances of handlers and

listeners based on given class names

• org.jbpm.runtime.manager.impl.DefaultRegisterableItemsFactory - extension of the Simple im-

plementation that introduces defaults described above and still provides same capabilities as

Simple implementation

• org.jbpm.runtime.manager.impl.KModuleRegisterableItemsFactory - extension of default im-

plementation that provides specific capabilities for kmodule and still provides same capabilities

as Simple implementation

• org.jbpm.runtime.manager.impl.cdi.InjectableRegisterableItemsFactory - extension of default

implementation that is tailored for CDI environments and provides CDI style approach to finding

handlers and listeners via producers

Alternatively, simple (stateless or requiring only KieSession) work item handlers might be regis-

tered in the well known way - defined as part of CustomWorkItem.conf file that shall be placed on

class path. To use this approach do following:

• create file "drools.session.conf" inside META-INF of the root of the class path, for web applica-

tions it will be WEB-INF/classes/META-INF

• add following line to drools.session.conf file "drools.workItemHandlers =

CustomWorkItemHandlers.conf"

• create file "CustomWorkItemHandlers.conf" inside META-INF of the root of the class path, for

web applications it will be WEB-INF/classes/META-INF

Core Engine API

68

• define custom work item handlers in MVEL style inside CustomWorkItemHandlers.conf

[

 "Log": new org.jbpm.process.instance.impl.demo.SystemOutWorkItemHandler(),

 "WebService": new org.jbpm.process.workitem.webservice.WebServiceWorkItemHandler(ksession),

 "Rest": new org.jbpm.process.workitem.rest.RESTWorkItemHandler(),

 "Service Task" : new org.jbpm.process.workitem.bpmn2.ServiceTaskHandler(ksession)

]

And that's it, now all these work item handlers will be registered for any KieSession created by

that application, regardless if it uses RuntimeManager or not.

5.4.4.2.1. Registering handlers and listeners in CDI environment

When using RuntimeManager in CDI environment there are dedicated interfaces that can be used

to provide custom WorkItemHandlers and EventListeners to the RuntimeEngine.

public interface WorkItemHandlerProducer {

 /**

 * Returns map of (key = work item name, value work item handler instance) of work items

 * to be registered on KieSession

 *

 * Parameters that might be given are as follows:

 *

 * ksession

 * taskService

 * runtimeManager

 *

 *

 * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

 * and provide valid instances for given owner

 * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

 * @return map of work item handler instances (recommendation is to always return new instances when this method is invoked)

 */

 Map<String, WorkItemHandler> getWorkItemHandlers(String identifier, Map<String, Object> params);

}

Event listener producer shall be annotated with proper qualifier to indicate what type of listeners

they provide, so pick one of following to indicate they type:

• @Process - for ProcessEventListener

• @Agenda - for AgendaEventListener

• @WorkingMemory - for WorkingMemoryEventListener

public interface EventListenerProducer<T> {

 /**

 * Returns list of instances for given (T) type of listeners

Core Engine API

69

 *

 * Parameters that might be given are as follows:

 *

 * ksession

 * taskService

 * runtimeManager

 *

 * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

 * and provide valid instances for given owner

 * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

 * @return list of listener instances (recommendation is to always return new instances when this method is invoked)

 */

 List<T> getEventListeners(String identifier, Map<String, Object> params);

}

Implementations of these interfaces shall be packaged as bean archive (includes beans.xml inside

META-INF) and placed on application classpath (e.g. WEB-INF/lib for web application). THat is

enough for CDI based RuntimeManager to discover them and register on every KieSession that

is created or loaded from data store.

Some parameters are provided to the producers to allow handlers/listeners to be more stateful

and be able to do more advanced things with the engine - like signal of the engine or process

instance in case of an error. Thus all components are provided:

• KieSession

• TaskService

• RuntimeManager

Note

Whenever there is a need to interact with the process engine/task service from

within handler or listener, recommended approach is to use RuntimeManager and

retrieve RuntimeEngine (and then KieSession and/or TaskService) from it as that

will ensure proper state managed according to strategy

In addition, some filtering can be applied based on identifier (that is given as argument to the

methods) to decide if given RuntimeManager shall receive handlers/listeners or not.

5.5. Services

On top of RuntimeManager API a set of high level services has been provided from jBPM version

6.2. These services are meant to be the easiest way to embed (j)BPM capabilities into custom

application. A complete set of modules are delivered as part of these services. They are partitioned

into several modules to ease thier adoptions in various environments.

• jbpm-services-api

Core Engine API

70

contains only api classes and interfaces

• jbpm-kie-services

rewritten code implementation of services api - pure java, no framework dependencies

• jbpm-services-cdi

CDI wrapper on top of core services implementation

• jbpm-services-ejb-api

extension to services api for ejb needs

• jbpm-services-ejb-impl

EJB wrappers on top of core services implementation

• jbpm-services-ejb-timer

scheduler service based on EJB TimerService to support time based operations e.g. timer

events, deadlines, etc

• jbpm-services-ejb-client

EJB remote client implementation - currently only for JBoss

Service modules are grouped with its framework dependencies, so developers are free to choose

which one is suitable for them and use only that.

5.5.1. Deployment Service

As the name suggest, its primary responsibility is to deploy (and undeploy) units. Deployment

unit is kjar that brings in business assets (like processes, rules, forms, data model) for execution.

Deployment services allow to query it to get hold of available deployment units and even their

RuntimeManager instances.

Note

there are some restrictions on EJB remote client to do not expose RuntimeManager

as it won't make any sense on client side (after it was serialized).

So typical use case for this service is to provide dynamic behavior into your system so multiple

kjars can be active at the same time and be executed simultaneously.

// create deployment unit by giving GAV

DeploymentUnit deploymentUnit = new KModuleDeploymentUnit(GROUP_ID, ARTIFACT_ID, VERSION);

// deploy

Core Engine API

71

deploymentService.deploy(deploymentUnit);

// retrieve deployed unit

DeployedUnit deployed = deploymentService.getDeployedUnit(deploymentUnit.getIdentifier());

// get runtime manager

RuntimeManager manager = deployed.getRuntimeManager();

Complete DeploymentService interface is as follows:

public interface DeploymentService {

 void deploy(DeploymentUnit unit);

 void undeploy(DeploymentUnit unit);

 RuntimeManager getRuntimeManager(String deploymentUnitId);

 DeployedUnit getDeployedUnit(String deploymentUnitId);

 Collection<DeployedUnit> getDeployedUnits();

 void activate(String deploymentId);

 void deactivate(String deploymentId);

 boolean isDeployed(String deploymentUnitId);

}

5.5.2. Definition Service

Upon deployment, every process definition is scanned using definition service that parses the

process and extracts valuable information out of it. These information can provide valuable input to

the system to inform users about what is expected. Definition service provides information about:

• process definition - id, name, description

• process variables - name and type

• reusable subprocesses used in the process (if any)

• service tasks (domain specific activities)

• user tasks including assignment information

• task data input and output information

So definition service can be seen as sort of supporting service that provides quite a few information

about process definition that are extracted directly from BPMN2.

String processId = "org.jbpm.writedocument";

Core Engine API

72

Collection<UserTaskDefinition> processTasks =

bpmn2Service.getTasksDefinitions(deploymentUnit.getIdentifier(), processId);

Map<String, String> processData =

bpmn2Service.getProcessVariables(deploymentUnit.getIdentifier(), processId);

Map<String, String> taskInputMappings =

bpmn2Service.getTaskInputMappings(deploymentUnit.getIdentifier(), processId, "Write a

 Document");

While it usually is used with combination of other services (like deployment service) it can be used

standalone as well to get details about process definition that do not come from kjar. This can be

achieved by using buildProcessDefinition method of definition service.

public interface DefinitionService {

 ProcessDefinition buildProcessDefinition(String deploymentId, String bpmn2Content,

 ClassLoader classLoader, boolean cache) throws IllegalArgumentException;

 ProcessDefinition getProcessDefinition(String deploymentId, String processId);

 Collection<String> getReusableSubProcesses(String deploymentId, String processId);

 Map<String, String> getProcessVariables(String deploymentId, String processId);

 Map<String, String> getServiceTasks(String deploymentId, String processId);

 Map<String, Collection<String>> getAssociatedEntities(String deploymentId, String processId);

 Collection<UserTaskDefinition> getTasksDefinitions(String deploymentId, String processId);

 Map<String, String> getTaskInputMappings(String deploymentId, String processId, String

 taskName);

 Map<String, String> getTaskOutputMappings(String deploymentId, String processId, String

 taskName);

}

5.5.3. Process Service

Process service is the one that usually is of the most interest. Once the deployment and definition

service was already used to feed the system with something that can be executed. Process service

provides access to execution environment that allows:

• start new process instance

• work with existing one - signal, get details of it, get variables, etc

• work with work items

Core Engine API

73

At the same time process service is a command executor so it allows to execute commands

(essentially on ksession) to extend its capabilities.

Important to note is that process service is focused on runtime operations so use it whenever there

is a need to alter (signal, change variables, etc) process instance and not for read operations like

show available process instances by looping though given list and invoking getProcessInstance

method. For that there is dedicated runtime data service that is described below.

An example on how to deploy and run process can be done as follows:

KModuleDeploymentUnit deploymentUnit = new KModuleDeploymentUnit(GROUP_ID, ARTIFACT_ID,

 VERSION);

deploymentService.deploy(deploymentUnit);

long processInstanceId = processService.startProcess(deploymentUnit.getIdentifier(),

 "customtask");

ProcessInstance pi = processService.getProcessInstance(processInstanceId);

As you can see start process expects deploymentId as first argument. This is extremely powerful

to enable service to easily work with various deployments, even with same processes but coming

from different versions - kjar versions.

public interface ProcessService {

 Long startProcess(String deploymentId, String processId);

 Long startProcess(String deploymentId, String processId, Map<String, Object> params);

 void abortProcessInstance(Long processInstanceId);

 void abortProcessInstances(List<Long> processInstanceIds);

 void signalProcessInstance(Long processInstanceId, String signalName, Object event);

 void signalProcessInstances(List<Long> processInstanceIds, String signalName, Object event);

 ProcessInstance getProcessInstance(Long processInstanceId);

 void setProcessVariable(Long processInstanceId, String variableId, Object value);

 void setProcessVariables(Long processInstanceId, Map<String, Object> variables);

 Object getProcessInstanceVariable(Long processInstanceId, String variableName);

 Map<String, Object> getProcessInstanceVariables(Long processInstanceId);

 Collection<String> getAvailableSignals(Long processInstanceId);

 void completeWorkItem(Long id, Map<String, Object> results);

Core Engine API

74

 void abortWorkItem(Long id);

 WorkItem getWorkItem(Long id);

 List<WorkItem> getWorkItemByProcessInstance(Long processInstanceId);

 public <T> T execute(String deploymentId, Command<T> command);

 public <T> T execute(String deploymentId, Context<?> context, Command<T> command);

}

5.5.4. Runtime Data Service

Runtime data service as name suggests, deals with all that refers to runtime information:

• started process instances

• executed node instances

• executed node instances

• and more

Use this service as main source of information whenever building list based UI - to show process

definitions, process instances, tasks for given user, etc. This service was designed to be as effi-

cient as possible and still provide all required information.

Some examples:

• get all process definitions

Collection definitions = runtimeDataService.getProcesses(new QueryContext());

• get active process instances

Collection<processinstancedesc> instances = runtimeDataService.getProcessInstances(new

 QueryContext());

• get active nodes for given process instance

Collection<nodeinstancedesc> instances =

 runtimeDataService.getProcessInstanceHistoryActive(processInstanceId, new QueryContext());

Core Engine API

75

• get tasks assigned to john

List<tasksummary> taskSummaries = runtimeDataService.getTasksAssignedAsPotentialOwner("john",

 new QueryFilter(0, 10));

There are two important arguments that the runtime data service operations supports:

• QueryContext

• QueryFilter - extension of QueryContext

These provide capabilities for efficient management result set like pagination, sorting and order-

ing (QueryContext). Moreover additional filtering can be applied to task queries to provide more

advanced capabilities when searching for user tasks.

public interface RuntimeDataService {

 // Process instance information

 Collection<ProcessInstanceDesc> getProcessInstances(QueryContext queryContext);

 Collection<ProcessInstanceDesc> getProcessInstances(List<Integer> states, String initiator,

 QueryContext queryContext);

 Collection<ProcessInstanceDesc> getProcessInstancesByProcessId(List<Integer> states, String

 processId, String initiator, QueryContext queryContext);

 Collection<ProcessInstanceDesc> getProcessInstancesByProcessName(List<Integer> states,

 String processName, String initiator, QueryContext queryContext);

 Collection<ProcessInstanceDesc> getProcessInstancesByDeploymentId(String deploymentId,

 List<Integer> states, QueryContext queryContext);

 ProcessInstanceDesc getProcessInstanceById(long processInstanceId);

 Collection<ProcessInstanceDesc> getProcessInstancesByProcessDefinition(String processDefId,

 QueryContext queryContext);

 Collection<ProcessInstanceDesc> getProcessInstancesByProcessDefinition(String processDefId,

 List<Integer> states, QueryContext queryContext);

 // Node and Variable instance information

 NodeInstanceDesc getNodeInstanceForWorkItem(Long workItemId);

 Collection<NodeInstanceDesc> getProcessInstanceHistoryActive(long processInstanceId,

 QueryContext queryContext);

 Collection<NodeInstanceDesc> getProcessInstanceHistoryCompleted(long processInstanceId,

 QueryContext queryContext);

Core Engine API

76

 Collection<NodeInstanceDesc> getProcessInstanceFullHistory(long processInstanceId,

 QueryContext queryContext);

 Collection<NodeInstanceDesc> getProcessInstanceFullHistoryByType(long processInstanceId,

 EntryType type, QueryContext queryContext);

 Collection<VariableDesc> getVariablesCurrentState(long processInstanceId);

 Collection<VariableDesc> getVariableHistory(long processInstanceId, String variableId,

 QueryContext queryContext);

 // Process information

 Collection<ProcessDefinition> getProcessesByDeploymentId(String deploymentId, QueryContext

 queryContext);

 Collection<ProcessDefinition> getProcessesByFilter(String filter, QueryContext queryContext);

 Collection<ProcessDefinition> getProcesses(QueryContext queryContext);

 Collection<String> getProcessIds(String deploymentId, QueryContext queryContext);

 ProcessDefinition getProcessById(String processId);

 ProcessDefinition getProcessesByDeploymentIdProcessId(String deploymentId, String processId);

 // user task query operations

 UserTaskInstanceDesc getTaskByWorkItemId(Long workItemId);

 UserTaskInstanceDesc getTaskById(Long taskId);

 List<TaskSummary> getTasksAssignedAsBusinessAdministrator(String userId, QueryFilter filter);

 List<TaskSummary> getTasksAssignedAsBusinessAdministratorByStatus(String userId,

 List<Status> statuses, QueryFilter filter);

 List<TaskSummary> getTasksAssignedAsPotentialOwner(String userId, QueryFilter filter);

 List<TaskSummary> getTasksAssignedAsPotentialOwner(String userId, List<String> groupIds,

 QueryFilter filter);

 List<TaskSummary> getTasksAssignedAsPotentialOwnerByStatus(String userId, List<Status>

 status, QueryFilter filter);

 List<TaskSummary> getTasksAssignedAsPotentialOwner(String userId, List<String> groupIds,

 List<Status> status, QueryFilter filter);

 List<TaskSummary> getTasksAssignedAsPotentialOwnerByExpirationDateOptional(String userId,

 List<Status> status, Date from, QueryFilter filter);

 List<TaskSummary> getTasksOwnedByExpirationDateOptional(String userId, List<Status>

 strStatuses, Date from, QueryFilter filter);

 List<TaskSummary> getTasksOwned(String userId, QueryFilter filter);

 List<TaskSummary> getTasksOwnedByStatus(String userId, List<Status> status, QueryFilter

 filter);

Core Engine API

77

 List<Long> getTasksByProcessInstanceId(Long processInstanceId);

 List<TaskSummary> getTasksByStatusByProcessInstanceId(Long processInstanceId, List<Status>

 status, QueryFilter filter);

 List<AuditTask> getAllAuditTask(String userId, QueryFilter filter);

}

5.5.5. User Task Service

User task service covers complete life cycle of individual task so it can be managed from start

to end. It explicitly eliminates queries from it to provide scoped execution and moves all query

operations into runtime data service. Besides lifecycle operations user task service allows:

• modification of selected properties

• access to task variables

• access to task attachments

• access to task comments

On top of that user task service is a command executor as well that allows to execute custom

task commands.

Complete example with start process and complete user task done by services:

long processInstanceId =

processService.startProcess(deployUnit.getIdentifier(), "org.jbpm.writedocument");

List<Long> taskIds =

runtimeDataService.getTasksByProcessInstanceId(processInstanceId);

Long taskId = taskIds.get(0);

userTaskService.start(taskId, "john");

UserTaskInstanceDesc task = runtimeDataService.getTaskById(taskId);

Map<String, Object> results = new HashMap<String, Object>();

results.put("Result", "some document data");

userTaskService.complete(taskId, "john", results);

Note

The most important thing when working with services is that there is no more need

to create your own implementations of Process service that simply wraps runtime

Core Engine API

78

manager, runtime engine, ksession usage. Services make use of RuntimeManager

API best practices and thus eliminate various risks when working with that API.

5.5.6. QueryService

QueryService provides advanced search capabilities that are based on Dashbuilder DataSets.

The concept behind it is that users are given control over how to retrieve data from underlying

data store. This includes complex joins with external tables such as JPA entities tables, custom

systems data base tables etc.

QueryService is build around two parts:

• Management operations

• register query definition

• replace query definition

• unregister (remove) query definition

• get query definition

• get all registered query definitions

• Runtime operations

• query - with two flavors

• simple based on QueryParam as filter provider

• advanced based on QueryParamBuilder as filter provider

DashBuilder DataSets provide support for multiple data sources (CSV, SQL, elastic search, etc)

while jBPM - since its backend is RDBMS based - focuses on SQL based data sets. So jBPM

QueryService is a subset of DashBuilder DataSets capabilities to allow efficient queries with sim-

ple API.

Terminology

• QueryDefinition - represents definion of the data set which consists of unique name, sql expres-

sion (the query) and source - JNDI name of the data source to use when performing queries

• QueryParam - basic structure that represents individual query parameter - condition - that con-

sists of: column name, operator, expected value(s)

• QueryResultMapper - responsible for mapping raw data set data (rows and columns) into object

representation

Core Engine API

79

• QueryParamBuilder - responsible for building query filters that will be applied on the query

definition for given query invocation

While QueryDefinition and QueryParam is rather straight forward, QueryParamBuilder and

QueryResultMapper is bit more advanced and require slightly more attention to make use of it in

right way, and by that take advantage of their capabilities.

QueryResultMapper

Mapper as the name suggest, maps data taken out from data base (from data set) into object

representation. Much like ORM providers such as hibernate maps tables to entities. Obviously

there might be many object types that could be used for representing data set results so it's almost

impossible to provide them out of the box. Mappers are rather powerful and thus are pluggable,

you can implement your own that will transform the result into whatever type you like. jBPM comes

with following mappers out of the box:

• org.jbpm.kie.services.impl.query.mapper.ProcessInstanceQueryMapper

• registered with name - ProcessInstances

• org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithVarsQueryMapper

• registered with name - ProcessInstancesWithVariables

• org.jbpm.kie.services.impl.query.mapper.ProcessInstanceWithCustomVarsQueryMapper

• registered with name - ProcessInstancesWithCustomVariables

• org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceQueryMapper

• registered with name - UserTasks

• org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithVarsQueryMapper

• registered with name - UserTasksWithVariables

• org.jbpm.kie.services.impl.query.mapper.UserTaskInstanceWithCustomVarsQueryMapper

• registered with name - UserTasksWithCustomVariables

• org.jbpm.kie.services.impl.query.mapper.TaskSummaryQueryMapper

• registered with name - TaskSummaries

• org.jbpm.kie.services.impl.query.mapper.RawListQueryMapper

• registered with name - RawList

Each QueryResultMapper is registered under given name to allow simple look up by name instead

of referencing its class name - especially important when using EJB remote flavor of services

where we want to reduce number of dependencies and thus not relying on implementation on

Core Engine API

80

client side. So to be able to reference QueryResultMapper by name, NamedQueryMapper should

be used which is part of jbpm-services-api. That acts as delegate (lazy delegate) as it will look up

the actual mapper when the query is actually performed.

queryService.query("my query def", new

 NamedQueryMapper<Collection<ProcessInstanceDesc>>("ProcessInstances"), new QueryContext());

QueryParamBuilder

QueryParamBuilder that provides more advanced way of building filters for our data sets. By de-

fault when using query method of QueryService that accepts zero or more QueryParam instances

(as we have seen in above examples) all of these params will be joined with AND operator mean-

ing all of them must match. But that's not always the case so that's why QueryParamBuilder has

been introduced for users to build their on builders which will provide filters at the time the query

is issued.

There is one QueryParamBuilder available out of the box and it is used to cover default Query-

Params that are based on so called core functions. These core functions are SQL based condi-

tions and includes following

• IS_NULL

• NOT_NULL

• EQUALS_TO

• NOT_EQUALS_TO

• LIKE_TO

• GREATER_THAN

• GREATER_OR_EQUALS_TO

• LOWER_THAN

• LOWER_OR_EQUALS_TO

• BETWEEN

• IN

• NOT_IN

QueryParamBuilder is simple interface that is invoked as long as its build method returns non null

value before query is performed. So you can build up a complex filter options that could not be

simply expressed by list of QueryParams. Here is basic implementation of QueryParamBuilder to

give you a jump start to implement your own - note that it relies on DashBuilder Dataset API.

Core Engine API

81

public class TestQueryParamBuilder implements QueryParamBuilder<ColumnFilter> {

 private Map<String, Object> parameters;

 private boolean built = false;

 public TestQueryParamBuilder(Map<String, Object> parameters) {

 this.parameters = parameters;

 }

 @Override

 public ColumnFilter build() {

 // return null if it was already invoked

 if (built) {

 return null;

 }

 String columnName = "processInstanceId";

 ColumnFilter filter = FilterFactory.OR(

 FilterFactory.greaterOrEqualsTo((Long)parameters.get("min")),

 FilterFactory.lowerOrEqualsTo((Long)parameters.get("max")));

 filter.setColumnId(columnName);

 built = true;

 return filter;

 }

}

Once you have query param builder implemented you simply use its instance when performing

query via QueryService

queryService.query("my query def", ProcessInstanceQueryMapper.get(), new QueryContext(),

 paramBuilder);

Typical usage scenario

First thing user needs to do is to define data set - view of the data you want to work with - so

called QueryDefinition in services api.

SqlQueryDefinition query = new SqlQueryDefinition("getAllProcessInstances", "java:jboss/

datasources/ExampleDS");

query.setExpression("select * from processinstancelog");

This is the simplest possible query definition as it can be:

• constructor takes

Core Engine API

82

• a unique name that identifies it on runtime

• data source JNDI name used when performing queries on this definition - in other words

source of data

• expression - the most important part - is the sql statement that builds up the view to be filtered

when performing queries

Once we have the sql query definition we can register it so it can be used later for actual queries.

queryService.registerQuery(query);

From now on, this query definition can be used to perform actual queries (or data look ups to use

terminology from data sets). Following is the basic one that collects data as is, without any filtering

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",

 ProcessInstanceQueryMapper.get(), new QueryContext());

Above query was very simple and used defaults from QueryContext - paging and sorting. So let's

take a look at one that changes the defaults of the paging and sorting

QueryContext ctx = new QueryContext(0, 100, "start_date", true);

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",

 ProcessInstanceQueryMapper.get(), ctx);

Now let's take a look at how to do data filtering

// single filter param

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",

 ProcessInstanceQueryMapper.get(), new QueryContext(), QueryParam.likeTo(COLUMN_PROCESSID,

 true, "org.jbpm%"));

// multiple filter params (AND)

Collection<ProcessInstanceDesc> instances = queryService.query("getAllProcessInstances",

 ProcessInstanceQueryMapper.get(), new QueryContext(),

 QueryParam.likeTo(COLUMN_PROCESSID, true, "org.jbpm%"),

 QueryParam.in(COLUMN_STATUS, 1, 3));

With that end user is put in driver seat to define what data and how they should be fetched. Not

being limited by JPA provider nor anything else. Moreover this promotes use of tailored queries

Core Engine API

83

for your environment as in most of the case there will be single data base used and thus specific

features of that data base can be used to increase performance.

Further examples can be found here [http://mswiderski.blogspot.com/2016/01/advanced-queries-

in-jbpm-64.html].

5.5.7. ProcessInstanceMigrationService

ProcessInstanceMigrationService provides administrative utility to move given process

instance(s) from one deployment to another or one process definition to another. It’s main respon-

sibility is to allow basic upgrade of process definition behind given process instance. That might

include mapping of currently active nodes to other nodes in new definition.

Migration does not deal with process or task variables, they are not affected by migration. Essen-

tially process instance migration means a change of underlying process definition process engine

uses to move on with process instance.

Even though process instance migration is available it’s recommended to let active process in-

stances finish and then start new instances with new version whenever possible. In case that ap-

proach can’t be used, migration of active process instance needs to be carefully planned before

its execution as it might lead to unexpected issues.Most important to take into account is:

• is new process definition backward compatible?

• are there any data changes (variables that could affect process instance decisions after migra-

tion)?

• is there need for node mapping?

Answers to these questions might save a lot of headache and production problems after migration.

Best is to always stick with backward compatible processes - like extending process definition

rather than removing nodes. Though that’s not always possible and in some cases there is a need

to remove certain nodes from process definition. In that situation, migration needs to be instructed

how to map nodes that were removed in new definition in case active process instance is at the

moment in such a node.

Node mapping is given as a map of node ids (UniqueIds that are set in the definition) where key

is the source node id (from process definition used by process instance) to target node id (in new

process definition).

Note

Node mapping can only be used to map same type of nodes e.g. user task to user

task.

http://mswiderski.blogspot.com/2016/01/advanced-queries-in-jbpm-64.html
http://mswiderski.blogspot.com/2016/01/advanced-queries-in-jbpm-64.html
http://mswiderski.blogspot.com/2016/01/advanced-queries-in-jbpm-64.html

Core Engine API

84

Again, process or task variables are not affected by process instance migration at the moment.

ProcessInstanceMigrationService comes with several flavors of migrate operation:

public interface ProcessInstanceMigrationService {

/**

* Migrates given process instance that belongs to source deployment, into target process id

 that belongs to target deployment.

* Following rules are enforced:

*

* source deployment id must be there

* process instance id must point to existing and active process instance

* target deployment must exist

* target process id must exist in target deployment

*

* Migration returns migration report regardless of migration being successful or not that needs

 to be examined for migration outcome.

* @param sourceDeploymentId deployment that process instance to be migrated belongs to

* @param processInstanceId id of the process instance to be migrated

* @param targetDeploymentId id of deployment that target process belongs to

* @param targetProcessId id of the process process instance should be migrated to

* @return returns complete migration report

*/

MigrationReport migrate(String sourceDeploymentId, Long processInstanceId, String

 targetDeploymentId, String targetProcessId);

/**

* Migrates given process instance (with node mapping) that belongs to source deployment, into

 target process id that belongs to target deployment.

* Following rules are enforced:

*

* source deployment id must be there

* process instance id must point to existing and active process instance

* target deployment must exist

* target process id must exist in target deployment

*

* Migration returns migration report regardless of migration being successful or not that needs

 to be examined for migration outcome.

* @param sourceDeploymentId deployment that process instance to be migrated belongs to

* @param processInstanceId id of the process instance to be migrated

* @param targetDeploymentId id of deployment that target process belongs to

* @param targetProcessId id of the process process instance should be migrated to

* @param nodeMapping node mapping - source and target unique ids of nodes to be mapped - from

 process instance active nodes to new process nodes

* @return returns complete migration report

*/

MigrationReport migrate(String sourceDeploymentId, Long processInstanceId, String

 targetDeploymentId, String targetProcessId, Map<String, String> nodeMapping);

/**

* Migrates given process instances that belong to source deployment, into target process id

 that belongs to target deployment.

* Following rules are enforced:

*

* source deployment id must be there

* process instance id must point to existing and active process instance

* target deployment must exist

* target process id must exist in target deployment

*

Core Engine API

85

* Migration returns list of migration report - one per process instance, regardless of migration

 being successful or not that needs to be examined for migration outcome.

* @param sourceDeploymentId deployment that process instance to be migrated belongs to

* @param processInstanceIds list of process instance id to be migrated

* @param targetDeploymentId id of deployment that target process belongs to

* @param targetProcessId id of the process process instance should be migrated to

* @return returns complete migration report

*/

List<MigrationReport> migrate(String sourceDeploymentId, List<Long> processInstanceIds, String

 targetDeploymentId, String targetProcessId);

 /**

 * Migrates given process instances (with node mapping) that belong to source deployment, into

 target process id that belongs to target deployment.

 * Following rules are enforced:

 *

 * source deployment id must be there

 * process instance id must point to existing and active process instance

 * target deployment must exist

 * target process id must exist in target deployment

 *

 * Migration returns list of migration report - one per process instance, regardless of migration

 being successful or not that needs to be examined for migration outcome.

 * @param sourceDeploymentId deployment that process instance to be migrated belongs to

 * @param processInstanceIds list of process instance id to be migrated

 * @param targetDeploymentId id of deployment that target process belongs to

 * @param targetProcessId id of the process process instance should be migrated to

 * @param nodeMapping node mapping - source and target unique ids of nodes to be mapped - from

 process instance active nodes to new process nodes

 * @return returns list of migration reports one per each process instance

 */

 List<MigrationReport> migrate(String sourceDeploymentId, List<Long> processInstanceIds, String

 targetDeploymentId, String targetProcessId, Map<String, String> nodeMapping);

}

Migration can either be performed for single process instance or multiple process instances at

the same time. Multiple process instances migration is a utility method on top of single instance,

instead of calling it multiple times, users call it once and then service will take care of the migration

of individual process instances.

Note

Multi instance migration does migrate each instance in separation (transaction)

to secure that one won't affect the other and then produces dedicated migration

reports for each process instance

5.5.7.1. Migration report

Migration is always comcluded with migration report that is per each process instance. That mi-

gration report provides following information:

• start and end date of the migration

Core Engine API

86

• outcome of the migration - success or failure

• complete log entry - all steps performed during migration, entry can be INFO, WARN or ERROR

- in case of ERROR there will be at most one as they are causing migration to be immedietely

terminated.

5.5.7.2. Known limitations

• When a new or modified task requires inputs which are not available in the migrated v2 process

instance.

• Modifying the tasks prior to the active task where the changes have an impact on the further

processing.

• Removing a human task which is currently active (can only be replaced - requires to be mapped

to another human task)

• Adding a new task parallel to the single active task (all branches in AND gateway are not acti-

vated - process will stuck)

• Changing or removing the active recurring timer events (won’t be changed in DB)

• Fixing or updating inputs and outputs in an active task (task data aren’t migrated)

• Node mapping updates only the task node name and description! (other task fields won’t be

mapped including the TaskName variable)

5.5.7.3. Example

Following is an example of how to invoke the migration

protected static final String MIGRATION_ARTIFACT_ID = "test-migration"; protected

 static final String MIGRATION_GROUP_ID = "org.jbpm.test"; protected static

 final String MIGRATION_VERSION_V1 = "1.0.0"; protected static final String

 MIGRATION_VERSION_V2 = "2.0.0"; // first deploy both versions deploymentUnitV1 =

 new KModuleDeploymentUnit(MIGRATION_GROUP_ID, MIGRATION_ARTIFACT_ID, MIGRATION_VERSION_V1);

 deploymentService.deploy(deploymentUnitV1); // ... version 2 deploymentUnitV2 =

 new KModuleDeploymentUnit(MIGRATION_GROUP_ID, MIGRATION_ARTIFACT_ID, MIGRATION_VERSION_V2);

 deploymentService.deploy(deploymentUnitV2); // next start process instance in version

 1 long processInstanceId = processService.startProcess(deploymentUnitV1.getIdentifier(),

 "processID-V1");// and once the instance is active it can be migratedMigrationReport

 report = migrationService.migrate(deploymentUnitV1.getIdentifier(), processInstanceId,

 deploymentUnitV2.getIdentifier(), "processID-V2");// as last step check if the migration

 finished successfullyreport.isSuccessful()

 = "test-migration"; protected static final

String MIGRATION_GROUP_ID = "org.jbpm.test"; protected static final

String MIGRATION_VERSION_V1 = "1.0.0"; protected static final

String MIGRATION_VERSION_V2 = "2.0.0"; //

first deploy both versions deploymentUnitV1

=

new

Core Engine API

87

KModuleDeploymentUnit(MIGRATION_GROUP_ID, MIGRATION_ARTIFACT_ID, MIGRATION_VERSION_V1); deploymentService.deploy(deploymentUnitV1);

// ... version 2 deploymentUnitV2

=

new

KModuleDeploymentUnit(MIGRATION_GROUP_ID, MIGRATION_ARTIFACT_ID, MIGRATION_VERSION_V2); deploymentService.deploy(deploymentUnitV2); // next start process

instance in version 1

long processInstanceId

 = processService.startProcess(deploymentUnitV1.getIdentifier(), "processID-V1");// and once the instance is active

it can be migrated

MigrationReport report = migrationService.migrate(deploymentUnitV1.getIdentifier(),

 processInstanceId, deploymentUnitV2.getIdentifier(), "processID-V2");// as last step check if

the

5.5.8. Working with deployments

Deployment Service provides convinient way to put business assets to an execution environment

but there are cases that requires some additional management to make them available in right

context.

Activation and Deactivation of deployments

Imagine situation where there are number of processes already running of given deployment and

then new version of these processes comes into the runtime environment. With that administrator

can decide that new instances of given process definition should be using new version only while

already active instances should continue with the previous version.

To help with that deployment service has been equipped with following methods:

• activate

allows to activate given deployment so it can be available for interaction meaning will show its

process definition and allow to start new process instances of that project's processes

• deactivate

allows to deactivate deployment which will disable option to see or start new process instances

of that project's processes but will allow to continue working with already active process in-

stances, e.g. signal, work with user task etc

This feature allows smooth transition between project versions whitout need of process instance

migration.

Deployment synchronization

Prior to jBPM 6.2, jbpm services did not have deployment store by default. When embedded in

jbpm-console/kie-wb they utilized sistem.git VFS repository to preserve deployed units across

server restarts. While that works fine, it comes with some drawbacks:

• not available for custom systems that use services

Core Engine API

88

• requires complex setup in cluster - zookeeper and helix

With version 6.2 jbpm services come with deployment synchronizer that stores available deploy-

ments into data base, including its deployment descriptor. At the same time it constantly monitors

that table to keep it in sync with other installations that might be using same data source. This is

especially important when running in cluster or when jbpm console runs next to custom application

and both should be able to operate on the same artifacts.

By default synchronization must be configured (when runing as core services while it is automat-

ically enabled for ejb and cdi extensions). To configure synchronization following needs to be

configured:

TransactionalCommandService commandService = new TransactionalCommandService(emf);

DeploymentStore store = new DeploymentStore();

store.setCommandService(commandService);

DeploymentSynchronizer sync = new DeploymentSynchronizer();

sync.setDeploymentService(deploymentService);

sync.setDeploymentStore(store);

DeploymentSyncInvoker invoker = new DeploymentSyncInvoker(sync, 2L, 3L, TimeUnit.SECONDS);

invoker.start();

....

invoker.stop();

With this, deployments will be synchronized every 3 seconds with initial delay of two seconds.

Invoking latest version of project's processes

In case there is a need to always work with latest version of project's process, services allow to

interact with various operations using deployment id with latest keyword. Let's go over an example

to better understand the feature.

Initially deployed unit is org.jbpm:HR:1.0 which has the first version of an hiring process. After

several weeks, new version is developed and deployed to the execution server - org.jbpm:HR.2.0

with version 2 of the hiring process.

To allow callers of the services to interact without being worried if they work with latest version,

they can use following deployment id:

org.jbpm.HR:latest

this will alwyas find out latest available version of project that is identified by:

• groupId: org.jbpm

Core Engine API

89

• artifactId: HR

version comparizon is based on Maven version numbers and relies on Maen based algorithm to

find the latest one.

Note

This is only supported when process identifier remains the same in all project ver-

sions

Here is a complete example with deployment of multiple versions and interacting always with the

latest:

KModuleDeploymentUnit deploymentUnitV1 = new KModuleDeploymentUnit("org.jbpm", "HR", "1.0");

deploymentService.deploy(deploymentUnitV1);

long processInstanceId = processService.startProcess("org.jbpm:HR:LATEST", "customtask");

ProcessInstanceDesc piDesc = runtimeDataService.getProcessInstanceById(processInstanceId);

// we have started process with project's version 1

assertEquals(deploymentUnitV1.getIdentifier(), piDesc.getDeploymentId());

// next we deploy version 1

KModuleDeploymentUnit deploymentUnitV2 = new KModuleDeploymentUnit("org.jbpm", "HR", "2.0");

deploymentService.deploy(deploymentUnitV2);

processInstanceId = processService.startProcess("org.jbpm:HR:LATEST", "customtask");

piDesc = runtimeDataService.getProcessInstanceById(processInstanceId);

// this time we have started process with project's version 2

assertEquals(deploymentUnitV2.getIdentifier(), piDesc.getDeploymentId());

As illustrated this provides very powerful feature when interacting with frequently chaning envi-

ronment that allows to always be up to date when it comes to use of process definitions.

Note

This feature is also available in REST interface so whenever sending request with

deployment id, it's enough to replace concrete version with LATEST keyword to

make use of this feature.

5.6. Configuration

There are several control parameters available to alter engine default behavior. This allows to fine

tune the execution for the environment needs and actual requirements. All of these parameters

are set as JVM system properties, usually with -D when starting program e.g. application server.

Core Engine API

90

Table 5.1. Control parameters

Name Possible values Default value Description

jbpm.ut.jndi.lookup String Alternative JNDI

name to be

used when there

is no access

to the default

one (java:comp/

UserTransaction)

jbpm.enable.multi.contrue|false false Enables multi-

ple incoming/out-

going sequence

flows support for

activities

jbpm.business.calendar.propertiesString /

jbpm.business.calendar.properties

Allows to provide

alternative class-

path location of

business calen-

dar configuration

file

jbpm.overdue.timer.delayLong 2000 Specifies de-

lay for overdue

timers to allow

proper initializa-

tion, in millisec-

onds

jbpm.process.name.comparatorString Allows to pro-

vide alternative

comparator class

to empower start

process by name

feature, if not

set NumberVer-

sionComparator

is used

jbpm.loop.level.disabledtrue|false true Allows to enable

or disable loop it-

eration tracking,

to allow ad-

vanced loop sup-

port when using

XOR gateways

Core Engine API

91

Name Possible values Default value Description

org.kie.mail.sessionString mail/

jbpmMailSession

Allows to provide

alternative JNDI

name for mail

session used by

Task Deadlines

jbpm.usergroup.callback.propertiesString /

jbpm.usergroup.callback.properties

Allows to provide

alternative class-

path location for

user group call-

back implemen-

tation (LDAP,

DB)

jbpm.user.group.mappingString ${jboss.server.config.dir}/

roles.properties

Allows to pro-

vide alterna-

tive location of

roles.properties

for JBossUser-

GroupCallback-

Impl

jbpm.user.info.propertiesString /

jbpm.user.info.properties

Allows to provide

alternative class-

path location of

user info con-

figuration (used

by LDAPUserIn-

foImpl)

org.jbpm.ht.user.separatorString , Allows to provide

alternative sepa-

rator of actors

and groups for

user tasks, de-

fault is comma (,)

org.quartz.propertiesString Allows to provide

location of the

quartz config file

to activate quartz

based timer ser-

vice

jbpm.data.dir String ${jboss.server.data.dir}

is available other-

Allows to provide

location where

data files pro-

Core Engine API

92

Name Possible values Default value Description

wise

${java.io.tmpdir}

duced by jbpm

should be stored

org.kie.executor.pool.sizeInteger 1 Allows to provide

thread pool size

for jbpm executor

org.kie.executor.retry.countInteger 3 Allows to pro-

vide number of

retries attempted

in case of error by

jbpm executor

org.kie.executor.intervalInteger 3 Allows to pro-

vide frequency

used to check for

pending jobs by

jbpm executor, in

seconds

org.kie.executor.disabledtrue|false true Enables or dis-

able jbpm execu-

tor

org.kie.store.services.classString org.drools.persistence.jpa.KnowledgeStoreServiceImplFully qualified

name of the

class that im-

plements KieS-

toreServices that

will be respon-

sible for boot-

straping KieSes-

sion instances

93

Chapter 6. Processes

6.1. What is BPMN 2.0

Note

"The primary goal of BPMN is to provide a notation that is readily understandable

by all business users, from the business analysts that create the initial drafts of the

processes, to the technical developers responsible for implementing the technolo-

gy that will perform those processes, and finally, to the business people who will

manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that

not only defines a standard on how to graphically represent a business process (like BPMN 1.x),

but now also includes execution semantics for the elements defined, and an XML format on how

to store (and share) process definitions.

jBPM6 allows you to execute processes defined using the BPMN 2.0 XML format. That means that

you can use all the different jBPM6 tooling to model, execute, manage and monitor your business

processes using the BPMN 2.0 format for specifying your executable business processes. Actu-

ally, the full BPMN 2.0 specification also includes details on how to represent things like choreo-

graphies and collaboration. The jBPM project however focuses on that part of the specification

that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each

other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

• Events: They are used to model the occurrence of a particular event. This could be a start event

(that is used to indicate the start of the process), end events (that define the end of the process,

or of that subflow) and intermediate events (that indicate events that might occur during the

execution of the process).

• Activities: These define the different actions that need to be performed during the execution of

the process. Different types of tasks exist, depending on the type of activity you are trying to

model (e.g. human task, service task, etc.) and activities could also be nested (using different

types of sub-processes).

• Gateways: Can be used to define multiple paths in the process. Depending on the type of

gateway, these might indicate parallel execution, choice, etc.

jBPM6 does not implement all elements and attributes as defined in the BPMN 2.0 specification.

We do however support a significant subset, including the most common node types that can be

used inside executable processes. This includes (almost) all elements and attributes as defined in

the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional

Processes

94

elements and attributes we believe are valuable in that context as well. The full set of elements

and attributes that are supported can be found below, but it includes elements like:

• Flow objects

• Events

• Start Event (None, Conditional, Signal, Message, Timer)

• End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

• Intermediate Catch Event (Signal, Timer, Conditional, Message)

• Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

• Non-interrupting Boundary Event (Escalation, Signal, Timer, Conditional, Message)

• Interrupting Boundary Event (Escalation, Error, Signal, Timer, Conditional, Message, Com-

pensation)

• Activities

• Script Task

• Task

• Service Task

• User Task

• Business Rule Task

• Manual Task

• Send Task

• Receive Task

• Reusable Sub-Process (Call Activity)

• Embedded Sub-Process

• Event Sub-Process

• Ad-Hoc Sub-Process

• Data-Object

• Gateways

• Diverging

• Exclusive

Processes

95

• Inclusive

• Parallel

• Event-Based

• Converging

• Exclusive

• Inclusive

• Parallel

• Lanes

• Data

• Java type language

• Process properties

• Embedded Sub-Process properties

• Activity properties

• Connecting objects

• Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more

that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something

like this:

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 targetNamespace="http://www.example.org/MinimalExample"

 typeLanguage="http://www.java.com/javaTypes"

 expressionLanguage="http://www.mvel.org/2.0"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

 xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"

 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.HelloWorld" name="Hello

 World" >

Processes

96

 <!-- nodes -->

 <startEvent id="_1" name="StartProcess" />

 <scriptTask id="_2" name="Hello" >

 <script>System.out.println("Hello World");</script>

 </scriptTask>

 <endEvent id="_3" name="EndProcess" >

 <terminateEventDefinition/>

 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 </process>

 <bpmndi:BPMNDiagram>

 <bpmndi:BPMNPlane bpmnElement="Minimal" >

 <bpmndi:BPMNShape bpmnElement="_1" >

 <dc:Bounds x="15" y="91" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >

 <dc:Bounds x="95" y="88" width="83" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_3" >

 <dc:Bounds x="258" y="86" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >

 <di:waypoint x="39" y="115" />

 <di:waypoint x="75" y="46" />

 <di:waypoint x="136" y="112" />

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >

 <di:waypoint x="136" y="112" />

 <di:waypoint x="240" y="240" />

 <di:waypoint x="282" y="110" />

 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>

 </bpmndi:BPMNDiagram>

</definitions>

To create your own process using BPMN 2.0 format, you can

• The jBPM Designer is an open-source web-based editor that supports the BPMN 2.0 format.

We have embedded it into jbpm console for BPMN 2.0 process visualization and editing. You

could use the Designer (either standalone or integrated) to create / edit BPMN 2.0 processes

and then export them to BPMN 2.0 format or save them into repository and import them so they

can be executed.

• A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification.

• You can always manually create your BPMN 2.0 process files by writing the XML directly. You

can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in

the Eclipse plugin to check both syntax and completeness of your model.

Processes

97

•

Note

Drools Eclipse Process editor has been deprecated in favor of BPMN2 Modeler

for process modeling. It can still be used for limited number of supported ele-

ments but should be faced out as it is not being developed any more.

Create a new Process file using the Drools Eclipse plugin wizard and in the last page of the

wizard, make sure you select Drools 5.1 code compatibility. This will create a new process using

the BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still

uses different attributes names etc. It does however save the process using valid BPMN 2.0

syntax. Also note that the editor does not support all node types and attributes that are already

supported in the execution engine.

The following code fragment shows you how to load a BPMN2 process into your knowledge

base ...

private static KnowledgeBase createKnowledgeBase() throws Exception {

 KieHelper kieHelper = new KieHelper();

 KieBase kieBase = kieHelper

 .addResource(ResourceFactory.newClassPathResource("sample.bpmn2"))

 .build();

 return kieBase;

}

... and how to execute this process ...

KieBase kbase = createKnowledgeBase();

KieSession ksession = kbase.newKieSession();

ksession.startProcess("com.sample.HelloWorld");

For more detail, check out the chapter on the API and the basics.

Processes

98

6.2. Process

Figure 6.1.

A business process is a graph that describes the order in which a series of steps need to be

executed, using a flow chart. A process consists of a collection of nodes that are linked to each

other using connections. Each of the nodes represents one step in the overall process while the

connections specify how to transition from one node to the other. A large selection of predefined

node types have been defined. This chapter describes how to define such processes and use

them in your application.

6.2.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor such as jBPM web designer or Eclipse BPMN2 modeler

2. As an XML file, according to the XML process format as defined in the XML Schema Definition

in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.

6.2.1.1. Using the graphical BPMN2 Editor

The graphical BPMN2 editor is an editor that allows you to create a process by dragging and drop-

ping different nodes on a canvas and editing the properties of these nodes. The graphical BPMN2

modeler is an Eclipse plugin hosted on eclipse.org [http://www.eclipse.org/bpmn2-modeler/] that

provides number of contributors where one of them is jBPM project. Once you have set up a jBPM

project (see the installer for creating a working Eclipse environment where you can start), you can

start adding processes. When in a project, launch the "New" wizard (use Ctrl+N) or right-click the

directory you would like to put your process in and select "New", then "File". Give the file a name

and the extension bpmn (e.g. MyProcess.bpmn). This will open up the process editor (you can

safely ignore the warning that the file could not be read, this is just because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it

will be necessary to fill in the different properties of the elements in your process. If you cannot

see the properties view, open it using the menu "Window", then "Show View" and "Other...", and

under the "General" folder select the Properties View.

http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/

Processes

99

Figure 6.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to

the canvas, select the element you would like to create in the palette and then add them to the

canvas by clicking on the preferred location. For example, click on the "End Event" icon in the

palette of the GUI. Clicking on an element in your process allows you to set the properties of that

element. You can connect the nodes (as long as it is permitted by the different types of nodes)

by using "Sequence Flow" from the palette.

You can keep adding nodes and connections to your process until it represents the business logic

that you want to specify.

6.2.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax

of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,

the following XML fragment shows a simple process that contains a sequence of a Start Event, a

Script Task that prints "Hello World" to the console, and an End Event.

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 targetNamespace="http://www.jboss.org/drools"

 typeLanguage="http://www.java.com/javaTypes"

 expressionLanguage="http://www.mvel.org/2.0"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"Rule Task

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"

 xmlns:g="http://www.jboss.org/drools/flow/gpd"

 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"

 xmlns:dc="http://www.omg.org/spec/DD/20100524/DC"

 xmlns:di="http://www.omg.org/spec/DD/20100524/DI"

 xmlns:tns="http://www.jboss.org/drools">

 <process processType="Private" isExecutable="true" id="com.sample.hello" name="Hello Process" >

Processes

100

 <!-- nodes -->

 <startEvent id="_1" name="Start" />

 <scriptTask id="_2" name="Hello" >

 <script>System.out.println("Hello World");</script>

 </scriptTask>

 <endEvent id="_3" name="End" >

 <terminateEventDefinition/>

 </endEvent>

 <!-- connections -->

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

 </process>

 <bpmndi:BPMNDiagram>

 <bpmndi:BPMNPlane bpmnElement="com.sample.hello" >

 <bpmndi:BPMNShape bpmnElement="_1" >

 <dc:Bounds x="16" y="16" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_2" >

 <dc:Bounds x="96" y="16" width="80" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNShape bpmnElement="_3" >

 <dc:Bounds x="208" y="16" width="48" height="48" />

 </bpmndi:BPMNShape>

 <bpmndi:BPMNEdge bpmnElement="_1-_2" >

 <di:waypoint x="40" y="40" />

 <di:waypoint x="136" y="40" />

 </bpmndi:BPMNEdge>

 <bpmndi:BPMNEdge bpmnElement="_2-_3" >

 <di:waypoint x="136" y="40" />

 <di:waypoint x="232" y="40" />

 </bpmndi:BPMNEdge>

 </bpmndi:BPMNPlane>

 </bpmndi:BPMNDiagram>

</definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the

definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)

contains all graphical information, like the location of the nodes. The process XML consist of

exactly one <process> element. This element contains parameters related to the process (its type,

name, id and package name), and consists of three subsections: a header section (where process-

level information like variables, globals, imports and lanes can be defined), a nodes section that

defines each of the nodes in the process, and a connections section that contains the connections

between all the nodes in the process. In the nodes section, there is a specific element for each

node, defining the various parameters and, possibly, sub-elements for that node type.

Processes

101

Table 6.1. jBPM BPMN2 constructs

Figure 6.3. The different types of

BPMN2 events

Figure 6.4. The different types of

BPMN2 activities and gateways

Processes

102

6.2.1.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.

The process itself exposes the following properties:

• Id: The unique id of the process.

• Name: The display name of the process.

• Version: The version number of the process.

• Package: The package (namespace) the process is defined in.

Figure 6.5. BPMN2 process properties

In addition to that following can be defined as well:

• Variables: Variables can be defined to store data during the execution of your process. See

section “???” for details.

• Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter

“???” for details.

Processes

103

Figure 6.6. BPMN2 process variables

6.3. Activities

6.3.1. Script task

Figure 6.7. Script task

Represents a script that should be executed in this process. A Script Task should have one in-

coming connection and one outgoing connection. The associated action specifies what should be

executed, the dialect used for coding the action (i.e., Java, JavaScript or MVEL), and the actual

action code. This code can access any variables and globals. There is also a predefined variable

kcontext that references the ProcessContext [http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

104

kie/api/runtime/process/ProcessContext.html] object (which can, for example, be used to access

the current ProcessInstance or NodeInstance, and to get and set variables, or get access to the

ksession using kcontext.getKieRuntime()). When a Script Task is reached in the process, it

will execute the action and then continue with the next node. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do

anything inside such a script node. There are some caveats however:

• When trying to create a higher-level business process, that should also be understood by busi-

ness users, it is probably wise to avoid low-level implementation details inside the process, in-

cluding inside these script tasks. A Script Task could still be used to quickly manipulate variables

etc. but other concepts like a Service Task could be used to model more complex behaviour

in a higher-level manner.

• Scripts should be immediate. They are using the engine thread to execute the script. Scripts

that could take some time to execute should probably be modeled as an asynchronous Service

Task.

• You should try to avoid contacting external services through a script node. Not only does this

usually violate the first two caveats, it is also interacting with external services without the knowl-

edge of the engine, which can be problematic, especially when using persistence and transac-

tions. In general, it is probably wiser to model communication with an external service using

a service task.

• Scripts should not throw exceptions. Runtime exceptions should be caught and for example

managed inside the script or transformed into signals or errors that can then be handled inside

the process.

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

105

6.3.2. Service task

Figure 6.8. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is

executed outside the process engine should be represented (in a declarative way) using a Service

Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.

Users can define domain-specific services or work items, using a unique name and by defining

the parameters (input) and results (output) that are associated with this type of work. Check the

chapter on domain-specific processes for a detailed explanation and illustrative examples of how

to define and use work items in your processes. When a Service Task is reached in the process,

the associated work is executed. A Service Task should have one incoming connection and one

outgoing connection.

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Parameter mapping: Allows copying the value of process variables to parameters of the work

item. Upon creation of the work item, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the work item to a process

variable. Each type of work can define result parameters that will (potentially) be returned after

the work item has been completed. A result mapping can be used to copy the value of the given

result parameter to the given variable in this process. For example, the "FileFinder" work item

returns a list of files that match the given search criteria within the result parameter Files. This

list of files can then be bound to a process variable for use within the process. Upon completion

of the work item, the values will be copied.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node, respec-

tively.

Processes

106

• Additional parameters: Each type of work item can define additional parameters that are relevant

for that type of work. For example, the "Email" work item defines additional parameters such as

From, To, Subject and Body. The user can either provide values for these parameters directly,

or define a parameter mapping that will copy the value of the given variable in this process to

the given parameter; if both are specified, the mapping will have precedence. Parameters of

type String can use #{expression} to embed a value in the string. The value will be retrieved

when creating the work item, and the substitution expression will be replaced by the result of

calling toString() on the variable. The expression could simply be the name of a variable (in

which case it resolves to the value of the variable), but more advanced MVEL expressions are

possible as well, e.g., #{person.name.firstname}.

6.3.3. User task

Figure 6.9. User task

Processes can also involve tasks that need to be executed by human actors. A User Task repre-

sents an atomic task to be executed by a human actor. It should have one incoming connection

and one outgoing connection. User Tasks can be used in combination with Swimlanes to assign

multiple human tasks to similar actors. Refer to the chapter on human tasks for more details. A

User Task is actually nothing more than a specific type of service node (of type "Human Task").

A User Task contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

Processes

107

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

• GroupId: The group id that is responsible for executing the human task. A list of group id's can

be specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide

not to execute the task.

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign

multiple human tasks to the same actor. See the human tasks chapter for more detail on how

to use swimlanes.

• On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,

respectively.

• Parameter mapping: Allows copying the value of process variables to parameters of the human

task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process

variable. Upon completion of the human task, the values will be copied. A human task has

a result variable "Result" that contains the data returned by the human actor. The variable

"ActorId" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like

TaskName, Comment, etc.) and who needs to perform it (using either actorId or groupId). Note

that if there is data related to this specific process instance that the end user needs when per-

forming the task, this data should be passed as the content of the task. The task for example does

not have access to process variables. Check out the chapter on human tasks to get more detail

on how to pass data between human tasks and the process instance.

Processes

108

6.3.4. Reusable sub-process

Figure 6.10. Reusable sub-process - Call activity

Represents the invocation of another process from within this process. A sub-process node should

have one incoming connection and one outgoing connection. When a Reusable Sub-Process

node is reached in the process, the engine will start the process with the given id. It contains the

following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• ProcessId: The id of the process that should be executed.

• Wait for completion (by default true): If this property is true, this sub-process node will only

continue if the child process that was started has terminated its execution (completed or abort-

ed); otherwise it will continue immediately after starting the subprocess (so it will not wait for

its completion).

• Independent (by default true): If this property is true, the child process is started as an indepen-

dent process, which means that the child process will not be terminated if this parent process is

completed (or this sub-process node is canceled for some other reason); otherwise the active

sub-process will be canceled on termination of the parent process (or cancellation of the sub-

process node). Note that you can only set independent to "false" only when "Wait for comple-

tion" is set to true.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node, respec-

tively.

Processes

109

• Parameter in/out mapping: A sub-process node can also define in- and out-mappings for vari-

ables. The variables given in the "in" mapping will be used as parameters (with the associated

parameter name) when starting the process. The variables of the child process that are defined

for the "out" mappings will be copied to the variables of this process when the child process

has been completed. Note that you can use "out" mappings only when "Wait for completion"

is set to true.

6.3.5. Business rule task

Figure 6.11. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated

when the node is reached. A Rule Task should have one incoming connection and one outgoing

connection. Rules are defined in separate files using the Drools rule format. Rules can become

part of a specific ruleflow group using the ruleflow-group attribute in the header of the rule.

When a Rule Task is reached in the process, the engine will start executing rules that are part of

the corresponding ruleflow-group (if any). Execution will automatically continue to the next node

if there are no more active rules in this ruleflow group. As a result, during the execution of a

ruleflow group, new activations belonging to the currently active ruleflow group can be added

to the Agenda due to changes made to the facts by the other rules. Note that the process will

immediately continue with the next node if it encounters a ruleflow group where there are no active

rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will

only continue if all active rules of the ruleflow group has been completed. It contains the following

properties:

• Id: The id of the node (which is unique within one node container).

Processes

110

• Name: The display name of the node.

• RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this Rule-

FlowGroup node.

6.3.6. Embedded sub-process

Figure 6.12. Embedded sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This

allows not only the embedding of a part of the process within such a sub-process node, but also

the definition of additional variables that are accessible for all nodes inside this container. A sub-

process should have one incoming connection and one outgoing connection. It should also contain

one start node that defines where to start (inside the Sub-Process) when you reach the sub-

process. It should also contain one or more end events. Note that, if you use a terminating event

node inside a sub-process, you are terminating just that sub-process. A sub-process ends when

there are no more active nodes inside the sub-process. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Variables: Additional variables can be defined to store data during the execution of this node.

See section “???” for details.

Processes

111

6.3.7. Multi-instance sub-process

Figure 6.13. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the

contained process segment multiple times, once for each element in a collection. A multiple in-

stance sub-process should have one incoming connection and one outgoing connection. It waits

until the embedded process fragment is completed for each of the elements in the given collection

before continuing. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• CollectionExpression: The name of a variable that represents the collection of elements

that should be iterated over. The collection variable should be an array or of type

java.util.Collection. If the collection expression evaluates to null or an empty collection,

the multiple instances sub-process will be completed immediately and follow its outgoing con-

nection.

• VariableName: The name of the variable to contain the current element from the collection. This

gives nodes within the composite node access to the selected element.

• CollectionOutput: The name of a variable that represents collection of elements that will gather

all output of the multi instance sub process

• OutputVariableName: The name of the variable to contain the currentl output from the multi

instance activitiy

• CompletionCondition: MVEL expression that will be evaluated on each instance completion to

check if given multi instance activity can already be completed. In case it evaluates to true all

other remaining instances within multi instance activity will be canceled.

Processes

112

6.4. Events

6.4.1. Start event

Figure 6.14. Start event

The start of the process. A process should have exactly one start node (none start node which

does not have event definitions), which cannot have incoming connections and should have one

outgoing connection. Whenever a process is started, execution will start at this node and auto-

matically continue to the first node linked to this start event, and so on. It contains the following

properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

Processes

113

6.4.2. End events

6.4.2.1. End event

Figure 6.15. End event

The end of the process. A process should have one or more end events. The End Event should

have one incoming connection and cannot have any outgoing connections. It contains the follow-

ing properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Terminate: An End Event can terminate the entire process or just the path. When a process

instance is terminated, it means its state is set to completed and all other nodes that might still

be active (on parallel paths) in this process instance are canceled. Non-terminating end events

are simply end for this path (execution of this branch will end here), but other parallel paths can

still continue. A process instance will automatically complete if there are no more active paths

inside that process instance (for example, if a process instance reaches a non-terminating end

node but there are no more active branches inside the process instance, the process instance

Processes

114

will be completed anyway). Terminating end events are visualized using a full circle inside the

event node, non-terminating event nodes are empty. Note that, if you use a terminating event

node inside a sub-process, you are terminating just that sub-process and top level continues.

6.4.2.2. Throwing error event

Figure 6.16. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have

one incoming connection and no outgoing connections. When an Error Event is reached in the

process, it will throw an error with the given name. The process will search for an appropriate

error handler that is capable of handling this kind of fault. If no error handler is found, the process

instance will be aborted. An Error Event contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• FaultName: The name of the fault. This name is used to search for appropriate exception han-

dlers that are capable of handling this kind of fault.

• FaultVariable: The name of the variable that contains the data associated with this fault. This

data is also passed on to the exception handler (if one is found).

Processes

115

Error handlers can be specified using boundary events.

6.4.3. Intermediate events

6.4.3.1. Catching timer event

Figure 6.17. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event

should have one incoming connection and one outgoing connection. The timer delay specifies

how long the timer should wait before triggering the first time. When a Timer Event is reached in

the process, it will start the associated timer. The timer is canceled if the timer node is canceled

(e.g., by completing or aborting the enclosing process instance). Consult the section “???” for

more information. The Timer Event contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Timer delay: The delay that the node should wait before triggering the first time. The expression

should be of the form [#d][#h][#m][#s][#[ms]]. This allows you to specify the number of

days, hours, minutes, seconds and milliseconds (which is the default if you don't specify any-

thing). For example, the expression "1h" will wait one hour before triggering the timer. The ex-

pression could also use #{expr} to dynamically derive the delay based on some process vari-

Processes

116

able. Expr in this case could be a process variable, or a more complex expression based on a

process variable (e.g. myVariable.getValue()). It does support CRON like expression as well.

• Timer period: The period between two subsequent triggers. If the period is 0, the timer should

only be triggered once. The expression should be of the form [#d][#h][#m][#s][#[ms]]. You

can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if

you don't specify anything). For example, the expression "1h" will wait one hour before triggering

the timer again. The expression could also use #{expr} to dynamically derive the period based

on some process variable. Expr in this case could be a process variable, or a more complex

expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes and tasks that are

not automatic tasks like script task that have no wait state as timer will not have a change to fire

before task completion.

6.4.3.2. Catching signal event

Figure 6.18. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the

process. A Signal Event should have one incoming connections and one outgoing connection. It

specifies the type of event that is expected. Whenever that type of event is detected, the node

connected to this event node will be triggered. It contains the following properties:

Processes

117

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• EventType: The type of event that is expected.

• VariableName: The name of the variable that will contain the data associated with this event

(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksession.signalEvent(eventType, data, processInstanceId)

This will trigger all (active) signal event nodes in the given process instance that are waiting for

that event type. Data related to the event can be passed using the data parameter. If the event

node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only

be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using

on entry or on exit actions) can use

kcontext.getKieRuntime().signalEvent(eventType, data, kcontext.getProcessInstance().getId());

A throwing signal event could also be used to model the signaling of an event.

Processes

118

6.5. Gateways

6.5.1. Diverging gateway

Figure 6.19. Diverging gateway

Processes

119

Allows you to create branches in your process. A Diverging Gateway should have one incoming

connection and two or more outgoing connections. There are three types of gateway nodes cur-

rently supported:

• AND or parallel means that the control flow will continue in all outgoing connections simultane-

ously.

• XOR or exclusive means that exactly one of the outgoing connections will be chosen. The de-

cision is made by evaluating the constraints that are linked to each of the outgoing connections.

The constraint with the lowest priority number that evaluates to true is selected. Constraints can

be specified using different dialects. Note that you should always make sure that at least one

of the outgoing connections will evaluate to true at runtime (the engine will throw an exception

at runtime if it cannot find at least one outgoing connection).

• OR or inclusive means that all outgoing connections whose condition evaluates to true are

selected. Conditions are similar to the exclusive gateway, except that no priorities are taken

into account. Note that you should make sure that at least one of the outgoing connections will

evaluate to true at runtime because the engine will throw an exception at runtime if it cannot

determine an outgoing connection.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the split node, i.e., AND, XOR or OR (see above).

• Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive

or inclusive gateway).

Processes

120

6.5.2. Converging gateway

Figure 6.20. Converging gateway

Processes

121

Allows you to synchronize multiple branches. A Converging Gateway should have two or more

incoming connections and one outgoing connection. There are three types of splits currently sup-

ported:

• AND or parallel means that is will wait until all incoming branches are completed before con-

tinuing.

• XOR or exclusive means that it continues as soon as one of its incoming branches has been

completed. If it is triggered from more than one incoming connection, it will trigger the next node

for each of those triggers.

• OR or inclusive means that it continues as soon as all direct active paths of its incoming branch-

es has been completed. This is complex merge behaviour that is described in BPMN2 specifi-

cation but in most cases it means that OR join will wait for all active flows that started in OR

split. Some advanced cases (including other gateways in between or repeatable timers) will be

causing different "direct active path" calculation.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the Join node, i.e. AND, OR or XOR.

6.6. Others

6.6.1. Variables

While the flow chart focuses on specifying the control flow of the process, it is usually also neces-

sary to look at the process from a data perspective. Throughout the execution of a process, data

can be retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A

variable is defined by a name and a data type. This could be a basic data type, such as boolean,

int, or String, or any kind of Object subclass (it must implement Serializable interface). Variables

can be defined inside a variable scope. The top-level scope is the variable scope of the process

itself. Subscopes can be defined using a Sub-Process. Variables that are defined in a subscope

are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that

defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable

in its parent container. If the variable cannot be found, it will look in that one's parent container,

and so on, until the process instance itself is reached. If the variable cannot be found, a read

access yields null, and a write access produces an error message, with the process continuing

its execution.

Variables can be used in various ways:

Processes

122

• Process-level variables can be set when starting a process by providing a map of parameters

to the invocation of the startProcess method. These parameters will be set as variables on

the process scope.

• Script actions can access variables directly, simply by using the name of the variable as

a local parameter in their script. For example, if the process defines a variable of type

"org.jbpm.Person" in the process, a script in the process could access this directly:

// call method on the process variable "person"

person.setAge(10);

Changing the value of a variable in a script can be done through the knowledge context:

kcontext.setVariable(variableName, value);

• Service tasks (and reusable sub-processes) can pass the value of process variables to the

outside world (or another process instance) by mapping the variable to an outgoing parameter.

For example, the parameter mapping of a service task could define that the value of the process

variable x should be mapped to a task parameter y right before the service is being invoked.

You can also inject the value of process variable into a hard-coded parameter String using

#{expression}. For example, the description of a human task could be defined as You need

to contact person #{person.getName()} (where person is a process variable), which will

replace this expression by the actual name of the person when the service needs to be invoked.

Similarly results of a service (or reusable sub-process) can also be copied back to a variable

using a result mapping.

• Various other nodes can also access data. Event nodes for example can store the data asso-

ciated to the event in a variable, etc. Check the properties of the different node types for more

information.

• Process variables can be accessed also from the Java code of your application. It is done by

casting of ProcessInstance to WorkflowProcessInstance. See the following example:

variable = ((WorkflowProcessInstance) processInstance).getVariable("variableName");

To list all the process variables see the following code snippet:

org.jbpm.process.instance.ProcessInstance processInstance = ...;

VariableScopeInstance variableScope = (VariableScopeInstance) processInstance.getContextInstance(VariableScope.VARIABLE_SCOPE);

Processes

123

Map<String, Object> variables = variableScope.getVariables();

Note that when you use persistence then you have to use a command based approach to get

all process variables:

Map<String, Object> variables = ksession.execute(new GenericCommand<Map<String, Object>>() {

 public Map<String, Object> execute(Context context) {

 KieSession ksession = ((KnowledgeCommandContext) context).getStatefulKnowledgesession();

 org.jbpm.process.instance.ProcessInstance processInstance = (org.jbpm.process.instance.ProcessInstance) ksession.getProcessInstance(piId);

 VariableScopeInstance variableScope = (VariableScopeInstance) processInstance.getContextInstance(VariableScope.VARIABLE_SCOPE);

 Map<String, Object> variables = variableScope.getVariables();

 return variables;

 }

});

Finally, processes (and rules) all have access to globals, i.e. globally defined variables and data in

the Knowledge Session. Globals are directly accessible in actions just like variables. Globals need

to be defined as part of the process before they can be used. You can for example define globals

by clicking the globals button when specifying an action script in the Eclipse action property editor.

You can also set the value of a global from the outside using ksession.setGlobal(name, value)

or from inside process scripts using kcontext.getKieRuntime().setGlobal(name,value);.

6.6.2. Scripts

Action scripts can be used in different ways:

• Within a Script Task,

• As entry or exit actions, with a number of nodes.

Actions have access to globals and the variables that are defined for the process and the pre-

defined variable kcontext. This variable is of type ProcessContext [http://docs.jboss.org/jbpm/

v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html] and can be used for several

tasks:

• Getting the current node instance (if applicable). The node instance could be queried for data,

such as its name and type. You can also cancel the current node instance.

NodeInstance node = kcontext.getNodeInstance();

String name = node.getNodeName();

• Getting the current process instance. A process instance can be queried for data (name, id,

processId, etc.), aborted or signaled an internal event.

ProcessInstance proc = kcontext.getProcessInstance();

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

124

proc.signalEvent(type, eventObject);

• Getting or setting the value of variables.

• Accessing the Knowledge Runtime allows you do things like starting a process, signaling (ex-

ternal) events, inserting data, etc.

jBPM supports multiple dialects, like Java, JavaScript and MVEL. Java actions should be valid

Java code, same for JavaScript. MVEL actions can use the business scripting language MVEL

to express the action. MVEL accepts any valid Java code but additionally provides support for

nested accesses of parameters (e.g., person.name instead of person.getName()), and many

other scripting improvements. Thus, MVEL expressions are more convenient for the business

user. For example, an action that prints out the name of the person in the "requester" variable of

the process would look like this:

// Java dialectSystem.out.println(person.getName());// JavaScript dialectprint(person.name +

 '\n);// MVEL dialectSystem.out.println(person.name);

dialectSystem.out.println(person.getName()

);// JavaScript

 dialectprint(person.name +

 '\n);// MVEL

 dialectSystem.out.println(person.name

);

6.6.3. Constraints

Constraints can be used in various locations in your processes, for example in a diverging gate-

way. jBPM supports two types of constraints:

• Code constraints are boolean expressions, evaluated directly whenever they are reached. We

support multiple dialects for expressing these code constraints: Java, JavaScript and MVEL. All

code constraints have direct access to the globals and variables defined in the process. Here

is an example of a valid Java code constraint, person being a variable in the process:

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

And for JavaScript:

Processes

125

person.age > 20

• Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule Lan-

guage syntax to express possibly complex constraints. These rules can, like any other rule,

refer to data in the Working Memory. They can also refer to globals directly. Here is an example

of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is however

possible to refer to the current process instance inside a rule constraint, by adding the process

instance to the Working Memory and matching for the process instance in your rule constraint.

We have added special logic to make sure that a variable processInstance of type Workflow-

ProcessInstance will only match to the current process instance and not to other process in-

stances in the Working Memory. Note that you are however responsible yourself to insert the

process instance into the session and, possibly, to update it, for example, using Java code or an

on-entry or on-exit or explicit action in your process. The following example of a rule constraint will

search for a person with the same name as the value stored in the variable "name" of the process:

processInstance : WorkflowProcessInstance()Person(name ==

 (processInstance.getVariable("name")))# add more constraints here ...

WorkflowProcessInstance()Person(name == (processInstance.getVariable("name")

))# add more constraints

6.6.4. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be

used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

6.6.4.1. Configure timer with delay and period

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait

after node activation before triggering the timer the first time. The period defines the time between

subsequent trigger activations. A period of 0 results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify

the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't

specify anything). For example, the expression "1h" will wait one hour before triggering the timer

(again).

Processes

126

6.6.4.2. Configure timer with CRON like expression

Timer events can be configured with CRON like expression when timeCycle is used as timer event

definition. Important is that the language attribute of timeCycle definition must be set to cron. With

that such cycle of a timer is controlled in the same way as CRON jobs. CRON like expression

is supported for:

• start event timers

• intermediate event timers

• boundary event timers

Following is an example of a definition of a boundary timer with CRON like expression

<bpmn2:boundaryEvent id="1" name="Send Update Timer" attachedToRef="_77A94B54-8B7C-4F8A-84EE-

C1D310A343A6" cancelActivity="false">

 <bpmn2:outgoing>2</bpmn2:outgoing>

 <bpmn2:timerEventDefinition id="_erIyiJZ7EeSDh8PHobjSSA">

 <bpmn2:timeCycle xsi:type="bpmn2:tFormalExpression" id="_erIyiZZ7EeSDh8PHobjSSA"

 language="cron">0/1 * * * * ?</bpmn2:timeCycle>

 </bpmn2:timerEventDefinition>

</bpmn2:boundaryEvent>

This timer will fire every second and will continue until activity this boundary event is attached

to is active.

6.6.4.3. Configure timer ISO-8601 date format

since version 6 timers can be configured with valid ISO8601 [http://en.wikipedia.org/wi-

ki/ISO_8601] date format that supports both one shot timers and repeatable timers. Timers can

be defined as date and time representation, time duration or repeating intervals

• Date - 2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM

• Duration - PT1S - fires once after 1 second

• Repeatable intervals - R/PT1S - fires every second, no limit, alternatively R5/PT1S will fire 5

times every second

6.6.4.4. Configure timer with process variables
In addition to two configuration options above timers can be specified using process variable that

can consists of string representation of ether delay and period or ISO8601 date format. By spec-

ifying #{variable} engine will dynamically extract process variable and use it as timer expression.

The timer service is responsible for making sure that timers get triggered at the appropriate times.

Timers can also be canceled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Processes

127

• A Timer Event may be added to the process flow. Its activation starts the timer, and when it

triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing

connection of a timer with a positive period is triggered multiple times. Canceling a Timer node

also cancels the associated timer, after which no more triggers will occur.

• Timers can be associated with a Sub-Process or tasks as a boundary event.

6.6.4.5. Update timer within running process instance

In some cases timer that has been already scheduled should be rescheduled to accomodate new

requirements (prolong or shorten timer expiration time, change delay, period or repeat limit).

As this involves several low level steps, jBPM comes with a dedicated command to perform these

operations as atomic operation to make sure all is done within same transaction.

org.jbpm.process.instance.command.UpdateTimerCommand

Following timer events are supported to be updated:

• boundary timer event

• intermediate timer event

Timers can be rescheduled by providing following information to the UpdateTimerCommand

• processInstanceId - mandatory

• timer node name - mandatory

Next one of following three parameters set needs to be used:

• delay

• period and repeatLimit

• delay, period and repeatLimit

Example on how to updated timer event:

// first start process instance and record its idlong id

 = kieSession.startProcess(BOUNDARY_PROCESS_NAME).getId();//set timer delay to

 3skieSession.execute(new UpdateTimerCommand(id, BOUNDARY_TIMER_ATTACHED_TO_NAME, 3));

idlong id =

kieSession.startProcess(BOUNDARY_PROCESS_NAME).getId();//set timer delay to

3skieSession.execute(new UpdateTimerCommand(id, BOUNDARY_TIMER_ATTACHED_TO_NAME,

Important is that the update command is executed via ksession executor to ensure it's done in

transaction (when persistence is used).

Processes

128

6.7. Process Fluent API

While it is recommended to define processes using the graphical editor or the underlying

XML (to shield yourself from internal APIs), it is also possible to define a process using the

Process API directly. The most important process model elements are defined in the packages

org.jbpm.workflow.core and org.jbpm.workflow.core.node. A "fluent API" is provided that

allows you to easily construct processes in a readable manner using factories. At the end, you

can validate the process that you were constructing manually.

6.7.1. Example

This is a simple example of a basic process with a script task only:

RuleFlowProcessFactory factory =

 RuleFlowProcessFactory.createProcess("org.jbpm.HelloWorld");

factory

 // Header

 .name("HelloWorldProcess")

 .version("1.0")

 .packageName("org.jbpm")

 // Nodes

 .startNode(1).name("Start").done()

 .actionNode(2).name("Action")

 .action("java", "System.out.println(\"Hello World\");").done()

 .endNode(3).name("End").done()

 // Connections

 .connection(1, 2)

 .connection(2, 3);

RuleFlowProcess process = factory.validate().getProcess();

KieServices ks = KieServices.Factory.get();

KieFileSystem kfs = ks.newKieFileSystem();

Resource resource = ks.getResources().newByteArrayResource(

 XmlBPMNProcessDumper.INSTANCE.dump(process).getBytes());

resource.setSourcePath("helloworld.bpmn2");

kfs.write(resource);

ReleaseId releaseId = ks.newReleaseId("org.jbpm", "helloworld", "1.0");

kfs.generateAndWritePomXML(releaseId);

ks.newKieBuilder(kfs).buildAll();

ks.newKieContainer(releaseId).newKieSession().startProcess("org.jbpm.HelloWorld");

You can see that we start by calling the static createProcess() method from the RuleFlow-

ProcessFactory class. This method creates a new process with the given id and returns the

RuleFlowProcessFactory that can be used to create the process. A typical process consists of

three parts. The header part comprises global elements like the name of the process, imports,

variables, etc. The nodes section contains all the different nodes that are part of the process. The

connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package

name. After that, you can start adding nodes to the current process. If you have auto-completion

Processes

129

you can see that you have different methods to create each of the supported node types at your

disposal.

When you start adding nodes to the process, in this example by calling the startNode(), ac-

tionNode() and endNode() methods, you can see that these methods return a specific Node-

Factory, that allows you to set the properties of that node. Once you have finished configuring

that specific node, the done() method returns you to the current RuleFlowProcessFactory so

you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between

them. This can be done by calling the method connection, which will link previously created

nodes.

Finally, you can validate the generated process by calling the validate() method and retrieve

the created RuleFlowProcess object.

6.8. Testing

Even though business processes aren't code (we even recommend you to make them as high-

level as possible and to avoid adding implementation details), they also have a life cycle like other

development artefacts. And since business processes can be updated dynamically, testing them

(so that you don't break any use cases when doing a modification) is really important as well.

6.8.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific

use cases, for example test the output based on the existing input. To simplify unit testing, jBPM

includes a helper class called JbpmJUnitBaseTestCase (in the jbpm-test module) that you can

use to greatly simplify your JUnit testing, by offering:

• helper methods to create a new RuntimeManager and RuntimeEngine for a given (set of)

process(es)

• you can select whether you want to use persistence or not

• assert statements to check

• the state of a process instance (active, completed, aborted)

• which node instances are currently active

• which nodes have been triggered (to check the path that has been followed)

• get the value of variables

For example, consider the following "hello world" process containing a start event, a script task

and an end event. The following JUnit test will create a new session, start the process and then

verify whether the process instance completed successfully and whether these three nodes have

been executed.

Processes

130

Figure 6.21.

public class ProcessPersistenceTest extends JbpmJUnitBaseTestCase {

 public ProcessPersistenceTest() {

 // setup data source, enable persistence

 super(true, true);

 }

 @Test

 public void testProcess() {

 // create runtime manager with single process - hello.bpmn

 createRuntimeManager("hello.bpmn");

 // take RuntimeManager to work with process engine

 RuntimeEngine runtimeEngine = getRuntimeEngine();

 // get access to KieSession instance

 KieSession ksession = runtimeEngine.getKieSession();

 // start process

 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

 // check whether the process instance has completed successfully

 assertProcessInstanceCompleted(processInstance.getId(), ksession);

 // check what nodes have been triggered

 assertNodeTriggered(processInstance.getId(), "StartProcess", "Hello", "EndProcess");

 }

}

JbpmJUnitBaseTestCase acts as base test case class that shall be used for jBPM related tests.

It provides four usage areas:

• JUnit life cycle methods

• setUp: executed @Before and configures data source and EntityManagerFactory, cleans up

Singleton's session id

Processes

131

• tearDown: executed @After and clears out history, closes EntityManagerFactory and data

source, disposes RuntimeEngines and RuntimeManager

• Knowledge Base and KnowledgeSession management methods

• createRuntimeManager creates RuntimeManager for given set of assets and selected strat-

egy

• disposeRuntimeManager disposes RuntimeManager currently active in the scope of test

• getRuntimeEngine creates new RuntimeEngine for given context

• Assertions

• assertProcessInstanceCompleted

• assertProcessInstanceAborted

• assertProcessInstanceActive

• assertNodeActive

• assertNodeTriggered

• assertProcessVarExists

• assertNodeExists

• assertVersionEquals

• assertProcessNameEquals

• Helper methods

• getDs - returns currently configured data source

• getEmf - returns currently configured EntityManagerFactory

• getTestWorkItemHandler - returns test work item handler that might be registered in addition

to what is registered by default

• clearHistory - clears history log

• setupPoolingDataSource - sets up data source

JbpmJUnitBaseTestCase supports all three predefined RuntimeManager strategies as part of the

unit testing. It's enough to specify which strategy shall be used whenever creating runtime man-

ager as part of single test:

public class ProcessHumanTaskTest extends JbpmJUnitBaseTestCase {

Processes

132

 private static final Logger logger = LoggerFactory.getLogger(ProcessHumanTaskTest.class);

 public ProcessHumanTaskTest() {

 super(true, false);

 }

 @Test

 public void testProcessProcessInstanceStrategy() {

 RuntimeManager manager = createRuntimeManager(Strategy.PROCESS_INSTANCE, "manager", "humantask.bpmn");

 RuntimeEngine runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get());

 KieSession ksession = runtimeEngine.getKieSession();

 TaskService taskService = runtimeEngine.getTaskService();

 int ksessionID = ksession.getId();

 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello");

 assertProcessInstanceActive(processInstance.getId(), ksession);

 assertNodeTriggered(processInstance.getId(), "Start", "Task 1");

 manager.disposeRuntimeEngine(runtimeEngine);

 runtimeEngine = getRuntimeEngine(ProcessInstanceIdContext.get(processInstance.getId()));

 ksession = runtimeEngine.getKieSession();

 taskService = runtimeEngine.getTaskService();

 assertEquals(ksessionID, ksession.getId());

 // let john execute Task 1

 List<TaskSummary> list = taskService.getTasksAssignedAsPotentialOwner("john", "en-UK");

 TaskSummary task = list.get(0);

 logger.info("John is executing task {}", task.getName());

 taskService.start(task.getId(), "john");

 taskService.complete(task.getId(), "john", null);

 assertNodeTriggered(processInstance.getId(), "Task 2");

 // let mary execute Task 2

 list = taskService.getTasksAssignedAsPotentialOwner("mary", "en-UK");

 task = list.get(0);

 logger.info("Mary is executing task {}", task.getName());

 taskService.start(task.getId(), "mary");

 taskService.complete(task.getId(), "mary", null);

 assertNodeTriggered(processInstance.getId(), "End");

 assertProcessInstanceCompleted(processInstance.getId(), ksession);

 }

}

Above is more complete example that uses PerProcessInstance runtime manager strategy and

uses task service to deal with user tasks.

6.8.1.1. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example

a human task service, an email server or your own domain-specific services). One of the advan-

tages of our domain-specific process approach is that you can specify yourself how to actually

Processes

133

execute your own domain-specific nodes, by registering a handler. And this handler can be differ-

ent depending on your context, allowing you to use testing handlers for unit testing your process.

When you are unit testing your business process, you can register test handlers that then verify

whether specific services are requested correctly, and provide test responses for those services.

For example, imagine you have an email node or a human task as part of your process. When

unit testing, you don't want to send out an actual email but rather test whether the email that is re-

quested contains the correct information (for example the right to email, a personalized body, etc.).

A TestWorkItemHandler is provided by default that can be registered to collect all work items (a

work item represents one unit of work, like for example sending one specific email or invoking one

specific service and contains all the data related to that task) for a given type. This test handler

can then be queried during unit testing to check whether specific work was actually requested

during the execution of the process and that the data associated with the work was correct.

The following example describes how a process that sends out an email could be tested. This

test case in particular will test whether an exception is raised when the email could not be sent

(which is simulated by notifying the engine that the sending the email could not be completed).

The test case uses a test handler that simply registers when an email was requested (and allows

you to test the data related to the email like from, to, etc.). Once the engine has been notified the

email could not be sent (using abortWorkItem(..)), the unit test verifies that the process handles

this case successfully by logging this and generating an error, which aborts the process instance

in this case.

Figure 6.22.

public void testProcess2() {

 // create runtime manager with single process - hello.bpmn

 createRuntimeManager("sample-process.bpmn");

 // take RuntimeManager to work with process engine

 RuntimeEngine runtimeEngine = getRuntimeEngine();

 // get access to KieSession instance

 KieSession ksession = runtimeEngine.getKieSession();

 // register a test handler for "Email"

Processes

134

 TestWorkItemHandler testHandler = getTestWorkItemHandler();

 ksession.getWorkItemManager().registerWorkItemHandler("Email", testHandler);

 // start the process

 ProcessInstance processInstance = ksession.startProcess("com.sample.bpmn.hello2");

 assertProcessInstanceActive(processInstance.getId(), ksession);

 assertNodeTriggered(processInstance.getId(), "StartProcess", "Email");

 // check whether the email has been requested

 WorkItem workItem = testHandler.getWorkItem();

 assertNotNull(workItem);

 assertEquals("Email", workItem.getName());

 assertEquals("me@mail.com", workItem.getParameter("From"));

 assertEquals("you@mail.com", workItem.getParameter("To"));

 // notify the engine the email has been sent

 ksession.getWorkItemManager().abortWorkItem(workItem.getId());

 assertProcessInstanceAborted(processInstance.getId(), ksession);

 assertNodeTriggered(processInstance.getId(), "Gateway", "Failed", "Error");

}

6.8.1.2. Configuring persistence

You can configure whether you want to execute the JUnit tests using persistence or not. By default,

the JUnit tests will use persistence, meaning that the state of all process instances will be stored

in a (in-memory H2) database (which is started by the JUnit test during setup) and a history log will

be used to check assertions related to execution history. When persistence is not used, process

instances will only live in memory and an in-memory logger is used for history assertions.

Persistence (and setup of data source) is controlled by the super constructor and allows following

• default, no arg constructor - the most simple test case configuration (does NOT initialize da-

ta source and does NOT configure session persistence) - this is usually used for in memory

process management, without human task interaction

• super(boolean, boolean) - allows to explicitly configure persistence and data source. This is the

most common way of bootstrapping test cases for jBPM

• super(true, false) - to execute with in memory process management with human tasks per-

sistence

• super(true, true) - to execute with persistent process management with human tasks persis-

tence

• super(boolean, boolean, string) - same as super(boolean, boolean) but allows to use another

persistence unit name than default (org.jbpm.persistence.jpa)

public class ProcessHumanTaskTest extends JbpmJUnitBaseTestCase {

Processes

135

 private static final Logger logger = LoggerFactory.getLogger(ProcessHumanTaskTest.class);

 public ProcessHumanTaskTest() {

 // configure this tests to not use persistence for process engine but still use it

 for human tasks

 super(true, false);

 }

}

136

Chapter 7. Human Tasks

7.1. Introduction

An important aspect of business processes is human task management. While some of the work

performed in a process can be executed automatically, some tasks need to be executed by human

actors.

jBPM supports a special human task node inside processes for modeling this interaction with

human users. This human task node allows process designers to define the properties related to

the task that the human actor needs to execute, like for example the type of task, the actor(s),

or the data associated with the task.

jBPM also includes a so-called human task service, a back-end service that manages the life cycle

of these tasks at runtime. The jBPM implementation is based on the WS-HumanTask specification.

Note however that this implementation is fully pluggable, meaning that users can integrate their

own human task solution if necessary.

In order to have human actors participate in your processes, you first need to (1) include human

task nodes inside your process to model the interaction with human actors, (2) integrate a task

management component (like for example the WS-HumanTask based implementation provided

by jBPM) and (3) have end users interact with a human task client to request their task list and

claim and complete the tasks assigned to them. Each of these three elements will be discussed

in more detail in the next sections.

7.2. Using User Tasks in our Processes

jBPM supports the use of human tasks inside processes using a special User Task node defined

by the BPMN2 Specification(as shown in the figure above). A User Task node represents an

atomic task that needs to be executed by a human actor.

[Although jBPM has a special user task node for including human tasks inside a process, human

tasks are considered the same as any other kind of external service that needs to be invoked and

are therefore simply implemented as a domain-specific service. See the chapter on domain-spe-

cific processes to learn more about this.]

A User Task node contains the following core properties:

Human Tasks

137

• Actors: The actors that are responsible for executing the human task. A list of actor id's can be

specified using a comma (',') as separator.

• Group: The group id that is responsible for executing the human task. A list of group id's can

be specified using a comma (',') as separator.

• Name: The display name of the node.

• TaskName: The name of the human task. This name is used to link the task to a Form. It also

represent the internal name of the Task that can be used for other purposes.

• DataInputSet: all the input variables that the task will receive to work on. Usually you will be

interested in copying variables from the scope of the process to the scope of the task. (Look at

the data mappings section for an example)

• DataOutputSet: all the output variables that will be generated by the execution of the task. Here

you specify all the name of the variables in the context of the task that you are interested to

copy to the context of the process. (Look at the data mappings section for an example)

• Assignments: here you specify which process variable will be linked to each Data Input and

Data Output mapping. (Look at the data mappings section for an example)

You can edit these variables in the properties view (see below) when selecting the User Task node.

A User Task node also contains the following extra properties:

Human Tasks

138

• Comment: A comment associated with the human task. Here you can use expressions.

• Content: The data associated with this task.

• Priority: An integer indicating the priority of the human task.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide

not to execute the task.

• On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,

respectively.

7.2.1. Swimlanes

User tasks can be used in combination with swimlanes to assign multiple human tasks to the same

actor. Whenever the first task in a swimlane is created, and that task has an actorId specified,

that actorId will be assigned to (all other tasks of) that swimlane as well. Note that this would

override the actorId of subsequent tasks in that swimlane (if specified), so only the actorId of the

first human task in a swimlane will be taken into account, all others will then take the actorId as

assigned in the first one.

Human Tasks

139

Warning

ActorId assignment will work only when there is single actor specified. Since Ac-

torId field can contain multiple actors (john,mary,peter) auto assignment for the

first task will not be performed when multiple values are found.

Whenever a human task that is part of a swimlane is completed, the actorId of that swimlane is

set to the actorId that executed that human task. This allows for example to assign a human task

to a group of users, and to assign future tasks of that swimlame to the user that claimed the first

task. This will also automatically change the assignment of tasks if at some point one of the tasks

is reassigned to another user.

7.3. Data Mappings

Human tasks typically present some data related to the task that needs to be performed to the

actor that is executing the task and usually also request the actor to provide some result data

related to the execution of the task. Task forms are typically used to present this data to the actor

and request results.

The data that will be used by the Task needs to be specified when we define the User Task in

our Process. In order to do that we need to define which data will be copied from the process

context to the task context. Notice that the data is copied, so it can be modified inside the Task

context but it will not affect the process variables unless we decide to copy back the value from

the task to the process context.

Most of the times Forms are used to display data to the end user. Allowing them to generate/create

new data that will be propagated to the process context to be used by future activities. In order

to decide how the information flow from the process to a particular task and from the task to the

process we need to define which pieces of information will be automatically copied by the process

engine. The following sections shows how to do these mappings by configuring the DataInputSet,

DataOutputSet and the Assignments properties of a User Task.

Let's start defining the Task DataInputSet:

Human Tasks

140

Both GroupId and Comment are automatically generated, so you don't need to worry about that.

In this case the only user defined Data Input is called: in_name. This means that the task will be

receiving information from the process context and internally this variable will be called in_name.

The type is also specified here.

In the Data Outputs represent the data that will be generated by the tasks. In this case we have

two variables of type String called: out_name and out_mail and two Integer variables called:

out_age and out_score are defined. This means that inside the task context we will need to set

the value to these variables.

Finally all the connections with the process context needs to be done in the Data Assignments.

The main idea here is to define how Data Inputs and Data Outputs will be associated with process

variables.

As shown in the previous screenshot, the assignments between the process variables (in this

case (name, age, mail and hr_score)) and the Data Inputs and Outputs are done in the Data

Assignments screen. Notice that the example uses a convention that makes it easy to know which

is an internal Task variables (Data Input/Output) using the "in_" and "out_" prefix to the variable

names. Using this convention you can quickly understand the Assignments screen. The first row

maps the process variable called name to the data input called in_name. The second row maps

the data output called out_mail to the process variable called mail, and so on.

Human Tasks

141

These mappings at runtime will automatically copy the variables content from one context (process

and task) to the other automatically for us.

7.4. Task Lifecycle

From the perspective of a process, when a user task node is encountered during the execution, a

human task is created. The process will then only leave the user task node when the associated

human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. For details beyond what is

described below, please check out the WS-HumanTask specification. The following diagram is

from the WS-HumanTask specification and describes the human task life cycle.

A newly created task starts in the "Created" stage. Usually, it will then automatically become

"Ready", after which the task will show up on the task list of all the actors that are allowed to

execute the task. The task will stay "Ready" until one of these actors claims the task, indicating

that he or she will be executing it.

When a user then eventually claims the task, the status will change to "Reserved". Note that a

task that only has one potential (specific) actor will automatically be assigned to that actor upon

creation of the task. When the user who has claimed the task starts executing it, the task status

will change from "Reserved" to "InProgress".

Human Tasks

142

Lastly, once the user has performed and completed the task, the task status will change to "Com-

pleted". In this step, the user can optionally specify the result data related to the task. If the task

could not be completed, the user could also indicate this by using a fault response, possibly in-

cluding fault data, in which case the status would change to "Failed".

While the life cycle explained above is the normal life cycle, the specification also describes a

number of other life cycle methods, including:

• Delegating or forwarding a task, so that the task is assigned to another actor

• Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all

actors allowed to take it

• Temporarly suspending and resuming a task

• Stopping a task in progress

• Skipping a task (if the task has been marked as skippable), in which case the task will not be

executed

7.5. Task Permissions

Only users associated with a specific task are allowed to modify or retrieve information about the

task. This allows users to create a jBPM workflow with multiple tasks and yet still be assured of

both the confidentiality and integrity of the task status and information associated with a task.

Some task operations will end up throwing a

org.jbpm.services.task.exception.PermissionDeniedException when used with informa-

tion about an unauthorized user. For example, when a user is trying to directly modify the task

(for example, by trying to claim or complete the task), the PermissionDeniedException will be

thrown if that user does not have the correct role for that operation. Furthermore, a user will not

be able to view or retrieve tasks that the user is not involved with, especially if this is via the jBPM

Console or KIE Workbench applications.

User 'Administrator' and group 'Administrators' are automatically added to each Human Task.

7.5.1. Task Permissions Matrix

The permisions matrix below summarizes the actions that specific user roles are allowed to do. On

the left side, possible operations are listed while user roles are listed across the top of the matrix.

The cells of the permissions matrix contain one of three possible characters, each of which indicate

the user role permissions for that operation:

• a "+ indicates that the user role CAN do the specified operation

• a "-" indicates that the user role MAY NOT do the specified operation

• a "_" indicates that the user role MAY NOT do the specified operation, and that it is also not an

operation that matches the user's role ("not applicable")

Human Tasks

143

Furthermore, the following words or abbreviations in the table header refer to the following roles:

Table 7.1. Task roles in the permissions table

Word Role Description

Initiator Task Initiator The user who creates the task

instance

Stakeholder Task Stakeholder The user involved in the task:

this user can influence the

progress of a task, by perform-

ing administrative actions on

the task instance

Potential Potential Owner The user who can claim

the task before it has been

claimed, or after it has been

released or forward: only tasks

that have the status "Ready"

may be claimed; a potential

owner becomes the actual

owner of a task by claiming

the task

Actual Actual Owner The user who has claimed the

task and will progress the task

to completion or failure

Administrator Business Adminstrator A "super user" who may mod-

ify the status or progress of

a task at any point in a task's

lifecycle

User roles are assigned to users by the definition of the task in the jBPM (BPMN2) process de-

finition.

Permissions Matrices. The following matrix describes the authorizations for all operations

which modify a task:

Table 7.2. Main operations permissions matrix

Opera-

tion\Role

Initiator Stakeholder Potential Actual Administra-

tor

activate + + _ _ +

claim - + + _ +

complete - + _ + +

delegate + + + + +

Human Tasks

144

Opera-

tion\Role

Initiator Stakeholder Potential Actual Administra-

tor

fail - + _ + +

forward + + + + +

nominate + + + + +

release + + + + +

remove - _ _ _ +

resume + + + + +

skip + + + + +

start - + + + +

stop - + _ + +

suspend + + + + +

The matrix below describes the authorizations used when retrieving task information. In short, it

says that all users which have any role with regards to the specific task, are allowed to see the

task. This applies to all operations that are used to retrieve any type of information about the task.

Table 7.3. Retrieval operations permissions matrix

Opera-

tion\Role

Initiator Stakeholder Potential Actual Administra-

tor

get + + + + +

7.6. Task Service and The Process Engine

As far as the jBPM engine is concerned, human tasks are similar to any other external service

that needs to be invoked and are implemented as a domain-specific service. (For more on do-

main-specific services, see the chapter on them here.) Because a human task is an example of

such a domain-specific service, the process itself only contains a high-level, abstract description

of the human task to be executed and a work item handler that is responsible for binding this

(abstract) task to a specific implementation.

Users can plug in any human task service implementation, such as the one that's provided by

jBPM, or they may register their own implementation. In the next paragraphs, we will describe the

human task service implementation provided by jBPM.

The jBPM project provides a default implementation of a human task service based on the WS-

HumanTask specification. If you do not need to integrate jBPM with another existing implementa-

tion of a human task service, you can use this service. The jBPM implementation manages the life

cycle of the tasks (creation, claiming, completion, etc.) and stores the state of all the tasks, task

lists, and other associated information. It also supports features like internationalization, calendar

integration, different types of assignments, delegation, escalation and deadlines. The code for the

implementation itself can be found in the jbpm-human-task module.

Human Tasks

145

The jBPM task service implementation is based on the WS-HumanTask (WS-HT) specification.

This specification defines (in detail) the model of the tasks, the life cycle, and many other features.

It is very comprehensive and the first version can be found here.

7.7. Task Service API

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients

to integrate (at a low level) with the human task service. Note that end users should probably

not interact with this low-level API directly, but use one of the more user-friendly task clients

(see below) instead. These clients offer a graphical user interface to request task lists, claim and

complete tasks, and manage tasks in general. The task clients listed below use the Java API to

internally interact with the human task service. Of course, the low-level API is also available so

that developers can use it in their code to interact with the human task service directly.

A task service (interface org.kie.api.task.TaskService) offers the following methods (among oth-

ers) for managing the life cycle of human tasks:

 ...

 void start(long taskId, String userId);

 void stop(long taskId, String userId);

 void release(long taskId, String userId);

 void suspend(long taskId, String userId);

 void resume(long taskId, String userId);

 void skip(long taskId, String userId);

 void delegate(long taskId, String userId, String targetUserId);

 void complete(long taskId, String userId, Map<String, Object> results);

 ...

If you take a look at the method signatures you will notice that almost all of these methods take

the following arguments:

• taskId: The id of the task that we are working with. This is usually extracted from the currently

selected task in the user task list in the user interface.

• userId: The id of the user that is executing the action. This is usually the id of the user that is

logged in into the application.

There is also an internal interface that you should check for more methods to interact with the

Task Service, this interface is internal until it gets tested. Future version of the External (public)

Human Tasks

146

interface can include some of the methods proposed in the InternalTaskService interface. If you

want to make use of the methods provided by this interface you need to manually cast to Internal-

TaskService. One method that can be useful from this interface is getTaskContent():

 Map<String, Object> getTaskContent(long taskId);

This method saves you from doing all the boiler plate of getting the ContentMarshallerContext

to unmarshall the serialized version of the task content. If you only want to use the stable/public

API's you can just copy what this method does:

 Task taskById = taskQueryService.getTaskInstanceById(taskId);

 Content contentById =

 taskContentService.getContentById(taskById.getTaskData().getDocumentContentId());

 ContentMarshallerContext context = getMarshallerContext(taskById);

 Object unmarshalledObject

 = ContentMarshallerHelper.unmarshall(contentById.getContent(), context.getEnvironment(),

 context.getClassloader());

 if (!(unmarshalledObject instanceof Map)) {

 throw new IllegalStateException(" The Task Content Needs to be a Map in order

 to use this method and it was: "+unmarshalledObject.getClass());

 }

 Map<String, Object> content = (Map<String, Object>) unmarshalledObject;

 return content;

Because the content of the Task can be any Object, the previous method assume that you are

storing a Map of objects to work. If you are storing other than a Map you should do the correspon-

dent checks.

7.7.1. Task event listener

Task service supports task listeners to be invoked upon various life cycle events happening on

given task instance. In majority of cases task event listeners are used to intercept certain operation

to perform additional logic - like storing task information in separate tables for business activity

monitoring needs.

Task event listeners are pluggable and users can provide their own implementation of

org.kie.api.task.TaskLifeCycleEventListener interface. There are beforeTask* and afterTask*

methods that are invoked upon given event occured on a task instance.

TaskEvent (org.kie.api.task.TaskEvent) is the only argument available to the listener that provides

access to:

• Task instance that the event correspond to

Human Tasks

147

• TaskContext that provides access to services for further processing needs such as TaskPer-

sistenceContext

In many cases implementors of task event listener need to have access to task variables (either

input or output or both) to perform required operations. It can be done as described above (using

various services and content marshaller helper) though that in many cases leads to code dupli-

cation in multiple listeners thus an extended support was added in 6.5 to simply use TaskContext

to obtain that information.

loadTaskVariables(Task task);

Method loadTaskVariables can be used to populate both input and output variables of a given

task by simple and single method call. That method is "no op" in case task variables are already

set on a task.

To improve performance task variables are automatically set when they are available - usually

given by caller on task service:

• when task is created it usually has input variables, these variables are then set on Task instance

so there is no need to use loadTaskVariables method as only task input variables are available

when task is being created - applies to beforeTaskAdded and afterTaskAdded events handling

• when task is completed it usually has output variables, these variables are set on a task so

there is no need to use loadTaskVariables method if only task output variables are required.

Other than that loadTaskVariables should be used to populate task variables.

Note

It’s enough to call it once (like in beforeTask) method of the listener as they will be

available to both beforeTask* and afterTask* methods then.

7.7.2. Data model of task service

Below is the data base model used by task service with all tables and their relationship illustrated.

Human Tasks

148

7.8. Interacting with the Task Service

In order to get access to the Task Service API it is recommended to let the Runtime Manager

to make sure that everything is setup correctly. Look at the Runtime Manager section for more

information. From the API perspective you should be doing something like this:

 ...

 RuntimeEngine engine = runtimeManager.getRuntimeEngine(EmptyContext.get());

 KieSession kieSession = engine.getKieSession();

 // Start a process

 kieSession.startProcess("CustomersRelationship.customers", params);

 // Do Task Operations

 TaskService taskService = engine.getTaskService();

 List<TaskSummary> tasksAssignedAsPotentialOwner =

 taskService.getTasksAssignedAsPotentialOwner("mary", "en-UK");

 // Claim Task

 taskService.claim(taskSummary.getId(), "mary");

 // Start Task

 taskService.start(taskSummary.getId(), "mary");

 ...

Human Tasks

149

If you use this approach, there is no need to register the Task Service with the Process Engine.

The Runtime Manager will do that for you automatically. If you don't use the Runtime Manager,

you will be responsible for setting the LocalHTWorkItemHandler in the session in order to get

the Task Service notifying the Process Engine when a task is completed, or the Process Engine

notifying that a task has been created.

In jBPM 6.x the Task Service runs locally to the Process and Rule Engine and for that reason

multiple light clients can be created for different Process and Rule Engine's instances. All the

clients will be sharing the same database (backend storage for the tasks).

150

Chapter 8. Persistence and

Transactions

8.1. Process Instance State

jBPM allows the persistent storage of certain information. This chapter describes these different

types of persistence, and how to configure them. An example of the information stored is the

process runtime state. Storing the process runtime state is necessary in order to be able to con-

tinue execution of a process instance at any point, if something goes wrong. Also, the process

definitions themselves, and the history information (logs of current and previous process states

already) can also be persisted.

8.1.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution of

the process in that specific context. For example, when executing a process that specifies how

to process a sales order, one process instance is created for each sales request. The process

instance represents the current execution state in that specific context, and contains all the in-

formation related to that process instance. Note that it only contains the (minimal) runtime state

that is needed to continue the execution of that process instance at some later time, but it does

not include information about the history of that process instance if that information is no longer

needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.

This allows to restore the state of execution of all running processes in case of unexpected failure,

or to temporarily remove running instances from memory and restore them at some later time.

jBPM allows you to plug in different persistence strategies. By default, if you do not configure the

process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the

database. You do not have to trigger persistence yourself, the engine will take care of this when

persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are

stored at the end of that invocation, at so-called safe points. Whenever something goes wrong

and you restore the engine from the database, you also should not reload the process instances

and trigger them manually to resume execution, as process instances will automatically resume

execution if they are triggered, like for example by a timer expiring, the completion of a task that

was requested by that process instance, or a signal being sent to the process instance. The engine

will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably

should not try to access these database tables directly and especially not try to modify these

directly (as changing the runtime state of process instances without the engine knowing might

have unexpected side-effects). In most cases where information about the current execution state

Persistence and Transactions

151

of process instances is required, the use of a history log is mostly recommended (see below). In

some cases, it might still be useful to for example query the internal database tables directly, but

you should only do this if you know what you are doing.

8.1.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the

state of the process instance into a binary dataset. When you use persistence with jBPM, this

mechanism is used to save or retrieve the process instance state from the database. The same

mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

• First, the process instance information is transformed into a binary blob. For performance rea-

sons, a custom serialization mechanism is used and not normal Java serialization.

• This blob is then stored, alongside other metadata about this process instance. This metadata

includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the

state of timer jobs, or the session data that any business rules would be evaluated over. This

session state is stored separately as a binary blob, along with the id of the session and some

metadata. You can always restore session state by reloading the session with the given id. The

session id can be retrieved using ksession.getId().

Note that the process instance binary datasets are usually relatively small, as they only contain

the minimal execution state of the process instance. For a simple process instance, this usually

contains one or a few node instances, i.e., any node that is currently executing, and any existing

variable values.

As a result of jBPM using marshalling, the data model is both simple and small:

Persistence and Transactions

152

Figure 8.1. jBPM data model
[images/Chapter-Persistence/jbpm_schema.png]

The sessioninfo entity contains the state of the (knowledge) session in which the jBPM process

instance is running.

Table 8.1. SessionInfo

Field Description Nullable

id The primary key. NOT NULL

lastmodificationdate The last time that the entity

was saved to the database

rulesbytearray The binary dataset containing

the state of the session

NOT NULL

startdate The start time of the session

optlock The version field that serves

as its optimistic lock value

The processinstanceinfo entity contains the state of the jBPM process instance.

images/Chapter-Persistence/jbpm_schema.png

Persistence and Transactions

153

Table 8.2. ProcessInstanceInfo

Field Description Nullable

instanceid The primary key NOT NULL

lastmodificationdate The last time that the entity

was saved to the database

lastreaddate The last time that the entity

was retrieved (read) from the

database

processid The name (id) of the process

processinstancebytearray This is the binary dataset

containing the state of the

process instance

NOT NULL

startdate The start time of the process

state An integer representing the

state of the process instance

NOT NULL

optlock The version field that serves

as its optimistic lock value

The eventtypes entity contains information about events that a process instance will undergo

or has undergone.

Table 8.3. EventTypes

Field Description Nullable

instanceid This references the pro-

cessinstanceinfo primary

key and there is a foreign key

constraint on this column.

NOT NULL

eventTypes A text field related to an

event that the process has

undergone.

The workiteminfo entity contains the state of a work item.

Table 8.4. WorkItemInfo

Field Description Nullable

workitemid The primary key NOT NULL

creationDate The name of the work item

name The name of the work item

Persistence and Transactions

154

Field Description Nullable

processinstanceid The (primary key) id of the

process: there is no foreign

key constraint on this field.

NOT NULL

state An integer representing the

state of the work item

NOT NULL

optlock The version field that serves

as its optimistic lock value

workitembytearay This is the binary dataset

containing the state of the

work item

NOT NULL

The CorrelationKeyInfo entity contains information about correlation keys assigned to given

process instance - loose relationship as this table is considered optional used only when correla-

tion capabilities are required.

Table 8.5. CorrelationKeyInfo

Field Description Nullable

keyid The primary key NOT NULL

name assigned name of the corre-

lation key

processinstanceid The id of the process in-

stance which is assigned to

this correlation key

NOT NULL

optlock The version field that serves

as its optimistic lock value

The CorrelationPropertyInfo entity contains information about correlation properties for given

correlation key that is assigned to given process instance.

Table 8.6. CorrelationPropertyInfo

Field Description Nullable

propertyid The primary key NOT NULL

name The name of the property

value The value of the property NOT NULL

optlock The version field that serves

as its optimistic lock value

correlationKey-keyid Foregin key to map to corre-

lation key

NOT NULL

Persistence and Transactions

155

The ContextMappingInfo entity contains information about contextual information mapped to

ksession. This is an internal part of RuntimeManager and can be considered optional when Run-

timeManager is not used.

Table 8.7. ContextMappingInfo

Field Description Nullable

mappingid The primary key NOT NULL

context_id Identifier of the context NOT NULL

ksession_id Identifier of the ksession

mapped to this context

NOT NULL

optlock The version field that serves

as its optimistic lock value

8.1.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of the

process engine. Whenever a process instance is executing (for example when it started or con-

tinuing from a previous wait state, the engine executes the process instance until no more actions

can be performed (meaning that the process instance either has completed (or was aborted), or

that it has reached a wait state in all of its parallel paths). At that point, the engine has reached

the next safe state, and the state of the process instance (and all other process instances that

might have been affected) is stored persistently.

8.2. Audit Log

In many cases it will be useful (if not necessary) to store information about the execution of process

instances, so that this information can be used afterwards. For example, sometimes we want to

verify which actions have been executed for a particular process instance, or in general, we want

to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly

increasing in size, not to mention the fact that monitoring and analysis queries might influence

the performance of your runtime engine. This is why process execution history information can

be stored separately.

This history log of execution information is created based on events that the process engine gen-

erates during execution. This is possible because the jBPM runtime engine provides a generic

mechanism to listen to events. The necessary information can easily be extracted from these

events and then persisted to a database. Filters can also be used to limit the scope of the logged

information.

Persistence and Transactions

156

8.2.1. The jBPM Audit data model

The jbpm-audit module contains an event listener that stores process-related information in a

database using JPA. The data model itself contains three entities, one for process instance infor-

mation, one for node instance information, and one for (process) variable instance information.

The ProcessInstanceLog table contains the basic log information about a process instance.

Table 8.8. ProcessInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

duration Actual duration of this

process instance since its

start date

end_date When applicable, the end

date of the process instance

externalId Optional external identifier

used to correlate to some el-

ements - e.g. deployment id

user_identity Optional identifier of the user

who started the process in-

stance

outcome The outcome of the process

instance, for instance error

code in case of process in-

stance was finished with error

event

parentProcessInstanceId The process instance id of

the parent process instance if

any

processid The id of the process

processinstanceid The process instance id NOT NULL

processname The name of the process

processversion The version of the process

start_date The start date of the process

instance

status The status of process in-

stance that maps to process

instance state

Persistence and Transactions

157

The NodeInstanceLog table contains more information about which nodes were actually executed

inside each process instance. Whenever a node instance is entered from one of its incoming

connections or is exited through one of its outgoing connections, that information is stored in this

table.

Table 8.9. NodeInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

connection Actual identifier of the se-

quence flow that led to this

node instance

log_date The date of the event

externalId Optional external identifier

used to correlate to some el-

ements - e.g. deployment id

nodeid The node id of the corre-

sponding node in the process

definition

nodeinstanceid The node instance id

nodename The name of the node

nodetype The type of the node

processid The id of the process that the

process instance is executing

processinstanceid The process instance id NOT NULL

type The type of the event (0 = en-

ter, 1 = exit)

NOT NULL

workItemId Optional - only for certain

node types - The identifier of

work item

The VariableInstanceLog table contains information about changes in variable instances. The

default is to only generate log entries when (after) a variable changes. It's also possible to log

entries before the variable (value) changes.

Table 8.10. VariableInstanceLog

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

Persistence and Transactions

158

Field Description Nullable

externalId Optional external identifier

used to correlate to some el-

ements - e.g. deployment id

log_date The date of the event

processid The id of the process that the

process instance is executing

processinstanceid The process instance id NOT NULL

oldvalue The previous value of the

variable at the time that the

log is made

value The value of the variable at

the time that the log is made

variableid The variable id in the process

definition

variableinstanceid The id of the variable in-

stance

The AuditTaskImpl table contains information about tasks that can be used for queries.

Table 8.11. AuditTaskImpl

Field Description Nullable

id The primary key and id of the

task log entity

activationTime Time when this task was acti-

vated

actualOwner Actual owner assigned to this

task - only set when task is

claimed

createdBy User who created this task

createdOn Date when task was created

deploymentId Deployment id this task is

part of

description Description of the task

dueDate Due date set on this task

name Name of the task

parentId Parent task id

priority Priority of the task

Persistence and Transactions

159

Field Description Nullable

processId Process definition id that this

task belongs to

processInstanceId Process instance id that this

task is associated with

processSessionId KieSession id used to create

this task

status Current status of the task

taskId Identifier of task

workItemId Identifier of work item as-

signed on process side to this

task id

The BAMTaskSummary table that collects information about tasks that is used by BAM engine to

build charts and dashboards.

Table 8.12. BAMTaskSummary

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

createdDate Date whentask was created

duration Duration since task was cre-

ated

endDate Date when task reached end

state (complete, exit, fail,

skip)

processinstanceid The process instance id

startDate Date when task was started

status Current status of the task

taskId Identifier of the task

taskName Name of the task

userId User id assigned to the task

The TaskVariableImpl table contains information about task variable instances.

Table 8.13. TaskVariableImpl

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

Persistence and Transactions

160

Field Description Nullable

modificationDate Date when the variable was

modified last time

name Name of the task

processid The id of the process that the

process instance is executing

processinstanceid The process instance id

taskId Identifier of the task

type Type of the variable - either

input or output of the task

value Variable value

The TaskEvent table contains information about changes in task instances. Operations such as

claim, start, stop etc are stored here to provide time line view of events that happened to given task.

Table 8.14. TaskEvent

Field Description Nullable

id The primary key and id of the

log entity

NOT NULL

logTime LDate when this event was

saved

message Log event message

processinstanceid The process instance id

taskId Identifier of the task

type Type of the event - corre-

sponds to life cycle phases of

the task

userId User id assigned to the task

workItemId Identifier of work item that the

task is assigned to

8.2.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your

session like this:

EntityManagerFactory emf = ...;

StatefulKnowledgeSession ksession = ...;

AbstractAuditLogger auditLogger = AuditLoggerFactory.newJPAInstance(emf);

ksession.addProcessEventListener(auditLogger);

Persistence and Transactions

161

// invoke methods one your session here

To specify the database where the information should be stored, modify the file persistence.xml

file to include the audit log classes as well (ProcessInstanceLog, NodeInstanceLog and Vari-

ableInstanceLog), as shown below.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="2.0"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/

persistence/persistence_2_0.xsd

 http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/persistence/

orm_2_0.xsd"

 xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance>

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/jbpm-ds</jta-data-source>

 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

 <class>org.drools.persistence.info.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.info.WorkItemInfo</class>

 <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>

 <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>

 <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>

 <class>org.jbpm.process.audit.ProcessInstanceLog</class>

 <class>org.jbpm.process.audit.NodeInstanceLog</class>

 <class>org.jbpm.process.audit.VariableInstanceLog</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.BitronixJtaPlatform"/>

 </properties>

 </persistence-unit>

</persistence>

All this information can easily be queried and used in a lot of different use cases, ranging from cre-

ating a history log for one specific process instance to analyzing the performance of all instances

of a specific process.

Persistence and Transactions

162

This audit log should only be considered a default implementation. We don't know what information

you need to store for analysis afterwards, and for performance reasons it is recommended to only

store the relevant data. Depending on your use cases, you might define your own data model for

storing the information you need, and use the process event listeners to extract that information.

8.2.3. Storing Process Events in a JMS queue for further pro-

cessing

Process events are stored in the database synchronously and within the same transaction as

actual process instance execution. That obviously takes some time especially in highly loaded

systems and might have some impact on the database when both history log and runtime data

are kept in the same database. To provide an alternative option for storing process events, a JMS

based logger has been provided. It can be configured to submit messages to JMS queue instead

of directly persisting them in the database. It can be configured to be transactional as well to avoid

issues with inconsistent data in case of process engine transaction is rolled back.

ConnectionFactory factory = ...;

Queue queue = ...;

StatefulKnowledgeSession ksession = ...;

Map<String, Object> jmsProps = new HashMap<String, Object>();

jmsProps.put("jbpm.audit.jms.transacted", true);

jmsProps.put("jbpm.audit.jms.connection.factory", factory);

jmsProps.put("jbpm.audit.jms.queue", queue);

AbstractAuditLogger auditLogger = AuditLoggerFactory.newInstance(Type.JMS, session, jmsProps);

ksession.addProcessEventListener(auditLogger);

// invoke methods one your session here

This is just one of possible ways to configure JMS audit logger, see javadocs for AuditLoggerFac-

tory for more details.

8.2.4. Variables auditing

Process and task variables are stored in autdit tables by default although there are stored in

simplest possible way - by creating string representation of the variable - variable.toString(). In

many cases this is enough as even for custom classes used as variables users can implement

custom toString() method that produces expected "view" of the variable.

Though this might not cover all needs, especially when there is a need for efficient queries by

variables (both task and process). Let's take as an example a Person object that has following

structure:

public class Person implements Serializable{ private static final long serialVersionUID =

 -5172443495317321032L; private String name; private int age; public Person(String

Persistence and Transactions

163

 name, int age) { this.name = name; this.age = age; } public String getName()

 { return name; } public void setName(String name) { this.name = name;

 } public int getAge() { return age; } public void setAge(int

 age) { this.age = age; } @Override public String toString() { return

 "Person [name=" + name + ", age=" + age + "]"; } }

plements Serializable{ private static final

 long serialVersionUID = -5172443495317321032L;

 private String name;

private int

age; public Person(String

 name, int age) {

 this.name = name;

 this.age

= age; }

 public String getName() {

return name;

 } public

 void setName(String name) {

 this.name

= name;

 }

 public int getAge() {

return age;

 } public

 void setAge(int age) {

 this.age

= age;

 } @Override

 public String toString() { return "Person [name=" + name + ", age="

 + age + "]"; }

while at first look this seems to be sufficient as the toString() methods provide human readable

format it does not make it easy to be searched by. As searching through strings like "Person

[name="john", age="34"] to find people with age 34 would make data base query very inefficient.

To solve the problem variable audit has been based on VariableIndexers that are responsible for

extracting relevant parts of the variable that will be stored in audit log.

/**

 * Variable indexer that allows to transform variable instance into other representation (usually

 string)

 * to be able to use it for queries.

 *

 * @param <V> type of the object that will represent indexed variable

 */

public interface VariableIndexer<V> {

 /**

Persistence and Transactions

164

 * Tests if given variable shall be indexed by this indexer

 *

 * NOTE: only one indexer can be used for given variable

 *

 * @param variable variable to be indexed

 * @return true if variable should be indexed with this indexer

 */

 boolean accept(Object variable);

 /**

 * Performs index/transform operation of the variable. Result of this operation can be

 * either single value or list of values to support complex type separation.

 * For example when variable is of type Person that has name, address phone indexer could

 * build three entries out of it to represent individual fields:

 * person = person.name

 * address = person.address.street

 * phone = person.phone

 * that will allow more advanced queries to be used to find relevant entries.

 * @param name name of the variable

 * @param variable actual variable value

 * @return

 */

 List<V> index(String name, Object variable);

}

By default (indexer that takes the toString()) will prodce single audit entry for single variable, so it's

one to one relationship. But that's not the only option. Indexers (as can be seen in the interface)

returns list of objects that are the outcome of single variable indexation. To make our person

queries more efficient we could build custom indexer that would take Person instance and index

it into separate audit entries one representing name and the other representing age.

public class PersonTaskVariablesIndexer implements TaskVariableIndexer {

 @Override

 public boolean accept(Object variable) {

 if (variable instanceof Person) {

 return true;

 }

 return false;

 }

 @Override

 public List<TaskVariable> index(String name, Object variable) {

 Person person = (Person) variable;

 List<TaskVariable> indexed = new ArrayList<TaskVariable>();

 TaskVariableImpl personNameVar = new TaskVariableImpl();

 personNameVar.setName("person.name");

 personNameVar.setValue(person.getName());

 indexed.add(personNameVar);

 TaskVariableImpl personAgeVar = new TaskVariableImpl();

Persistence and Transactions

165

 personAgeVar.setName("person.age");

 personAgeVar.setValue(person.getAge()+"");

 indexed.add(personAgeVar);

 return indexed;

 }

}

That indexer will then be used to index Person class only and rest of variables will be indexed

with default (toString()) indexer. Now when we want to find process instances or tasks that have

person with age 34 we simple refer to it as

• variable name: person.age

• variable value: 34

there is not even need to use like based queries so data base can optimize the query and make

it efficient even with big set of data.

Building and registering custom indexers

Indexers are supported for both process and task variables. though they are supported by different

interfaces as they do produce different type of objects representing audit view of the variable.

Following are the interfaces to be implemented to build custom indexers:

• process variables: org.kie.internal.process.ProcessVariableIndexer

• task variables: org.kie.internal.task.api.TaskVariableIndexer

Implementation is rather simple, just two methods to be implemented

• accept - indicates what types are handled by given indexer - note that only one indexer can

index given variable - so the first that accepts it will perform the work

• index - actually does the work to index variables depending on custom requirements

Once the implementation is done, it should be packaged as jar file and following file needs to be

included:

• for process variables: META-INF/services/org.kie.internal.process.ProcessVariableIndexer

with list of FQCN that represent the process variable indexers (single class name per line in

that file)

• for task variables: META-INF/services/org.kie.internal.task.api.TaskVariableIndexer with list of

FQCN that represent the task variable indexers (single class name per line in that file)

Indexers are discovered by ServiceLoader mechanism and thus the META-INF/services files

need. All found indexers will be examined whenever process or task variable is about to be in-

Persistence and Transactions

166

dexed. Only the default (toString() based) indexer is not discovered but added explicitly as last

indexer to allow custom ones to take the precedence over it.

8.3. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using

Spring. It does not support pure local transactions at the moment. For more information about

using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will auto-

matically execute each method invocation on the engine in a separate transaction. If this behavior

is acceptable, you don't need to do anything else. You can, however, also specify the transac-

tion boundaries yourself. This allows you, for example, to combine multiple commands into one

transaction.

You need to register a transaction manager at the environment before using user-defined trans-

actions. The following sample code uses the Bitronix transaction manager. Next, we use the Java

Transaction API (JTA) to specify transaction boundaries, as shown below:

// create the entity manager factory

EntityManagerFactory emf = EntityManagerFactoryManager.get().getOrCreate("org.jbpm.persistence.jpa");

TransactionManager tm = TransactionManagerServices.getTransactionManager();

// setup the runtime environment

RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()

.newDefaultBuilder()

.addAsset(ResourceFactory.newClassPathResource("MyProcessDefinition.bpmn2"), ResourceType.BPMN2)

 .addEnvironmentEntry(EnvironmentName.TRANSACTION_MANAGER, tm)

 .get();

// get the kie session

RuntimeManager manager = RuntimeManagerFactory.Factory.get().newPerRequestRuntimeManager(environment);

RuntimeEngine runtime = manager.getRuntimeEngine(ProcessInstanceIdContext.get());

KieSession ksession = runtime.getKieSession();

// start the transaction

UserTransaction ut = InitialContext.doLookup("java:comp/UserTransaction");

ut.begin();

// perform multiple commands inside one transaction

ksession.insert(new Person("John Doe"));

ksession.startProcess("MyProcess");

// commit the transaction

ut.commit();

Note that, if you use Bitronix as the transaction manager, you should also add a simple

jndi.properties file in you root classpath to register the Bitronix transaction manager in JNDI. If

Persistence and Transactions

167

you are using the jbpm-test module, this is already included by default. If not, create a file named

jndi.properties with the following content:

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

If you would like to use a different JTA transaction manager, you can change the

persistence.xml file to use your own transaction manager. For example, when running inside

JBoss Application Server v5.x or v7.x, you can use the JBoss transaction manager. You need to

change the transaction manager property in persistence.xml to:

<property name="hibernate.transaction.jta.platform"

 value="org.hibernate.transaction.JBossTransactionManagerLookup" />

Warning

Using the (runtime manager) Singleton strategy with JTA transactions (User-

Transaction or CMT) is not recommended because there is a race condition when

using this. This race condition can result in an IllegalStateException with a

message similar to "Process instance XXX is disconnected.".

This race conditation can be avoided by explicitly synchronizing around the

KieSession instance when invoking the transaction in the user application code.

synchronized (ksession) {

 try {

 tx.begin();

 // use ksession

 // application logic

 tx.commit();

 } catch (Exception e) {

 //...

 }

}

8.3.1. Container managed transactions

Special consideration need to be taken when embedding jBPM inside an application that executes

in Container Managed Transaction (CMT) mode, for instance EJB beans. This especially applies

Persistence and Transactions

168

to application servers that does not allow accessing UserTransaction instance from JNDI when

being part of container managed transaction, e.g. WebSphere Application Server. Since default

implementation of transaction manager in jBPM is based on UserTransaction to get transaction

status which is used to decide if transaction should be started or not, in environments that prevent

accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a

dedicated transaction manager implementation is provided:

org.jbpm.persistence.jta.ContainerManagedTransactionManager

This transaction manager expects that transaction is active and thus will always return ACTIVE

when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as

transaction manager runs under managed transaction and can't affect it.

Note

To make sure that container is aware of any exceptions that happened during

process instance execution, user needs to ensure that exceptions thrown by the

engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

• Insert transaction manager and persistence context manager into environment prior to creat-

ing/loading session

Environment env = EnvironmentFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

env.set(EnvironmentName.TRANSACTION_MANAGER, new ContainerManagedTransactionManager());

env.set(EnvironmentName.PERSISTENCE_CONTEXT_MANAGER, new

 JpaProcessPersistenceContextManager(env));

env.set(EnvironmentName.TASK_PERSISTENCE_CONTEXT_MANAGER, new

 JPATaskPersistenceContextManager(env));

• configure JPA provider (example hibernate and WebSphere)

<property name="hibernate.transaction.factory_class"

 value="org.hibernate.transaction.CMTTransactionFactory"/>

<property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.WebSphereJtaPlatform"/>

With following configuration jBPM should run properly in CMT environment.

Persistence and Transactions

169

8.3.1.1. CMT dispose ksession command

Usually when running within container managed transaction disposing ksession di-

rectly will cause exceptions on transaction completion as there are some trans-

action synchronization registered by jBPM to clean up the state after invoca-

tion is finished. To overcome this problem specialized command has been provided

org.jbpm.persistence.jta.ContainerManagedTransactionDisposeCommand which allows to

simply execute this command instead of regular ksession.dispose which will ensure that kses-

sion will be disposed at the transaction completion.

8.4. Configuration

By default, the engine does not save runtime data persistently. This means you can use the engine

completely without persistence (so not even requiring an in memory database) if necessary, for

example for performance reasons, or when you would like to manage persistence yourself. It is,

however, possible to configure the engine to do use persistence by configuring it to do so. This

usually requires adding the necessary dependencies, configuring a datasource and creating the

engine with persistence configured.

8.4.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your appli-

cation if you want to user persistence. By default, persistence is based on the Java Persistence

API (JPA) and can thus work with several persistence mechanisms. We are using Hibernate by

default.

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary

JARs are added to your jBPM runtime directory. You don't really need to do anything (as the nec-

essary dependencies should already be there) if you are using the jBPM runtime that is configured

by default when using the jBPM installer, or if you downloaded and unzipped the jBPM runtime

artifact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you

need the JAR file jbpm-persistence-jpa.jar, as that contains code for saving the runtime state

whenever necessary. Next, you also need various other dependencies, depending on the persis-

tence solution and database you are using. For the default combination with Hibernate as the JPA

persistence provider and using an H2 in-memory database and Bitronix for JTA-based transaction

management, the following list of additional dependencies is needed:

• jbpm-persistence-jpa (org.jbpm)

• drools-persistence-jpa (org.drools)

• persistence-api (javax.persistence)

• hibernate-entitymanager (org.hibernate)

Persistence and Transactions

170

• hibernate-annotations (org.hibernate)

• hibernate-commons-annotations (org.hibernate)

• hibernate-core (org.hibernate)

• commons-collections (commons-collections)

• dom4j (dom4j)

• jta (javax.transaction)

• btm (org.codehaus.btm)

• javassist (javassist)

• slf4j-api (org.slf4j)

• slf4j-jdk14 (org.slf4j)

• h2 (com.h2database)

• jbpm-test (org.jbpm) for testing only, do not include it in the actual application

8.4.2. Manually configuring the engine to use persistence

You can use the JPAKnowledgeService to create your knowledge session. This is slightly more

complex, but gives you full access to the underlying configurations. You can create a new knowl-

edge session using JPAKnowledgeService based on a knowledge base, a knowledge session

configuration (if necessary) and an environment. The environment needs to contain a reference

to your Entity Manager Factory. For example:

// create the entity manager factory and register it in the environment

EntityManagerFactory emf =

 Persistence.createEntityManagerFactory("org.jbpm.persistence.jpa");

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new knowledge session that uses JPA to store the runtime state

StatefulKnowledgeSession ksession = JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

int sessionId = ksession.getId();

// invoke methods on your method here

ksession.startProcess("MyProcess");

ksession.dispose();

You can also use the JPAKnowledgeService to recreate a session based on a specific session id:

Persistence and Transactions

171

// recreate the session from database using the sessionId

ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env);

Note that we only save the minimal state that is needed to continue execution of the process

instance at some later point. This means, for example, that it does not contain information about

already executed nodes if that information is no longer relevant, or that process instances that

have been completed or aborted are removed from the database. If you want to search for histo-

ry-related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate

and the H2 database (or your own preference), called persistence.xml in the META-INF direc-

tory, as shown below. For more details on how to change this for your own configuration, we refer

to the JPA and Hibernate documentation for more information.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<persistence

 version="2.0"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/xml/ns/

persistence/persistence_2_0.xsd

 http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/xml/ns/persistence/

orm_2_0.xsd"

 xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance>

 <persistence-unit name="org.jbpm.persistence.jpa" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>jdbc/jbpm-ds</jta-data-source>

 <mapping-file>META-INF/JBPMorm.xml</mapping-file>

 <class>org.drools.persistence.info.SessionInfo</class>

 <class>org.jbpm.persistence.processinstance.ProcessInstanceInfo</class>

 <class>org.drools.persistence.info.WorkItemInfo</class>

 <class>org.jbpm.persistence.correlation.CorrelationKeyInfo</class>

 <class>org.jbpm.persistence.correlation.CorrelationPropertyInfo</class>

 <class>org.jbpm.runtime.manager.impl.jpa.ContextMappingInfo</class>

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>

 <property name="hibernate.max_fetch_depth" value="3"/>

 <property name="hibernate.hbm2ddl.auto" value="update"/>

 <property name="hibernate.show_sql" value="true"/>

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.BitronixJtaPlatform"/>

 </properties>

 </persistence-unit>

</persistence>

This configuration file refers to a data source called "jdbc/jbpm-ds". If you run your application in

an application server (like for example JBoss AS), these containers typically allow you to easily set

up data sources using some configuration (like for example dropping a datasource configuration

Persistence and Transactions

172

file in the deploy directory). Please refer to your application server documentation to know how

to do this.

For example, if you're deploying to JBoss Application Server v5.x, you can create a datasource

by dropping a configuration file in the deploy directory, for example:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>jdbc/jbpm-ds</jndi-name>

 <connection-url>jdbc:h2:tcp://localhost/~/test</connection-url>

 <driver-class>org.h2.jdbcx.JdbcDataSource</driver-class>

 <user-name>sa</user-name>

 <password></password>

 </local-tx-datasource>

</datasources>

If you are however executing in a simple Java environment, you can use the JBPMHelper class

to do this for you (see below for tests only) or the following code fragment could be used to set

up a data source (where we are using the H2 in-memory database in combination with Bitronix

in this case).

PoolingDataSource ds = new PoolingDataSource();

ds.setUniqueName("jdbc/jbpm-ds");

ds.setClassName("bitronix.tm.resource.jdbc.lrc.LrcXADataSource");

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:mem:jbpm-db");

ds.getDriverProperties().put("driverClassName", "org.h2.Driver");

ds.init();

8.4.3. Configuring the engine to use persistence using JBPMHelper

- for tests only

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate

constructor when creating your session. There are various ways to create a session (as we have

tried to make this as easy as possible for you and have several utility classes for you, depending

for example if you are trying to write a process JUnit test).

The easiest way to do this is to use the jbpm-test module that allows you to easily create and test

your processes. The JBPMHelper class has a method to create a session, and uses a configuration

file to configure this session, like whether you want to use persistence, the datasource to use, etc.

The helper class will then do all the setup and configuration for you.

Persistence and Transactions

173

To configure persistence, create a jBPM.properties file and configure the following properties

(note that the example below are the default properties, using an H2 in-memory database with

persistence enabled, if you are fine with all of these properties, you don't need to add new prop-

erties file, as it will then use these properties by default):

for creating a datasource

persistence.datasource.name=jdbc/jbpm-ds

persistence.datasource.user=sa

persistence.datasource.password=

persistence.datasource.url=jdbc:h2:tcp://localhost/~/jbpm-db

persistence.datasource.driverClassName=org.h2.Driver

for configuring persistence of the session

persistence.enabled=true

persistence.persistenceunit.name=org.jbpm.persistence.jpa

persistence.persistenceunit.dialect=org.hibernate.dialect.H2Dialect

for configuring the human task service

taskservice.enabled=true

taskservice.datasource.name=org.jbpm.task

taskservice.usergroupcallback=org.jbpm.services.task.identity.JBossUserGroupCallbackImpl

taskservice.usergroupmapping=classpath:/usergroups.properties

If you want to use persistence, you must make sure that the datasource (that you specified in

the jBPM.properties file) is initialized correctly. This means that the database itself must be up

and running, and the datasource should be registered using the correct name. If you would like

to use an H2 in-memory database (which is usually very easy to do some testing), you can use

the JBPMHelper class to start up this database, using:

JBPMHelper.startH2Server();

To register the datasource (this is something you always need to do, even if you're not using H2

as your database, check below for more options on how to configure your datasource), use:

JBPMHelper.setupDataSource();

Next, you can use the JBPMHelper class to create your session (after creating your knowledge

base, which is identical to the case when you are not using persistence):

Persistence and Transactions

174

StatefulKnowledgeSession ksession = JBPMHelper.newStatefulKnowledgeSession(kbase);

Once you have done that, you can just call methods on this ksession (like startProcess) and the

engine will persist all runtime state in the created datasource.

You can also use the JBPMHelper class to recreate your session (by restoring its state from the

database, by passing in the session id (that you can retrieve using ksession.getId())):

StatefulKnowledgeSession ksession = JBPMHelper.loadStatefulKnowledgeSession(kbase, sessionId);

Part III. Workbench
How to use the web-based Workbench

176

Chapter 9. Workbench (General)

9.1. Installation

9.1.1. War installation

Use the war from the workbench distribution zip that corrsponds to your application server. The

differences between these war files are mainly superficial. For example, some JARs might be

excluded if the application server already supplies them.

• eap6_4: tailored for Red Hat JBoss Enterprise Application Platform 6.4

• tomcat7: tailored for Apache Tomcat 7

Note

Apache Tomcat requires additional configuration to correctly install the Work-

bench. Please consult the README.md in the war for the most up to date proce-

dure.

• was8: tailored for IBM WebSphere Application Server 8

• weblogic12: tailored for Oracle WebLogic Server 12c

Note

Oracle WebLogic requires additional configuration to correctly install the Work-

bench. Please consult the README.md in the war for the most up to date proce-

dure.

• wildfly8: tailored for Red Hat JBoss Wildfly 8

9.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKING_DIRECTORY/.niogit, for

example wildfly-8.0.0.Final/bin/.niogit, but it can be overridden with the system property

-Dorg.uberfire.nio.git.dir.

Note

In production, make sure to back up the workbench data directory.

Workbench (General)

177

9.1.3. System properties

Here's a list of all system properties:

• org.uberfire.nio.git.dir: Location of the directory .niogit. Default: working directory

• org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true

• org.uberfire.nio.git.daemon.host: If git daemon enabled, uses this property as local host

identifier. Default: localhost

• org.uberfire.nio.git.daemon.port: If git daemon enabled, uses this property as port num-

ber. Default: 9418

• org.uberfire.nio.git.ssh.enabled: Enables/disables ssh daemon. Default: true

• org.uberfire.nio.git.ssh.host: If ssh daemon enabled, uses this property as local host

identifier. Default: localhost

• org.uberfire.nio.git.ssh.port: If ssh daemon enabled, uses this property as port number.

Default: 8001

• org.uberfire.nio.git.ssh.cert.dir: Location of the directory .security where local cer-

tificates will be stored. Default: working directory

• org.uberfire.nio.git.hooks: Location of the directory that contains Git hook scripts that are

installed into each repository created (or cloned) in the Workbench. Default: N/A

• org.uberfire.nio.git.ssh.passphrase: Passphrase to access your Operating Systems

public keystore when cloning git repositories with scp style URLs; e.g. git@github.com:user/

repository.git.

• org.uberfire.metadata.index.dir: Place where Lucene .index folder will be stored. De-

fault: working directory

• org.uberfire.cluster.id: Name of the helix cluster, for example: kie-cluster

• org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form

host1:port1,host2:port2,host3:port3, for example: localhost:2188

• org.uberfire.cluster.local.id: Unique id of the helix cluster node, note that ':' is replaced

with '_', for example: node1_12345

• org.uberfire.cluster.vfs.lock: Name of the resource defined on helix cluster, for example:

kie-vfs

• org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully initial-

ized to avoid conflicts when all cluster members create local clones. Default: false

• org.uberfire.sys.repo.monitor.disabled: Disable configuration monitor (do not disable

unless you know what you're doing). Default: false

Workbench (General)

178

• org.uberfire.secure.key: Secret password used by password encryption. Default:

org.uberfire.admin

• org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:

PBEWithMD5AndDES

• org.uberfire.domain: security-domain name used by uberfire. Default: ApplicationRealm

• org.guvnor.m2repo.dir: Place where Maven repository folder will be stored. Default: work-

ing-directory/repositories/kie

• org.guvnor.project.gav.check.disabled: Disable GAV checks. Default: false

• org.kie.example.repositories: Folder from where demo repositories will be cloned. The

demo repositories need to have been obtained and placed in this folder. Demo repositories can

be obtained from the kie-wb-6.2.0-SNAPSHOT-example-repositories.zip artifact. This System

Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

• org.kie.demo: Enables external clone of a demo application from GitHub. This System Prop-

erty takes precedence over org.kie.example. Default: true

• org.kie.example: Enables example structure composed by Repository, Organization Unit and

Project. Default: false

• org.kie.build.disable-project-explorer: Disable automatic build of selected Project in

Project Explorer. Default: false

To change one of these system properties in a WildFly or JBoss EAP cluster:

1. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

2. Locate the XML elements server that belong to the main-server-group and add a system

property, for example:

<system-properties>

 <property name="org.uberfire.nio.git.dir" value="..." boot-time="false"/>

 ...

</system-properties>

9.1.4. Trouble shooting

9.1.4.1. Loading.. does not disappear and Workbench fails to show

There have been reports that Firewalls in between the server and the browser can interfere with

Server Sent Events (SSE) used by the Workbench.

The issue results in the "Loading..." spinner remaining visible and the Workbench failing to ma-

terialize.

Workbench (General)

179

The workaround is to disable the Workbench's use of Server Sent Events by adding file

/WEB-INF/classes/ErraiService.properties to the exploded WAR containing the value

errai.bus.enable_sse_support=false. Re-package the WAR and re-deploy.

9.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

9.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Figure 9.1. Selecting Administration perspective

Select the "New repository" option from the menu.

Figure 9.2. Creating new repository

Workbench (General)

180

Enter the required information.

Figure 9.3. Entering repository information step 1/2

Workbench (General)

181

Figure 9.4. Entering repository information step 2/2 (only for managed

repositories)

9.2.2. Add project

Select the Authoring Perspective to create a new project.

Workbench (General)

182

Figure 9.5. Selecting Authoring perspective

Select "Project" from the "New Item" menu.

Workbench (General)

183

Figure 9.6. Creating new project

Enter a project name first.

Workbench (General)

184

Figure 9.7. Entering project name

Enter the project details next.

• Group ID follows Maven conventions.

• Artifact ID is pre-populated from the project name.

• Version is set as 1.0 by default.

Workbench (General)

185

Figure 9.8. Entering project details

9.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Object" from the "New Item" menu.

Note

You can also use types contained in existing JARs.

Please consult the full documentation for details.

Workbench (General)

186

Figure 9.9. Creating "Data Object"

Set the name and select a package for the new type.

Workbench (General)

187

Figure 9.10. Creating a new type

Set field name and type and click on "Create" to create a field for the type.

Workbench (General)

188

Figure 9.11. Click "Create" and add the field

Click "Save" to update the model.

Figure 9.12. Clicking "Save"

9.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

Workbench (General)

189

Figure 9.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

Workbench (General)

190

Figure 9.14. Entering file name for rule

Enter a definition for the rule.

The definition process differs from asset type to asset type.

The full documentation has details about the different editors.

Figure 9.15. Defining a rule

Once the rule has been defined it will need to be saved.

Workbench (General)

191

Figure 9.16. Saving the rule

9.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the

Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Project" menu.

Figure 9.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Artifact

Repository.

When you select Build & Deploy the workbench will deploy to any repositories defined in the De-

pendency Management section of the pom in your workbench project. You can edit the pom.xml

file associated with your workbench project under the Repository View of the project explorer. De-

tails on dependency management in maven can be found here : http://maven.apache.org/guides/

introduction/introduction-to-dependency-mechanism.html

If there are errors during the build process they will be reported in the "Problems Panel".

Figure 9.18. Building and deploying a project

Workbench (General)

192

Now the project has been built and deployed; it can be referenced from your own projects as any

other Maven Artifact.

The full documentation contains details about integrating projects with your own applications.

9.3. Administration

9.3.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

9.3.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

Workbench (General)

193

9.3.3. Repositories

Repositories are the place where assets are stored and each repository is organized by projects

and belongs to a single organization unit.

Repositories are in fact a Virtual File System based storage, that by default uses GIT as backend.

Such setup allows workbench to work with multiple backends and, in the same time, take full

advantage of backend specifics features like in GIT case versioning, branching and even external

access.

Workbench (General)

194

A new repository can be created from scratch or cloned from an existing repository.

One of the biggest advantages of using GIT as backend is the ability to clone a repository from

external and use your preferred tools to edit and build your assets.

Warning

Never clone your repositories directly from .niogit directory. Use always the avail-

able protocol(s) displayed in repositories editor.

9.3.3.1. Repository Editor

One additional advantage to use GIT as backend is the possibility to revert your repository to a

previous state. You can do it directly from the repository editor by browsing its commit history and

clicking the Revert button.

Workbench (General)

195

9.4. Configuration

9.4.1. Basic user management

The workbench authenticates its users against the application server's authentication and autho-

rization (JAAS).

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOME/bin/add-user.sh (or .bat):

$./add-user.sh

// Type: Application User

// Realm: empty (defaults to ApplicationRealm)

// Role: admin

There is no need to restart the application server.

9.4.2. Roles

The Workbench uses the following roles:

• admin

Workbench (General)

196

• analyst

• developer

• manager

• user

9.4.2.1. Admin

Administrates the BPMS system.

• Manages users

• Manages VFS Repositories

• Has full access to make any changes necessary

9.4.2.2. Developer

Developer can do almost everything admin can do, except clone repositories.

• Manages rules, models, process flows, forms and dashboards

• Manages the asset repository

• Can create, build and deploy projects

• Can use the JBDS connection to view processes

9.4.2.3. Analyst

Analyst is a weaker version of developer and does not have access to the asset repository or the

ability to deploy projects.

9.4.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to

continue forward. Works primarily with the task lists.

• Does process management

• Handles tasks and dashboards

9.4.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their per-

formance, business indicators, and other reporting of the system and people who interact with

the system.

Workbench (General)

197

• Only has access to dashboards

9.4.3. Restricting access to repositories

It is possible to restrict access to repositories using roles and organizational groups. To let an

user access a repository.

The user either has to belong into a role that has access to the repository or to a role that belongs

into an organizational group that has access to the repository. These restrictions can be managed

with the command line config tool.

9.4.4. Command line config tool

Provides capabilities to manage the system repository from command line. System repository

contains the data about general workbench settings: how editors behave, organizational groups,

security and other settings that are not editable by the user. System repository exists in the .niogit

folder, next to all the repositories that have been created or cloned into the workbench.

9.4.4.1. Config Tool Modes

• Online (default and recommended) - Connects to the Git repository on startup, using Git server

provided by the KIE Workbench. All changes are made locally and published to upstream when:

• "push-changes" command is explicitly executed

• "exit" is used to close the tool

• Offline - Creates and manipulates system repository directly on the server (no discard option)

9.4.4.2. Available Commands

Table 9.1. Available Commands

exit Publishes local changes, cleans up temporary

directories and quits the command line tool

discard Discards local changes without publishing

them, cleans up temporary directories and

quits the command line tool

help Prints a list of available commands

list-repo List available repositories

list-org-units List available organizational units

list-deployment List available deployments

create-org-unit Creates new organizational unit

remove-org-unit Removes existing organizational unit

Workbench (General)

198

add-deployment Adds new deployment unit

remove-deployment Removes existing deployment

create-repo Creates new git repository

remove-repo Removes existing repository (only from con-

fig)

add-repo-org-unit Adds repository to the organizational unit

remove-repo-org-unit Removes repository from the organizational

unit

add-role-repo Adds role(s) to repository

remove-role-repo Removes role(s) from repository

add-role-org-unit Adds role(s) to organizational unit

remove-role-org-unit Removes role(s) from organizational unit

add-role-project Adds role(s) to project

remove-role-project Removes role(s) from project

push-changes Pushes changes to upstream repository (only

in online mode)

9.4.4.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script

and by default it will start in online mode asking for a Git url to connect to (the default value is

ssh://localhost/system). To connect to a remote server, replace the host and port with appropriate

values, e.g. ssh://kie-wb-host/system.

./kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This

will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit

does not yet exist, the folder value can be left empty and a brand new setup is created.

./kie-config-cli.sh offline

9.5. Introduction

9.5.1. Log in and log out

Create a user with the role admin and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to

review the roles of the current account.

Workbench (General)

199

9.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the

workbench variant (Drools, jBPM, ...).

9.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

• Part

A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer", "Project Editor", "Guided Rule Editor" etc. Parts can be

repositioned.

• Panel

A Panel is a container for one or more Parts.

Panels can be resized.

• Perspective

A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such

as "Home", "Authoring", "Deploy" etc.

9.5.4. Initial layout

The Workbench consists of three main sections to begin; however its layout and content can be

changed.

Workbench (General)

200

Figure 9.19. The Workbench

The initial Workbench shows the following components:-

• Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in

the above "example" is the Organizational Unit), Repositories (in the above "uf-playground" is

the Repository) and Project (in the above "mortgages" is the Project).

• Problems

This provides the user with real-time feedback about errors in the active Project.

• Empty space

This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

9.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or repo-

sitioned.

This, for example, could be useful when running tests; as the test defintion and rule can be repo-

sitioned side-by-side.

Workbench (General)

201

9.6.1. Resizing

The following screenshot shows a Panel being resized.

Move the mouse pointer over the panel splitter (a grey horizontal or vertical line in between panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the

left mouse button and drag the splitter to the required position; then release the left mouse button.

Figure 9.20. Resizing

9.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this ex-

ample).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the

left mouse button. Drag the mouse to the required location. The target position is indicated with

a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the

different blue arrows.

Workbench (General)

202

Figure 9.21. Repositioning - dragging

Workbench (General)

203

Figure 9.22. Repositioning - complete

9.7. Authoring (General)

9.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain

model JARs. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote

repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKING_DIRECTORY/repositories/kie, but it

can be overridden with the system property -Dorg.guvnor.m2repo.dir. There is only 1 Maven

repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

Workbench (General)

204

To add a new artifact to that Maven repository, either:

• Use the upload button and select a JAR. If the JAR contains a POM file under META-INF/maven

(which every JAR build by Maven has), no further information is needed. Otherwise, a groupId,

artifactId and version need be given too.

• Using Maven, mvn deploy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

Workbench (General)

205

9.7.2. Asset Editor

The Asset Editor is the principle component of the workbench User-Interface. It consists of two

main views Editor and Overview.

• The views

Figure 9.23. The Asset Editor - Editor tab

• A : The editing area - exactly what form the editor takes depends on the Asset type. An asset

can only be edited by one user at a time to avoid conflicts. When a user begins to edit an

asset, a lock will automatically be acquired. This is indicated by a lock symbol appearing on

the asset title bar as well as in the project explorer view (see Section 9.7.4, “Project Explorer”

for details). If a user starts editing an already locked asset a pop-up notification will appear

to inform the user that the asset can't currently be edited, as it is being worked on by another

user. Changes will be prevented until the editing user saves or closes the asset, or logs out

of the workbench. Session timeouts will also cause locks to be released. Every user further

has the option to force a lock release, if required (see the Metadata section below).

• B : This menu bar contains various actions for the Asset; such as Save, Rename, Copy etc.

Note that saving, renaming and deleting are deactivated if the asset is locked by a different

user.

• C : Different views for asset content or asset information.

• Editor shows the main editor for the asset

Workbench (General)

206

• Overview contains the metadata and conversation views for this editor. Explained in more

detail below.

• Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can

be generated into DRL.

• Data Objects contains the model available for authoring. By default only Data Objects that

reside within the same package as the asset are available for authoring. Data Objects

outside of this package can be imported to become available for authoring the asset.

Figure 9.24. The Asset Editor - Data Objects tab

• Overview

• A : General information about the asset and the asset's description.

"Type:" The format name of the type of Asset.

"Description:" Description for the asset.

"Used in projects:" Names the projects where this rule is used.

"Last Modified:" Who made the last change and when.

"Created on:" Who created the asset and when.

• B : Version history for the asset. Selecting a version loads the selected version into this editor.

Workbench (General)

207

• C : Meta data (from the "Dublin Core" standard)

• D : Comments regarding the development of the Asset can be recorded here.

Figure 9.25. The Asset Editor - Overview tab

• Metadata

• A : Meta data:-

"Tags:" A tagging system for grouping the assets.

"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"URI:" URI to the asset inside the Git repository.

Workbench (General)

208

"Subject/Type/External link/Source" : Other miscellaneous meta data for the Asset.

"Lock status" : Shows the lock status of the asset and, if locked, allows to force unlocking

the asset.

Figure 9.26. The Metadata tab

• Locking

The Workbench supports pessimistic locking of assets. When one User starts editing an asset

it is locked to change by other Users. The lock is held until a period of inactivity lapses, the

Editor is closed or the application stopped and restarted. Locks can also be forcibly removed

on the MetaData section of the Overview tab.

A "padlock" icon is shown in the Editor's title bar and beside the asset in the Project Explorer

when an asset is locked.

Workbench (General)

209

Figure 9.27. The Asset Editor - Locked assets cannot be edited by other

users

9.7.3. Tags Editor

Tags allow assets to be labelled with any number of tags that you define. These tags can be used

to filter assets on the Project Explorer enabling "Tag filtering".

9.7.3.1. Creating Tags

To create tags you simply have to write them on the Tags input and press the "Add new Tag/s"

button. The Tag Editor allows creating tags one by one or writing more than one separated with

a white space.

Workbench (General)

210

Figure 9.28. Creating Tags

Once you created new Tags they will appear over the Editor allowing you to remove them by

pressing on them if you want.

Figure 9.29. Existing Tags

Workbench (General)

211

9.7.4. Project Explorer

The Project Explorer provides the ability to browse different Organizational Units, Repositories,

Projects and their files.

9.7.4.1. Initial view

The initial view could be empty when first opened.

Figure 9.30. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down

boxes.

Workbench (General)

212

Figure 9.31. Selecting a repository

The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

Figure 9.32. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been

selected the Project Explorer will show the contents. The exact combination of selections depends

wholly on the structures defined within the Workbench installation and projects. Each section

contains groups of related files. If a file is currently being edited by another user, a lock symbol will

be displayed in front of the file name. The symbol is blue in case the lock is owned by the currently

authenticated user, otherwise black. Moving the mouse pointer over the lock symbol will display

a tooltip providing the name of the user who is currently editing the file (and therefore owning the

lock). To learn more about locking see Section 9.7.2, “Asset Editor” for details.

Workbench (General)

213

Figure 9.33. Expanded asset group

Workbench (General)

214

9.7.4.2. Different views

Project Explorer supports multiple views.

• Project View

A simplified view of the underlying project structure. Certain system files are hidden from view.

• Repository View

A complete view of the underlying project structure including all files; either user-defined or

system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project and Repository Views can be further refined by selecting either "Show as Folders"

or "Show as Links".

Figure 9.34. Switching view

Workbench (General)

215

9.7.4.2.1. Project View examples

Figure 9.35. Project View - Folders

Figure 9.36. Project View - Links

Workbench (General)

216

9.7.4.2.2. Repository View examples

Figure 9.37. Repository View - Folders

Figure 9.38. Repository View - Links

Workbench (General)

217

9.7.4.3. Download Project or Repository

Download Project and Download Repository make it possible to download the project or repository

as a zip file.

Figure 9.39. Repository and Project Downloads

9.7.4.4. Branch selector

A branch selector will be visible if the repository has more than a single branch.

Workbench (General)

218

Figure 9.40. Branch selector

9.7.4.5. Filtering by Tag

To make easy view the elements on packages that contain a lot of assets, is possible to enabling

the Tag filter, which allows you to filter the assets by their tags.

To see how to add tags to an asset look at: Section 9.7.3, “Tags Editor”

Workbench (General)

219

Figure 9.41. Enabling Filter by Tag

Workbench (General)

220

Figure 9.42. Filter by Tag

Workbench (General)

221

Figure 9.43. Filtering by Tag

9.7.4.6. Copy, Rename, Delete and Download Actions

Copy, rename and delete actions are available on Links mode, for packages (in of Project View)

and for files and directories as well (in Repository View). Download action is available for directo-

ries. Download downloads the selected directory as a zip file.

• A : Copy

• B : Rename

• C : Delete

• D : Download

Workbench (General)

222

Figure 9.44. Project View - Package actions

Workbench (General)

223

Figure 9.45. Repository View - Files and directories actions

Warning

Workbench roadmap includes a refactoring and an impact analyses tools, but cur-

rently doesn't have it. Until both tools are provided make sure that your changes

(copy/rename/delete) on packages, files or directories don't have a major impact

on your project.

In cases that your change had an unexpected impact, Workbench allows you to

restore your repository using the Repository editor.

Important

Files locked by other users as well as directories that contain such files cannot be

renamed or deleted until the corresponding locks are released. If that is the case

the rename and delete symbols will be deactivated. To learn more about locking

see Section 9.7.2, “Asset Editor” for details.

Workbench (General)

224

9.7.5. Project Editor

The Project Editor screen can be accessed from Project Explorer. Project Editor shows the settings

for the currently active project.

Unlike most of the workbench editors, project editor edits more than one file. Showing everything

that is needed for configuring the KIE project in one place.

Figure 9.46. Project Screen and the different views

9.7.5.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven

repository.

9.7.5.2. Project Settings

Project Settings edits the pom.xml file used by Maven.

9.7.5.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV

values are used as identifiers to differentiate projects and versions of the same project.

Workbench (General)

225

Figure 9.47. Project Settings

9.7.5.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a

project that has been built and deployed to a Maven repository. Internal dependencies are projects

built and deployed in the same workbench as the project. External dependencies are retrieved

from repositories outside of the current workbench. Each dependency uses the GAV-values to

specify the project name and version that is used by the project.

Figure 9.48. Dependencies

Workbench (General)

226

9.7.5.2.2.1. Package Name White List

Classes and declared types in white listed packages show up as Data Objects that can be imported

in assets. The full list is stored in package-name-white-list file that is stored in each project root.

Package white list has three modes:

• All packages included: Every package defined in this jar is white listed.

• Packages not included: None of the packages listed in this jar are white listed.

• Some packages included: Only part of the packages in the jar are white listed.

9.7.5.2.3. Metadata

Metadata for the pom.xml file.

9.7.5.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Workbench (General)

227

Figure 9.49. Knowledge Base Settings

Workbench (General)

228

Note

For more information about the Knowledge Base properties, check the Drools Ex-

pert documentation for kmodule.xml.

9.7.5.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified

for the project.

9.7.5.3.1.1. Knowledge base list

Lists all the knowledge bases by name. Only one knowledge base can be set as default.

9.7.5.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in

the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are

included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.

Event processing mode is explained in the Drools Fusion part of the documentation.

9.7.5.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one

default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup

that shows more properties for the knowledge session.

9.7.5.3.2. Metadata

Metadata for the kmodule.xml

9.7.5.4. Imports

Settings edits the project.imports file used by the workbench editors.

Workbench (General)

229

Figure 9.50. Imports

9.7.5.4.1. External Data Objects

Data Objects provided by the Java Runtime environment may need to be registered to be available

to rule authoring where such Data Objects are not implicitly available as part of an existing Data

Object defined within the Workbench or a Project dependency. For example an Author may want to

define a rule that checks for java.util.ArrayList in Working Memory. If a domain Data Object

has a field of type java.util.ArrayList there is no need create a registration.

9.7.5.4.2. Metadata

Metadata for the project.imports file.

9.7.5.5. Duplicate GAV detection

When performing any of the following operations a check is now made against all Maven Reposi-

tories, resolved for the Project, for whether the Project's GroupId, ArtifactId and Version pre-exist.

If a clash is found the operation is prevented; although this can be overridden by Users with the

admin role.

Note

The feature can be disabled by setting the System Property

org.guvnor.project.gav.check.disabled to true.

Resolved repositories are those discovered in:-

• The Project's POM <repositories> section (or any parent POM).

• The Project's POM <distributionManagement> section.

• Maven's global settings.xml configuration file.

Affected operations:-

Workbench (General)

230

• Creation of new Managed Repositories.

• Saving a Project defintion with the Project Editor.

• Adding new Modules to a Managed Multi-Module Repository.

• Saving the pom.xml file.

• Build & installing a Project with the Project Editor.

• Build & deploying a Project with the Project Editor.

• Asset Management operations building, installing or deploying Projects.

• REST operations creating, installing or deploying Projects.

Users with the Admin role can override the list of Repositories checked using the "Repositories"

settings in the Project Editor.

Figure 9.51. Project Editor - Viewing resolved Repositories

Workbench (General)

231

Figure 9.52. Project Editor - The list of resolved Repositories

Figure 9.53. Duplicate GAV detected

9.7.6. Validation

The Workbench provides a common and consistent service for users to understand whether files

authored within the environment are valid.

9.7.6.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

Workbench (General)

232

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation

results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either

new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

Figure 9.54. The Problems Panel

9.7.6.2. On demand validation

It is not always desirable to save a file in order to determine whether it is in a valid state.

All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

Workbench (General)

233

9.7.7. Data Modeller

9.7.7.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of

this tutorial, we will assume that a correctly configured project already exists and the authoring

perspective is open.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective and use the project explorer to browse

to the given project.

Workbench (General)

234

Figure 9.55. Go to authoring perspective and select a project

2. Open the Data Modeller tool by clicking on a Data Object file, or using the "New Item -> Data

Object" menu option.

Figure 9.56. Click on a Data Object

This will start up the Data Modeller tool, which has the following general aspect:

Workbench (General)

235

Figure 9.57. Data modeller overview

The "Editor" tab is divided into the following sections:

• The new field section is dedicated to the creation of new fields, and is opened when the "add

field" button is pressed.

Figure 9.58. New field creation

• The Data Object's "field browser" section displays a list with the data object fields.

Workbench (General)

236

Figure 9.59. The Data Object's field browser

• The "Data Object / Field general properties" section. This is the rightmost section of the Data

Modeller editor and visualizes the "Data Object" or "Field" general properties, depending on

user selection.

Data Object general properties can be selected by clicking on the Data Object Selector.

Figure 9.60. Data Object selector

Workbench (General)

237

Figure 9.61. Data Object general properties

Field general properties can be selected by clicking on a field.

Figure 9.62. Field selector

Workbench (General)

238

Figure 9.63. Field general properties

• On workbench's right side a new "Tool Bar" is provided that enables the selection of different

context sensitive tool windows that will let the user do domain specific configurations. Current-

ly four tool windows are provided for the following domains "Drools & jBPM", "OptaPlanner",

"Persistence" and "Advanced" configurations.

Figure 9.64. Data modeller Tool Bar

Workbench (General)

239

Figure 9.65. Drools & jBPM tool window

Figure 9.66. OptaPlanner tool window

Workbench (General)

240

Note

To see and use the OptaPlanner tool window, the user needs to have the role

plannermgmt.

Figure 9.67. Persistence tool window

Workbench (General)

241

Figure 9.68. Advanced tool window

The "Source" tab shows an editor that allows the visualization and modification of the generated

java code.

• Round trip between the "Editor" and "Source" tabs is possible, and also source code preser-

vation is provided. It means that no matter where the Java code was generated (e.g. Eclipse,

Data modeller), the data modeller will only update the necessary code blocks to maintain the

model updated.

Workbench (General)

242

Figure 9.69. Source editor

The "Overview" tab shows the standard metadata and version information as the other workbench

editors.

9.7.7.2. Data Objects

A data model consists of data objects which are a logical representation of some real-world data.

Such data objects have a fixed set of modeller (or application-owned) properties, such as its in-

ternal identifier, a label, description, package etc. Besides those, a data object also has a variable

set of user-defined fields, which are an abstraction of a real-world property of the type of data that

this logical data object represents.

Creating a data object can be achieved using the workbench "New Item - Data Object" menu

option.

Workbench (General)

243

Figure 9.70. New Data Object menu option

Both resource name and location are mandatory parameters. When the "Ok" button is pressed

a new Java file will be created and a new editor instance will be opened for the file edition. The

optional "Persistable" attribute will add by default configurations on the data object in order to

make it a JPA entity. Use this option if your jBPM project needs to store data object's information

in a data base.

9.7.7.3. Properties & relationships

Once the data object has been created, it now has to be completed by adding user-defined prop-

erties to its definition. This can be achieved by pressing the "add field" button. The "New Field" di-

alog will be opened and the new field can be created by pressing the "Create" button. The "Create

and continue" button will also add the new field to the Data Object, but won't close the dialog. In

this way multiple fields can be created avoiding the popup opening multiple times. The following

fields can (or must) be filled out:

• The field's internal identifier (mandatory). The value of this field must be unique per data object,

i.e. if the proposed identifier already exists within current data object, an error message will be

displayed.

• A label (optional): as with the data object definition, the user can define a user-friendly label for

the data object field which is about to be created. This has no further implications on how fields

from objects of this data object will be treated. If a label is defined, then this is how the field will

be displayed throughout the data modeller tool.

• A field type (mandatory): each data object field needs to be assigned with a type.

Workbench (General)

244

This type can be either of the following:

1. A 'primitive java object' type: these include most of the object equivalents of the standard

Java primitive types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal

and BigInteger.

Figure 9.71. Primitive object field types

2. A 'data object' type: any user defined data object automatically becomes a candidate to be

defined as a field type of another data object, thus enabling the creation of relationships

between them. A data object field can be created either in 'single' or in 'multiple' form, the

latter implying that the field will be defined as a collection of this type, which will be indicated

by selecting "List" checkbox.

Figure 9.72. Data object field types

3. A 'primitive java' type: these include java primitive types byte, short, int, long, float, double,

char and boolean.

Workbench (General)

245

Figure 9.73. Primitive field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add

the newly created field to the end of the data object's fields table below:

Figure 9.74. New field has been created

The new field will also automatically be selected in the data object's field list, and its properties

will be shown in the Field general properties editor. Additionally the field properties will be loaded

in the different tool windows, in this way the field will be ready for edition in whatever selected

tool window.

At any time, any field (without restrictions) can be deleted from a data object definition by clicking

on the corresponding 'x' icon in the data object's fields table.

9.7.7.4. Additional options

As stated before, both Data Objects as well as Fields require some of their initial properties to be

set upon creation. Additionally there are three domains of properties that can be configured for

a given Data Object. A domain is basically a set of properties related to a given business area.

Workbench (General)

246

Current available domains are, "Drools & jJBPM", "Persistence" and the "Advanced" domain. To

work on a given domain the user should select the corresponding "Tool window" (see below)

on the right side toolbar. Every tool window usually provides two editors, the "Data Object" level

editor and the "Field" level editor, that will be shown depending on the last selected item, the Data

Object or the Field.

9.7.7.4.1. Drools & jBPM domain

The Drools & jBPM domain editors manages the set of Data Object or Field properties related

to drools applications.

9.7.7.4.1.1. Drools & jBPM object editor

The Drools & jBPM object editor manages the object level drools properties

Figure 9.75. The data object's properties

• TypeSafe: this property allows to enable/disable the type safe behaviour for current type. By

default all type declarations are compiled with type safety enabled. (See Drools for more infor-

mation on this matter).

Workbench (General)

247

• ClassReactive: this property allows to mark this type to be treated as "Class Reactive" by the

Drools engine. (See Drools for more information on this matter).

• PropertyReactive: this property allows to mark this type to be treated as "Property Reactive" by

the Drools engine. (See Drools for more information on this matter).

• Role: this property allows to configure how the Drools engine should handle instances of this

type: either as regular facts or as events. By default all types are handled as a regular fact, so

for the time being the only value that can be set is "Event" to declare that this type should be

handled as an event. (See Drools Fusion for more information on this matter).

• Timestamp: this property allows to configure the "timestamp" for an event, by selecting one of

his attributes. If set the engine will use the timestamp from the given attribute instead of reading

it from the Session Clock. If not, the engine will automatically assign a timestamp to the event.

(See Drools Fusion for more information on this matter).

• Duration: this property allows to configure the "duration" for an event, by selecting one of his

attributes. If set the engine will use the duration from the given attribute instead of using the

default event duration = 0. (See Drools Fusion for more information on this matter).

• Expires: this property allows to configure the "time offset" for an event expiration. If set, this value

must be a temporal interval in the form: [#d][#h][#m][#s][#[ms]] Where [] means an optional

parameter and # means a numeric value. e.g.: 1d2h, means one day and two hours. (See Drools

Fusion for more information on this matter).

• Remotable: If checked this property makes the Data Object available to be used with jBPM

remote services as REST, JMS and WS. (See jBPM for more information on this matter).

9.7.7.4.1.2. Drools & jJBPM field editor

The Drools & jBPM object editor manages the field level drools properties

Workbench (General)

248

Figure 9.76. The data object's field properties

• Equals: checking this property for a Data Object field implies that it will be taken into account,

at the code generation level, for the creation of both the equals() and hashCode() methods in

the generated Java class. We will explain this in more detail in the following section.

• Position: this field requires a zero or positive integer. When set, this field will be interpreted

by the Drools engine as a positional argument (see the section below and also the Drools

documentation for more information on this subject).

9.7.7.4.2. Persistence domain

The Persistence domain editors manages the set of Data Object or Field properties related to

persistence.

9.7.7.4.2.1. Persistence domain object editor

Persistence domain object editor manages the object level persistence properties

Workbench (General)

249

Figure 9.77. The data object's properties

• Persistable: this property allows to configure current Data Object as persistable.

• Table name: this property allows to set a user defined database table name for current Data

Object.

9.7.7.4.2.2. Persistence domain field editor

The persistence domain field editor manages the field level persistence properties and is divided

in three sections.

Workbench (General)

250

Figure 9.78. Persistence domain field editor sections

9.7.7.4.2.2.1. Identifier:

A persistable Data Object should have one and only one field defined as the Data Object identifier.

The identifier is typically a unique number that distinguishes a given Data Object instance from

all other instances of the same class.

• Is Identifier: marks current field as the Data Object identifier. A persistable Data Object should

have one and only one field marked as identifier, and it should be a base java type, like String,

Integer, Long, etc. A field that references a Data Object, or is a multiple field can not be marked

as identifier. And also composite identifiers are not supported in this version. When a persistable

Data Object is created an identifier field is created by default with the properly initializations, it's

strongly recommended to use this identifier.

• Generation Strategy: the generation strategy establishes how the identifier values will be auto-

matically generated when the Data Object instances are created and stored in a database. (e.g.

by the forms associated to jBPM processes human tasks.) When the by default Identifier field

is created, the generation strategy will be also automatically set and it's strongly recommended

to use this configuration.

Workbench (General)

251

• Sequence Generator: the generator represents the seed for the values that will be used by the

Generation Strategy. When the by default Identifier field is created the Sequence Generator will

be also automatically generated and properly configured to be used by the Generation Strategy.

9.7.7.4.2.2.2. Column Properties:

The column properties section enables the customization of some properties of the database

column that will store the field value.

• Column name: optional value that sets the database column name for the given field.

• Unique: When checked the unique property establishes that current field value should be a

unique key when stored in the database. (if not set the default value is false)

• Nullable: When checked establishes that current field value can be null when stored in a data-

base. (if not set the default value is true)

• Insertable: When checked establishes that column will be included in SQL INSERT statements

generated by the persistence provider. (if not set the default value is true)

• Updatable: When checked establishes that the column will be included SQL UPDATE state-

ments generated by the persistence provider. (if not set the default value is true)

9.7.7.4.2.2.3. Relationship Properties:

Workbench (General)

252

When the field's type is a Data Object type, or a list of a Data Object type a relationship type should

be set in order to let the persistence provider to manage the relation. Fortunately this relation type

is automatically set when such kind of fields are added to an already marked as persistable Data

Object. The relationship type is set by the following popup.

Figure 9.79. Relationship configuration popup

• Relationship type: sets the type of relation from one of the following options:

One to one: typically used for 1:1 relations where "A is related to one instance of B", and B exists

only when A exists. e.g. PurchaseOrder -> PurchaseOrderHeader (a PurchaseOrderHeader

exists only if the PurchaseOrder exists)

One to many: typically used for 1:N relations where "A is related to N instances of B", and the

related instances of B exists only when A exists. e.g. PurchaseOrder -> PurchaseOrderLine (a

PurchaseOrderLine exists only if the PurchaseOrder exists)

Workbench (General)

253

Many to one: typically used for 1:1 relations where "A is related to one instance of B", and B

can exist even without A. e.g. PurchaseOrder -> Client (a Client can exist in the database even

without an associated PurchaseOrder)

Many to many: typically used for N:N relations where "A can be related to N instances of B, and

B can be related to M instances of A at the same time", and both B an A instances can exits in

the database independently of the related instances. e.g. Course -> Student. (Course can be

related to N Students, and a given Student can attend to M courses)

When a field of type "Data Object" is added to a given persistable Data Object, the "Many to

One" relationship type is generated by default.

And when a field of type "list of Data Object" is added to a given persistable Data Object , the

"One to Many" relationship is generated by default.

• Cascade mode: Defines the set of cascadable operations that are propagated to the associated

entity. The value cascade=ALL is equivalent to cascade={PERSIST, MERGE, REMOVE, RE-

FRESH}. e.g. when A -> B, and cascade "PERSIST or ALL" is set, if A is saved, then B will

be also saved.

The by default cascade mode created by the data modeller is "ALL" and it's strongly recom-

mended to use this mode when Data Objects are being used by jBPM processes and forms.

• Fetch mode: Defines how related data will be fetched from database at reading time.

EAGER: related data will be read at the same time. e.g. If A -> B, when A is read from database

B will be read at the same time.

LAZY: reading of related data will be delayed usually to the moment they are required. e.g.

If PurchaseOrder -> PurchaseOrderLine the lines reading will be postponed until a method

"getLines()" is invoked on a PurchaseOrder instance.

The default fetch mode created by the data modeller is "EAGER" and it's strongly recommended

to use this mode when Data Objects are being used by jBPM processes and forms.

• Optional: establishes if the right side member of a relationship can be null.

• Mapped by: used for reverse relations.

9.7.7.4.3. Advanced domain

The advanced domain enables the configuration of whatever parameter set by the other domains

as well as the adding of arbitrary parameters. As it will be shown in the code generation section

every "Data Object / Field" parameter is represented by a java annotation. The advanced mode

enables the configuration of this annotations.

9.7.7.4.3.1. Advanced domain Data Object / Field editor.

The advanced domain editor has the same shape for both Data Object and Field.

Workbench (General)

254

Figure 9.80. Advanced domain editor.

The following operations are available

• delete: enables the deletion of a given Data Object or Field annotation.

• clear: clears a given annotation parameter value.

• edit: enables the edition of a given annotation parameter value.

• add annotation: The add annotation button will start a wizard that will let the addition of whatever

java annotation available in the project dependencies.

Workbench (General)

255

Add annotation wizard step #1: the first step of the wizard requires the entering of a fully qualified

class name of an annotation, and by pressing the "search" button the annotation definition will

be loaded into the wizard. Additionally when the annotation definition is loaded, different wizard

steps will be created in order to enable the completion of the different annotation parameters.

Required parameters will be marked with "*".

Figure 9.81. Annotation definition loaded into the wizard.

Whenever it's possible the wizard will provide a suitable editor for the given parameters.

Workbench (General)

256

Figure 9.82. Automatically generated enum values editor for an

Enumeration annotation parameter.

A generic parameter editor will be provided when it's not possible to calculate a customized

editor

Workbench (General)

257

Figure 9.83. Generic annotation parameter editor

When all required parameters have been entered and validated, the finish button will be enabled

and the wizard can be completed by adding the annotation to the given Data Object or Field.

9.7.7.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data struc-

tures, for them to interact with the Drools Engine on the one hand, and the jBPM platform on

the other. In order for this to become possible, these high-level visual structures have to be trans-

formed into low-level artifacts that can effectively be consumed by these platforms. These artifacts

are Java POJOs (Plain Old Java Objects), and they are generated every time the data model is

saved, by pressing the "Save" button in the top Data Modeller Menu. Additionally when the user

round trip between the "Editor" and "Source" tab, the code is auto generated to maintain the con-

sistency with the Editor view and vice versa.

Workbench (General)

258

Figure 9.84. Save the data model from the top menu

The resulting code is generated according to the following transformation rules:

• The data object's identifier property will become the Java class's name. It therefore needs to

be a valid Java identifier.

• The data object's package property becomes the Java class's package declaration.

• The data object's superclass property (if present) becomes the Java class's extension decla-

ration.

• The data object's label and description properties will translate into the Java annotations

"@org.kie.api.definition.type.Label" and "@org.kie.api.definition.type.Description", respective-

ly. These annotations are merely a way of preserving the associated information, and as yet

are not processed any further.

• The data object's role property (if present) will be translated into the

"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application plat-

form, in the sense that it marks this Java class as a Drools Event Fact-Type.

• The data object's type safe property (if present) will be translated into the

"@org.kie.api.definition.type.TypeSafe Java annotation. (see Drools)

• The data object's class reactive property (if present) will be translated into the

"@org.kie.api.definition.type.ClassReactive Java annotation. (see Drools)

• The data object's property reactive property (if present) will be translated into the

"@org.kie.api.definition.type.PropertyReactive Java annotation. (see Drools)

• The data object's timestamp property (if present) will be translated into the

"@org.kie.api.definition.type.Timestamp Java annotation. (see Drools)

• The data object's duration property (if present) will be translated into the

"@org.kie.api.definition.type.Duration Java annotation. (see Drools)

• The data object's expires property (if present) will be translated into the

"@org.kie.api.definition.type.Expires Java annotation. (see Drools)

• The data object's remotable property (if present) will be translated into the

"@org.kie.api.remote.Remotable Java annotation. (see jBPM)

Workbench (General)

259

A standard Java default (or no parameter) constructor is generated, as well as a full parameter

constructor, i.e. a constructor that accepts as parameters a value for each of the data object's

user-defined fields.

The data object's user-defined fields are translated into Java class fields, each one of them with

its own getter and setter method, according to the following transformation rules:

• The data object field's identifier will become the Java field identifier. It therefore needs to be

a valid Java identifier.

• The data object field's type is directly translated into the Java class's field type. In case the field

was declared to be multiple (i.e. 'List'), then the generated field is of the "java.util.List" type.

• The equals property: when it is set for a specific field, then this class property will be anno-

tated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the Drools

Engine, and it will 'participate' in the generated equals() method, which overwrites the equals()

method of the Object class. The latter implies that if the field is a 'primitive' type, the equals

method will simply compare its value with the value of the corresponding field in another in-

stance of the class. If the field is a sub-entity or a collection type, then the equals method will

make a method-call to the equals method of the corresponding data object's Java class, or of

the java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the data object's user defined fields, then this also

implies that in addition to the default generated constructors another constructor is generated,

accepting as parameters all of the fields that were marked with Equals. Furthermore, generation

of the equals() method also implies that also the Object class's hashCode() method is overwrit-

ten, in such a manner that it will call the hashCode() methods of the corresponding Java class

types (be it 'primitive' or user-defined types) for all the fields that were marked with Equals in

the Data Model.

• The position property: this field property is automatically set for all user-defined fields, starting

from 0, and incrementing by 1 for each subsequent new field. However the user can freely

change the position among the fields. At code generation time this property is translated into

the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools

Engine. Also, the established property order determines the order of the constructor parameters

in the generated Java class.

As an example, the generated Java class code for the Purchase Order data object, corresponding

to its definition as shown in the following figure purchase_example.jpg is visualized in the figure at

the bottom of this chapter. Note that the two of the data object's fields, namely 'header' and 'lines'

were marked with Equals, and have been assigned with the positions 2 and 1, respectively).

Workbench (General)

260

Figure 9.85. Purchase Order configuration

 package org.jbpm.examples.purchases;

 /**

 * This class was automatically generated by the data modeler tool.

 */

 @org.kie.api.definition.type.Label("Purchase Order")

 @org.kie.api.definition.type.TypeSafe(true)

 @org.kie.api.definition.type.Role(org.kie.api.definition.type.Role.Type.EVENT)

 @org.kie.api.definition.type.Expires("2d")

 @org.kie.api.remote.Remotable

 public class PurchaseOrder implements java.io.Serializable

 {

 static final long serialVersionUID = 1L;

 @org.kie.api.definition.type.Label("Total")

 @org.kie.api.definition.type.Position(3)

 private java.lang.Double total;

 @org.kie.api.definition.type.Label("Description")

 @org.kie.api.definition.type.Position(0)

 private java.lang.String description;

 @org.kie.api.definition.type.Label("Lines")

 @org.kie.api.definition.type.Position(2)

 @org.kie.api.definition.type.Key

 private java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines;

 @org.kie.api.definition.type.Label("Header")

 @org.kie.api.definition.type.Position(1)

 @org.kie.api.definition.type.Key

 private org.jbpm.examples.purchases.PurchaseOrderHeader header;

 @org.kie.api.definition.type.Position(4)

 private java.lang.Boolean requiresCFOApproval;

 public PurchaseOrder()

Workbench (General)

261

 {

 }

 public java.lang.Double getTotal()

 {

 return this.total;

 }

 public void setTotal(java.lang.Double total)

 {

 this.total = total;

 }

 public java.lang.String getDescription()

 {

 return this.description;

 }

 public void setDescription(java.lang.String description)

 {

 this.description = description;

 }

 public java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> getLines()

 {

 return this.lines;

 }

 public void setLines(java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines)

 {

 this.lines = lines;

 }

 public org.jbpm.examples.purchases.PurchaseOrderHeader getHeader()

 {

 return this.header;

 }

 public void setHeader(org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.header = header;

 }

 public java.lang.Boolean getRequiresCFOApproval()

 {

 return this.requiresCFOApproval;

 }

 public void setRequiresCFOApproval(java.lang.Boolean requiresCFOApproval)

 {

 this.requiresCFOApproval = requiresCFOApproval;

 }

 public PurchaseOrder(java.lang.Double total, java.lang.String description,

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header,

 java.lang.Boolean requiresCFOApproval)

 {

 this.total = total;

Workbench (General)

262

 this.description = description;

 this.lines = lines;

 this.header = header;

 this.requiresCFOApproval = requiresCFOApproval;

 }

 public PurchaseOrder(java.lang.String description,

 org.jbpm.examples.purchases.PurchaseOrderHeader header,

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 java.lang.Double total, java.lang.Boolean requiresCFOApproval)

 {

 this.description = description;

 this.header = header;

 this.lines = lines;

 this.total = total;

 this.requiresCFOApproval = requiresCFOApproval;

 }

 public PurchaseOrder(

 java.util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines,

 org.jbpm.examples.purchases.PurchaseOrderHeader header)

 {

 this.lines = lines;

 this.header = header;

 }

 @Override

 public boolean equals(Object o)

 {

 if (this == o)

 return true;

 if (o == null || getClass() != o.getClass())

 return false;

 org.jbpm.examples.purchases.PurchaseOrder that = (org.jbpm.examples.purchases.PurchaseOrder) o;

 if (lines != null ? !lines.equals(that.lines) : that.lines != null)

 return false;

 if (header != null ? !header.equals(that.header) : that.header != null)

 return false;

 return true;

 }

 @Override

 public int hashCode()

 {

 int result = 17;

 result = 31 * result + (lines != null ? lines.hashCode() : 0);

 result = 31 * result + (header != null ? header.hashCode() : 0);

 return result;

 }

 }

Workbench (General)

263

9.7.7.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current

project context. In order to make those POJOs available a dependency to the given JAR should

be added. Once the dependency has been added the external POJOs can be referenced from

current project data model.

There are two ways to add a dependency to an external JAR file:

• Dependency to a JAR file already installed in current local M2 repository (typically associated

the the user home).

• Dependency to a JAR file installed in current KIE Workbench/Drools Workbench "Guvnor M2

repository". (internal to the application)

9.7.7.6.1. Dependency to a JAR file in local M2 repository

To add a dependency to a JAR file in local M2 repository follow these steps.

9.7.7.6.1.1. Open the Project Editor for current project and select the Dependen-

cies view.

Figure 9.86. Project editor.

Workbench (General)

264

9.7.7.6.1.2. Click on the "Add" button to add a new dependency line.

Figure 9.87. New dependency line.

9.7.7.6.1.3. Complete the GAV for the JAR file already installed in local M2 reposi-

tory.

Figure 9.88. Dependency line edition.

9.7.7.6.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

Workbench (General)

265

Figure 9.89. Save project.

9.7.7.6.2. Dependency to a JAR file in current "Guvnor M2 repository".

To add a dependency to a JAR file in current "Guvnor M2 repository" follow these steps.

9.7.7.6.2.1. Open the Maven Artifact Repository editor.

Figure 9.90. Guvnor M2 Repository editor.

Workbench (General)

266

9.7.7.6.2.2. Browse your local file system and select the JAR file to be uploaded

using the Browse button.

Figure 9.91. File browser.

9.7.7.6.2.3. Upload the file using the Upload button.

Figure 9.92. File upload success.

9.7.7.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

Workbench (General)

267

Figure 9.93. Files list.

9.7.7.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid Maven JAR (don't have a pom.xml file) the system will prompt

the user in order to provide a GAV for the file to be installed.

Figure 9.94. Not valid POM.

Figure 9.95. Enter GAV manually.

Workbench (General)

268

9.7.7.6.2.6. Add dependency from repository.

Open the project editor (see below) and click on the "Add from repository" button to open the JAR

selector to see all the installed JAR files in current "Guvnor M2 repository". When the desired file

is selected the project should be saved in order to make the new dependency available.

Figure 9.96. Select JAR from "Maven Artifact Repository".

9.7.7.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the

context of current project data model in the following ways:

• External POJOs can be extended by current model data objects.

• External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order

to be quickly identified.

Figure 9.97. Identifying external objects.

Workbench (General)

269

9.7.7.7. Roundtrip and concurrency

Current version implements roundtrip and code preservation between Data modeller and Java

source code. No matter where the Java code was generated (e.g. Eclipse, Data modeller), the

data modeller will only create/delete/update the necessary code elements to maintain the mod-

el updated, i.e, fields, getter/setters, constructors, equals method and hashCode method. Also

whatever Type or Field annotation not managed by the Data Modeler will be preserved when the

Java sources are updated by the Data modeller.

Aside from code preservation, like in the other workbench editors, concurrent modification sce-

narios are still possible. Common scenarios are when two different users are updating the model

for the same project, e.g. using the data modeller or executing a 'git push command' that modifies

project sources.

From an application context's perspective, we can basically identify two different main scenarios:

9.7.7.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,

without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user

tries to make any kind of change, such as add or remove data objects or properties, or change

any of the existing ones, the following pop-up will be shown:

Workbench (General)

270

Figure 9.98. External changes warning

The user can choose to either:

• Re-open the data model, thus loading any external changes, and then perform the modification

he was about to undertake, or

• Ignore any external changes, and go ahead with the modification to the model. In this case,

when trying to persist these changes, another pop-up warning will be shown:

Workbench (General)

271

Figure 9.99. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

Warning

"Force Save" overwrites any external changes!

9.7.7.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user simultane-

ously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset

repository (or e.g. saves the model with the data modeller in a different session), a warning is

issued to the application user:

Workbench (General)

272

Figure 9.100. External changes warning

As with the previous scenario, the user can choose to either:

• Re-open the data model, thus losing any modifications that where made through the application,

or

• Ignore any external changes, and continue working on the model.

One of the following possibilities can now occur:

• The user tries to persist the changes he made to the model by clicking the "Save" button in

the data modeller top level menu. This leads to the following warning message:

Workbench (General)

273

Figure 9.101. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open" will

discard any local changes and reload the model.

9.7.8. Data Sets

A data set is basically a set of columns populated with some rows, a matrix of data composed

of timestamps, texts and numbers. A data set can be stored in different systems: a database, an

excel file, in memory or in a lot of other different systems. On the other hand, a data set definition

tells the workbench modules how such data can be accessed, read and parsed.

Notice, it's very important to make crystal clear the difference between a data set and its definition

since the workbench does not take care of storing any data, it just provides a standard way to

define access to those data sets regardless where the data is stored.

Let's take for instance the data stored in a remote database. A valid data set could be, for example,

an entire database table or the result of an SQL query. In both cases, the database will return

a bunch of columns and rows. Now, imagine we want to get access to such data to feed some

charts in a new workbench perspective. First thing is to create and register a data set definition

in order to indicate the following:

Workbench (General)

274

• where the data set is stored,

• how can be accessed, read and parsed and

• what columns contains and of which type.

This chapter introduces the available workbench tools for registering and handling data set defin-

itions and how these definitions can be consumed in other workbench modules like, for instance,

the Perspective Editor.

Note

For simplicity sake we will be using the term data set to refer to the actual data set

definitions as Data set and Data set definition can be considered synonyms under

the data set authoring context.

9.7.8.1. Data Set Authoring Perspective

Everything related to the authoring of data sets can be found under the Data Set Authoring per-

spective which is accessible from the following top level menu entry: Extensions>Data Sets, as

shown in the following screenshot.

Figure 9.102. Data Set Authoring Perspective

The center panel, shows a welcome screen, whilst the left panel contains the Data Set Explorer

listing all the data sets available

Workbench (General)

275

Note

This perspective is only intended to Administrator users, since defining data sets

can be considered a low level task.

9.7.8.2. Data Set Explorer

The Data Set Explorer lists the data sets present in the system. Every time the user clicks on the

data set it shows a brief summary alongside the following information:

Figure 9.103. Data Set Explorer

• (1) A button for creating a new Data set

• (2) The list of currently available Data sets

• (3) An icon that represents the Data set's provider type (Bean, SQL, CSV, etc)

• (4) Details of current cache and refresh policy status

• (5) Details of current size on backend (unit as rows) and current size on client side (unit in bytes)

• (6) The button for editing the Data set. Once clicked the Data set editor screen is opened on

the center panel

Workbench (General)

276

The next sections explain how to create, edit and fine tune data set definitions.

9.7.8.3. Data Set Creation

Clicking on the New Data Set button opens a new screen from which the user is able to create

a new data set definition in three steps:

• Provider type selection

Specify the kind of the remote storage system (BEAN, SQL, CSV, ElasticSearch)

• Provider configuration

Specify the attributes for being able to look up data from the remote system. The configuration

varies depending on the data provider type selected.

• Data set columns & filter

Live data preview, column types and initial filter configuration.

9.7.8.3.1. Step 1: Provider type selection

Allows the user's specify the type of data provider of the data set being created.

This screen lists all the current available data provider types and helper popovers with descrip-

tions. Each data provider is represented with a descriptive image:

Figure 9.104. Provider type selection

Four types are currently supported:

• Bean (Java class) - To generate a data set directly from Java

Workbench (General)

277

• SQL - For getting data from any ANSI-SQL compliant database

• CSV - To upload the contents of a remote or local CSV file

• Elastic Search - To query and get documents stored on Elastic Search nodes as data sets

Once a type is selected, click on Next button to continue with the next workflow step.

9.7.8.3.2. Step 2: Configuration
The screenshot below shows a CSV data set configuration form. Once all the required settings

are filled click on Test button. The system will try to fetch a small amount of data before moving

to the next workflow step.

Figure 9.105. CSV Configuration

The provider type selected in the previous step will determine which configuration settings the

system asks for.

Workbench (General)

278

Figure 9.106. Configuration screen per data set type

Note

The UUID attribute is a read only field as it's generated by the system. It's only

intended for usage in API calls or specific operations.

9.7.8.3.3. Step 3: Data set columns and preview

After clicking on the Test button (see previous step), the system executes a data set lookup test

call in order to check if the remote system is up and the data is available. If everything goes ok

the user will see the following screen:

Workbench (General)

279

Figure 9.107. Data set preview

This screen shows a live data preview along with the columns the user wants to be part of the

resulting data set. The user can also navigate through the data and apply some changes to the

data set structure. Once finished, we can click on the Save button in order to register the new

data set definition.

We can also change the configuration settings at any time just by going back to the configuration

tab. We can repeat the Configuration>Test>Preview cycle as may times as needed until we con-

sider it's ready to be saved.

Columns

In the Columns tab area the user can select what columns are part of the resulting data set de-

finition.

Workbench (General)

280

Figure 9.108. Data set columns

• (1) To add or remove columns. Select only those columns you want to be part of the resulting

data set

• (2) Use the drop down image selector to change the column type

A data set may only contain columns of any of the following 4 types:

• Label - For text values supporting group operations (similar to the SQL "group by" operator)

which means you can perform data lookup calls and get one row per distinct value.

• Text - For text values NOT supporting group operations. Typically for modeling large text

columns such as abstracts, descriptions and the like.

• Number - For numeric values. It does support aggregation functions on data lookup calls: sum,

min, max, average, count, disctinct.

• Date - For date or timestamp values. It does support time based group operations by different

time intervals: minute, hour, day, month, year, ...

No matter which remote system you want to retrieve data from, the resulting data set will always

return a set of columns of one of the four types above. There exists, by default, a mapping between

the remote system column types and the data set types. The user is able to modify the type for

some columns, depending on the data provider and the column type of the remote system. The

system supports the following changes to column types:

• Label <> Text - Useful when we want to enable/disable the categorization (grouping) for the

target column. For instance, imagine a database table called "document" containing a large text

Workbench (General)

281

column called "abstract". As we do not want the system to treat such column as a "label" we

might change its column type to "text". Doing so, we are optimizing the way the system handles

the data set and

• Number <> Label - Useful when we want to treat numeric columns as labels. This can be used

for instance to indicate that a given numeric column is not a numeric value that can be used in

aggregation functions. Despite its values are stored as numbers we want to handle the column

as a "label". One example of such columns are: an item's code, an appraisal id., ...

Note

BEAN data sets do not support changing column types as it's up to the developer

to decide which are the concrete types for each column.

Filter

A data set definition may define a filter. The goal of the filter is to leave out rows the user does

not consider necessary. The filter feature works on any data provider type and it lets the user to

apply filter operations on any of the data set columns available.

Figure 9.109. Data set filter

While adding or removing filter conditions and operations, the preview table on central area is

updated with live data that reflects the current filter status.

There exists two strategies for filtering data sets and it's also important to note that choosing

between the two have important implications. Imagine a dashboard with some charts feeding from

a expense reports data set where such data set is built on top of an SQL table. Imagine also we

only want to retrieve the expense reports from the "London" office. You may define a data set

containing the filter "office=London" and then having several charts feeding from such data set.

This is the recommended approach. Another option is to define a data set with no initial filter and

then let the individual charts to specify their own filter. It's up to the user to decide on the best

approach.

Workbench (General)

282

Depending on the case it might be better to define the filter at a data set level for reusing across

other modules. The decision may also have impact on the performance since a filtered cached

data set will have far better performance than a lot of individual non-cached data set lookup re-

quests. (See the next section for more information about caching data sets).

Note

Notice, for SQL data sets, the user can use both the filter feature introduced or,

alternatively, just add custom filter criteria to the SQL sentence. Although, the first

approach is more appropriated for non technical users since they might not have

the required SQL language skills.

9.7.8.4. Data set editor

To edit an existing data set definition go the data set explorer, expand the desired data set defin-

ition and click on the Edit button. This will cause a new editor panel to be opened and placed on

the center of the screen, as shown in the next screenshot:

Figure 9.110. Data set definition editor

Every time we edit an item its editor is added to the center panel. We can navigate through the

list of opened editors just by clicking on the down arrow icon placed at the editor's toolbar in the

top right corner.

Workbench (General)

283

Figure 9.111. Editor selector

The editor provides all the features described in previous sections. We can change the configu-

ration settings, test our data set definition and modify the resulting data set structure. Additionally,

the editor provides some extra buttons in its toolbar:

• Save - To validate the current changes and store the data set definition.

• Delete - To remove permanently from storage the data set definition. Any client module refer-

encing the data set may be affected.

• Validate - To check that all the required parameters exist and are correct, as well as to validate

the data set can be retrieved with no issues.

• Copy - To create a brand new definition as a copy of the current one.

Note

Data set definitions are stored in the underlying GIT repository as JSON files. Any

action performed is registered in the repository logs so it is possible to audit the

change log later on.

9.7.8.5. Advanced settings

In the Advanced settings tab area the user can specify caching and refresh settings. Those are

very important for making the most of the system capabilities thus improving the performance and

having better application responsive levels.

Workbench (General)

284

Figure 9.112. Advanced settings

• (1) To enable or disable the client cache and specify the maximum size (bytes).

• (2) To enable or disable the backend cache and specify the maximum cache size (number of

rows).

• (3) To enable or disable automatic refresh for the Data set and the refresh period.

• (4) To enable or disable the refresh on stale data setting.

Let's dig into more details about the meaning of these settings.

9.7.8.6. Caching

The system provides caching mechanisms out-of-the-box for holding data sets and performing

data operations using in-memory strategies. The use of these features brings a lot of advantages,

like reducing the network traffic, remote system payload, processing times etc. On the other hand,

it's up to the user to fine tune properly the caching settings to avoid hitting performance issues.

Two cache levels are supported:

• Client level

• Backend level

The following diagram shows how caching is involved in any data set operation:

Workbench (General)

285

Figure 9.113. Data set caching

Any data look up call produces a resulting data set, so the use of the caching techniques deter-

mines where the data lookup calls are executed and where the resulting data set is located.

Client cache

If ON then the data set involved in a look up operation is pushed into the web browser so that

all the components that feed from this data set do not need to perform any requests to the

backend since data set operations are resolved at a client side:

• The data set is stored in the web browser's memory

• The client components feed from the data set stored in the browser

• Data set operations (grouping, aggregations, filters and sort) are processed within the web

browser, by means of a Javascript data set operation engine.

If you know beforehand that your data set will remain small, you can enable the client cache. It

will reduce the number of backend requests, including the requests to the storage system. On the

other hand, if you consider that your data set will be quite big, disable the client cache so as to

not hitting with browser issues such as slow performance or intermittent hangs.

Backend cache

Its goal is to provide a caching mechanism for data sets on backend side.

This feature allows to reduce the number of requests to the remote storage system , by

holding the data set in memory and performing group, filter and sort operations using the in-

memory engine.

It's useful for data sets that do not change very often and their size can be considered acceptable

to be held and processed in memory. It can be also helpful on low latency connectivity issues with

Workbench (General)

286

the remote storage. On the other hand, if your data set is going to be updated frequently, it's better

to disable the backend cache and perform the requests to the remote storage on each look up

request, so the storage system is in charge of resolving the data set lookup request.

Note

BEAN and CSV data providers relies by default on the backend cache, as in both

cases the data set must be always loaded into memory in order to resolve any data

lookup operation using the in-memory engine. This is the reason why the backend

settings are not visible in the Advanced settings tab.

9.7.8.7. Refresh

The refresh feature allows for the invalidation of any cached data when certain conditions are

meet.

Figure 9.114. Refresh settings

• (1) To enable or disable the refresh feature.

• (2) To specify the refresh interval.

• (3) To enable or disable data set invalidation when the data is outdated.

The data set refresh policy is tightly related to data set caching, detailed in previous section. This

invalidation mechanism determines the cache life-cycle.

Depending on the nature of the data there exist three main use cases:

• Source data changes predictable - Imagine a database being updated every night. In that

case, the suggested configuration is to use a "refresh interval = 1 day" and disable "refresh on

stale data". That way, the system will always invalidate the cached data set every day. This is

the right configuration when we know in advance that the data is going to change.

• Source data changes unpredictable - On the other hand, if we do not know whether the

database is updated every day, the suggested configuration is to use a "refresh interval = 1 day"

and enable "refresh on stale data". If so the system, before invalidating any data, will check for

modifications. On data modifications, the system will invalidate the current stale data set so that

the cache is populated with fresh data on the next data set lookup call.

Workbench (General)

287

• Real time scenarios - In real time scenarios caching makes no sense as data is going to be

updated constantly. In this kind of scenarios the data sent to the client has to be constantly

updated, so rather than enabling the refresh settings (remember this settings affect the caching,

and caching is not enabled) it's up to the clients consuming the data set to decide when to

refresh. When the client is a dashboard then it's just a matter of modifying the refresh settings

in the Displayer Editor configuration screen and set a proper refresh period, "refresh interval

= 1 second" for example.

9.8. User and group management

9.8.1. Introduction

This section describes a feature that allows the administration of the application's users and

groups using an intuitive and friendly user interface that comes integrated in both jBPM and Drools

Workbenches.

Figure 9.115.

Before the installation, setup and usage of this feature, this section talks about some previous

concepts that need to be completely understood for the further usage:

• Security management providers and capabilities

• Installation and setup

• Usage

9.8.2. Security management providers

A security environment is usually provided by the use of a realm. Realms are used to restrict the

access for the different application's resources. So realms contains information about the users,

groups, roles, permissions and and any other related information.

In most of the typical scenarios the application's security is delegated to the container's security

mechanism, which consumes a given realm at same time. It's important to consider that there

Workbench (General)

288

exist several realm implementations, for example Wildfly provides a realm based on the appli-

cation-users.properties/application-roles.properties files, Tomcat provides a realm based on the

tomcat-users.xml file, etc. So keep in mind that there is no single security realm to rely on, it can

be different in each installation.

The jBPM and Drools workbenches are not an exception, they're build on top Uberfire framework

(aka UF), which delegates the authorization and authentication to the underlying container's se-

curity environment as well, so the consumed realm is given by the concrete deployment config-

uration.

9.8.2.1. Security management providers

Due to the potential different security environments that have to be supported, the users and

groups management provides a well defined management services API with some default built-in

security management providers. A security management provider is the formal name given to

a concrete user and group management service implementation for a given realm.

At this moment, by default there are two security management providers available:

• Wildfly / EAP security management provider - For Wildfly or EAP realms based on properties

files.

• Tomcat security management provider - For Tomcat realms based on XML files.

If the built-in providers do not fit with the application's security realm, it is easy to build and register

your own security management provider.

9.8.2.2. Secutiry management provider capabilities

Each security realm can provide support different operations. For example consider the use of a

Wildfly's realm based on properties files, The contents for the applications-users.properties is like:

admin=207b6e0cc556d7084b5e2db7d822555c

salaboy=d4af256e7007fea2e581d539e05edd1b

maciej=3c8609f5e0c908a8c361ca633ed23844

kris=0bfd0f47d4817f2557c91cbab38bb92d

katy=fd37b5d0b82ce027bfad677a54fbccee

john=afda4373c6021f3f5841cd6c0a027244

jack=984ba30e11dda7b9ed86ba7b73d01481

director=6b7f87a92b62bedd0a5a94c98bd83e21

user=c5568adea472163dfc00c19c6348a665

guest=b5d048a237bfd2874b6928e1f37ee15e

kiewb=78541b7b451d8012223f29ba5141bcc2

kieserver=16c6511893651c9b4b57e0c027a96075

Note that it's based on key-value pairs where the key is the username, and the value is the hashed

value for the user's password. So a user is just defined by the key, by its username, it does not

have a name nor address or any other meta information.

Workbench (General)

289

On the other hand, consider the use of a realm provided by a Keycloak server. The information for

a user is composed by more user meta-data, such as surname, address, etc, as in the following

image:

Figure 9.116.

So the different services and client side components from the users and group management API

are based on capabilities.Capabilities are used to expose or restrict the available functionality

provided by the different services and client side components. Examples of capabilities are:

• Create a user

• Update a user

• Delete a user

• Update user's attributes

• Create a group

• Update a group

• Assign groups to a user

• Assign roles to a user

Each security management provider must specify a set of capabilities supported. From the previ-

ous examples you can note that the Wildfly security management provider does not support the

Workbench (General)

290

capability for the management of the attributes for a user - the user is only composed by the user

name. On the other hand the Keycloak provider does support this capability.

The different views and user interface components rely on the capabilities supported by each

provider, so if a capability is not supported by the provider in use, the UI does not provide the

views for the management of that capability. As an example, consider that a concrete provider

does not support deleting users - the delete user button on the user interface will be not available.

Please take a look at the concrete service provider documentation to check all the supported

capabilities for each one, the default ones can be found here [https://github.com/uberfire/uber-

fire-extensions/tree/master/uberfire-security/uberfire-security-management].

9.8.3. Installation and setup

Before considering the installation and setup steps please note the following Drools and jBPM

distributions come with built-in, pre-installed security management providers by default:

• Wildfly / EAP distribution - Both distributions use the Wildfly security man-

agement provider [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-securi-

ty/uberfire-security-management/uberfire-security-management-wildfly] configured for the use

of the default realm files application-users.properties and application-roles.properties

• Tomcat distribution - It uses the Tomcat security management

provider [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uber-

fire-security-management/uberfire-security-management-tomcat] configured for the use of the

default realm file tomcat-users.xml

Please read each provider's documentation [https://github.com/uberfire/uberfire-extensions/tree/

master/uberfire-security/uberfire-security-management] in order to apply the concrete settings for

the target deployment environment.

On the other hand, if using a custom security management provider or need to include it on an

existing application, consider the following installation options:

• Enable the security management feature on an existing WAR distribution

• Setup and installation in an existing or new project

NOTE: If no security management provider is installed in the application, there will be no available

user interface for managing the security realm. Once a security management provider is installed

and setup, the user and group management user interfaces are automatically enabled and ac-

cessible from the main menu.

9.8.3.1. Enable the security management feature on an existing WAR

distribution

Given an existing WAR distribution of either Drools and jBPM workbenches, follow these steps in

order to install and enable the user management feature:

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management

Workbench (General)

291

• Ensure the following libraries are present on WEB-INF/lib:

• WEB-INF/lib/uberfire-security-management-api-6.4.0.Final..jar

• WEB-INF/lib/uberfire-security-management-backend-6.4.0.Final..jar

• Add the concrete library for the security management provider to use in WEB-INF/lib:

• Eg: WEB-INF/lib/uberfire-security-management-wildfly-6.4.0.Final..jar

• If the concrete provider you're using requires more libraries, add those as well. Please

read each provider's documentation [https://github.com/uberfire/uberfire-extensions/tree/

master/uberfire-security/uberfire-security-management] for more information

• Replace the whole content for file WEB-INF/classes/security-management.properties, or if not

present, create it. The settings present on this file depend on the concrete implementation you're

using. Please read each provider's documentation [https://github.com/uberfire/uberfire-exten-

sions/tree/master/uberfire-security/uberfire-security-management] for more information.

• If you're deploying on Wildfly or EAP, please check if the WEB-INF/jboss-de-

ployment-structure.xml requires any update. Please read each provider's documen-

tation [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-se-

curity-management] for more information.

9.8.3.2. Setup and installation in an existing or new project

If you're building an Uberfire [http://uberfireframework.org/] based web application and

you want to include the user and group management feature, please read this instruc-

tions [https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-secu-

rity-management/uberfire-security-management-client-wb/README.md].

9.8.3.3. Disabling the security management feature

The security management feature can be disabled, and thus no services or user interface will be

available, by any of:

• Uninstalling the security management provider from the application

When no concrete security management provider installed on the application, the user and

group management feature will be disabled and no services or user interface will be presented

to the user.

• Removing or commenting the security management configuration file

Removing or commenting all the lines in the configuration file located at WEB-INF/classes/se-

curity-management.properties will disable the user and group management feature and no ser-

vices or user interface will be presented to the user.

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
http://uberfireframework.org/
http://uberfireframework.org/
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md

Workbench (General)

292

9.8.4. Usage

The user and group management feature is presented using two different perspectives that are

available from the main Home menu (considering that the feature is enabled) as:

Figure 9.117.

Read the following sections for using both user and group management perspectives.

9.8.4.1. User management

The user management interface is available from the User management menu entry in the Home

menu.

The interface is presented using two main panels: the users explorer on the west panel and the

user editor on the center one:

Figure 9.118.

Workbench (General)

293

The users explorer, on west panel, lists by default all the users present on the application's

security realm:

Figure 9.119.

In addition to listing all users, the users explorer allows:

• Searching for users

When specifying the search pattern in the search box the users list will be reduced and will

display only the users that match the search pattern.

Workbench (General)

294

Figure 9.120.

Search patterns depend on the concrete security management provider being used by the

application's. Please read each provider's documentation [https://github.com/uberfire/uber-

fire-extensions/tree/master/uberfire-security/uberfire-security-management] for more informa-

tion.

• Creating new users

By clicking on the Create new user button, a new screen will be presented on the center panel

to perform a new user creation.

Figure 9.121.

The user editor, on the center panel, is used to create, view, update or delete users. Once creating

a new user o clicking an existing user on the users explorer, the user editor screen is opened.

To view an existing user, click on an existing user in the Users Explorer to open the User Ed-

itor screen. For example, viewing the admin user when using the Wildfly security management

provider results in this screen:

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management

Workbench (General)

295

Figure 9.122.

Same admin user view operation but when using the Keycloak security management provider,

instead of the Wildfly's one, results in this screen:

Figure 9.123.

Note that the user editor, when using the Keycloak sec. management provider, includes the user

attributes management section, but it's not present when using the Wildfly's one. So remember that

the information and actions available on the user interface depends on each provider's capabilities

(as explained in previous sections).

Viewing a user in the user editor provides the following information (if provider supports it):

• The user name

Workbench (General)

296

• The user's attributes

• The assigned groups

• The assigned roles

In order to update or delete an existing user, click on the Edit button present near to the user-

name in the user editor screen:

Figure 9.124.

Once the user editor presented in edit mode, different operations can be done (if the security

management provider in use supports it):

• Update the user's attributes

A group selection popup is presented when clicking on Add to groups button:

Figure 9.125.

This popup screen allows the user to search and select or deselect the groups assigned for the

user currently being edited.

Workbench (General)

297

• Update assigned groups

A group selection popup is presented when clicking on Add to groups button:

Figure 9.126.

This popup screen allows the user to search and select or deselect the groups assigned for the

user currently being edited.

• Update assigned roles

A role selection popup is presented when clicking on Add to roles button:

Workbench (General)

298

Figure 9.127.

This popup screen allows the user to search and select or deselect the roles assigned for the

user currently being edited.

• Change user's password

Workbench (General)

299

A change password popup screen is presented when clicking on the Change password button:

Figure 9.128.

• Delete user

The user currently being edited can be deleted from the realm by clicking on the Delete button.

9.8.4.2. Group management

The group management interface is available from the Group management menu entry in the

Home menu.

The interface is presented using two main panels: the groups explorer on the west panel and the

group editor on the center one:

Figure 9.129.

The groups explorer, on west panel, lists by default all the groups present on the application's

security realm:

Workbench (General)

300

Figure 9.130.

In addition to listing all groups, the groups explorer allows:

• Searching for groups

When specifying the search pattern in the search box the users list will be reduced and will

display only the users that match the search pattern.

Workbench (General)

301

Figure 9.131.

Search patterns depend on the concrete security management provider being used by the

application's. Please read each provider's documentation [https://github.com/uberfire/uber-

fire-extensions/tree/master/uberfire-security/uberfire-security-management] for more informa-

tion.

• Create new groups

By clicking on the Create new group button, a new screen will be presented on the center panel

to perform a new group creation. Once the new group has been created, it allows to assign

users to it:

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management

Workbench (General)

302

Figure 9.132.

The group editor, on the center panel, is used to create, view or delete groups. Once creating a

new group o clicking an existing group on the groups explorer, the group editor screen is opened.

To view an existing group, click on an existing user in the Groups Explorer to open the Group

Editor screen. For example, viewing the sales group results in this screen:

Figure 9.133.

To delete an existing group just click on the Delete button.

9.9. Embedding Workbench In Your Application

As we already know, Workbench provides a set of editors to author assets in different formats.

According to asset’s format a specialized editor is used.

One additional feature provided by Workbench is the ability to embed it in your own (Web) Appli-

cations thru it's standalone mode. So, if you want to edit rules, processes, decision tables, etc...

in your own applications without switch to Workbench, you can.

Workbench (General)

303

In order to embed Workbench in your application all you'll need is the Workbench application

deployed and running in a web/application server and, from within your own web applications, an

iframe with proper HTTP query parameters as described in the following table.

Table 9.2. HTTP query parameters for standalone mode

Parameter Name Explanation Allow mul-

tiple values

Example

standalone With just the pres-

ence of this parameter

workbench will switch

to standalone mode.

no (none)

path Path to the asset to be

edited. Note that asset

should already exists.

no git://master@uf-

playground/todo.md

perspective Reference to an exist-

ing perspective name.

no org.guvnor.m2repo.client.perspectives.GuvnorM2RepoPerspective

header Defines the name of

the header that should

be displayed (use-

ful for context menu

headers).

yes ComplementNavArea

Note

Path and Perspective parameters are mutually exclusive, so can't be used togeth-

er.

9.10. Asset Management

9.10.1. Asset Management Overview

This section of the documentation describes the main features included that contribute to the Asset

Management functionality provided in the KIE Workbench and KIE Drools Workbench. All the

features described here are entirely optional, but the usage is recommended if you are planning

to have multiple projects. All the Asset Management features try to impose good practices on

the repository structure that will make the maintainace, versioning and distribution of the projects

simple and based on standards. All the Asset Management features are implemented using jBPM

Business Processes, which means that the logic can be reused for external applications as well

as adapted for domain specific requirements when needed.

Workbench (General)

304

Note

You must set the "kiemgmt" role to your user to be able to use the Asset Manage-

ment Features

9.10.2. Managed vs Unmanaged Repositories

Since the creation of the assets management features repositories can be classified into Managed

or Unmanaged.

9.10.2.1. Managed Repositories

All new assets management features are available for this type of repositories. Additionally a

managed repository can be "Single Project" or "Multi Project".

A "Single Project" managed repository will contain just one Project. And a "Multi Project" managed

repository can contain multiple Projects. All of them related through the same parent, and they

will share the same group and version information.

9.10.2.2. Unmanaged Repositories

Assets management features are not available for this type or repositories and they basically

behave the same as the repositories created with previous workbench versions.

9.10.3. Asset Management Processes

There are 4 main processes which represent the stages of the Asset Management feature: Con-

figure Repository, Promote Changes, Build and Release.

9.10.3.1. Configure Repository

The Configure Repository process is in charge of the post initialization of the repository. This

process will be automatically triggered if the user selects to create a Managed Repository on the

New repository wizzard. If they decide to use the governance feature the process will kick in and

as soon as the repository is created. A new development and release branches will be created.

Notice that the first time that this process is called, the master branch is picked and both branches

(dev and release) will be based on it.

Workbench (General)

305

By default the asset management feature is not enabled so make sure to select Managed Repos-

itory on the New Repository Wizzard. When we work inside a managed repository, the develop-

ment branch is selected for the users to work on. If multiple dev branches are created, the user

will need to pick one.

9.10.3.2. Promote Changes Process

When some work is done in the developments branch and the users reach a point where the

changes needs to be tested before going into production, they will start a new Promote Changes

process so a more technical user can decide and review what needs to be promoted. The users

belonging to the "kiemgmt" group will see a new Task in their Group Task List which will contain

all the files that had been changed. The user needs to select the assets that will be promoting

via the UI. The underlying process will be cherry-picking the commits selected by the user to the

release branch. The user can specify that a review is needed by a more technical user.

This process can be repeated multiple times if needed before creating the artifacts for the release.

9.10.3.3. Build Process

The Build process can be triggered to build our projects from different branches. This allows us

to have a more flexible way to build and deploy our projects to different runtimes.

Workbench (General)

306

9.10.3.4. Release Process

The release process is triggered at any time when the user decided that it is time to generate a

release of the project that he/she is working on. This process will build the project (calling the Build

Process) and it will update all the maven artifacts to the next version.

9.10.4. Usage Flow

This section describes the common usage flow for the asset management features showing all

the screens involved.

The first contact with the Asset Management features starts on the Repository creation.

Workbench (General)

307

If the user chooses to create a Managed Respository a new page in the wizzard is enabled:

When a managed repository is created the assets management configuration process is automat-

ically launched in order to create the repository branches, and the corresponding project structure

is also created.

Workbench (General)

308

9.10.5. Repository Structure

Once a repository has been created it can be managed through the Repository Structure Screen.

To open the Repository Structure Screen for a given repository open the Project Authoring Per-

spective, browse to the given repository and select the "Repository -> Repository Structure" menu

option.

Figure 9.134. Repository Structure Menu

9.10.5.1. Single Project Managed Repository

The following picture shows an example of a single project managed repository structure.

Figure 9.135. Single Project Managed Repository

9.10.5.2. Multi Project Managed Repository

The following picture shows an example of a multi project managed repository structure.

Workbench (General)

309

Figure 9.136. Multi Project Managed Repository

9.10.5.3. Unmanaged Repository

The following picture shows an example of an unmanaged repository structure.

Figure 9.137. Unmanaged Repository

9.10.6. Managed Repositories Operations

The following picture shows the screen areas related to managed repositories operations.

Workbench (General)

310

Figure 9.138. Managed Repositories Operations

9.10.6.1. Branch Selector

The branch selector lets to switch between the different branches created by the Configure Repos-

itory Process.

Figure 9.139. Branch Selector

9.10.6.2. Project Operations

From the repository structure screen it's also possible to create, edit or delete projects from current

repository.

Workbench (General)

311

Figure 9.140. Add Project to current structure

Figure 9.141. Edit/Delete projects from current structure

9.10.6.3. Launch Assets Management Processes

The assets management processes can also be launched from the Project Structure Screen.

Figure 9.142. Launch Assets Management Processes

9.10.6.3.1. Launch the Configure Repository Process

Filling the parameters bellow a new instance of the Configure Repository can be started. (see

Configure Repository Process)

Workbench (General)

312

Figure 9.143. Configure Repository Process Parameters

9.10.6.3.2. Launch the Promote Changes Process

Filling the parameters bellow a new instance of the Promote Changes Process can be started.

(see Promote Changes Process)

Workbench (General)

313

Figure 9.144. Promote Changes Process Parameters

9.10.6.3.3. Launch the Release Process

Filling the parameters bellow a new instance of the Release Process can be started. (see Release

Process)

Workbench (General)

314

Figure 9.145. Release Process Parameters

Workbench (General)

315

9.11. Execution Server Management UI

The Execution Server Management UI allows users create and modify Server Templates and

Containers, it also allows users manage Remote Servers. This screen is available via Deploy -

> Rule Deployments menu.

Figure 9.146. Execution Server Management

Note

The management UI is only available for KIE Managed Servers.

9.11.1. Server Templates

Server templates are used to define a common configuration that can be used for multiple servers,

thus the name: Template.

Server Templates can be created directly from the management UI or it's automatically created

when a server connects to controller and there isn't a template definition for that remote server.

Server templates may have one or more capabilities, such capabilities can't be modified, if you

need modify the capabilities you'll have to create a new template. Here is the list of current ca-

pabilities:

• Rule (Drools)

• Process (jBPM)

Workbench (General)

316

• Planning (Optaplanner)

Note

For Planner capability it's mandatory to enable Rule's capability too.

In order to create a new Server Template you have to click at New Server Template button and

follow the wizard. It's also possible to create a container during Wizard, but for now let's limit to

just the template.

Figure 9.147. New Server Template Wizard

Once created you'll get the new Template listed on the left hand side, with the new Server Tem-

plate highlighted. On the right hand side you get the 2nd level navigation that lists Containers and

Remote Servers that are related to selected Server Template.

Figure 9.148. Server Templates

Workbench (General)

317

On top of the navigation is also possible to delete the current Server Template or create a copy of it.

Figure 9.149. Server Template Actions

9.11.2. Container

A Container is a KIE Container configuration of the Server Template. Click the Add Container

button to create a new container for the current Server Template.

The search area can help users find an specific KJARs that they are looking for.

Workbench (General)

318

Figure 9.150. New Container Wizard

For Server Templates that have Process capabilities enabled, the Wizard has a 2nd optional step

where users can configure some process related behaviors.

Workbench (General)

319

Figure 9.151. Process Configuration

Once created the new Container will be displayed on the containers list just above the list of

remote servers. Just after created a container is by default Stopped which is the only state that

allows users to remove it.

Figure 9.152. Container

A Container has the following tabs available for management and/or configuration:

• Status

• Version Configuration

• Process Configuration

Status tab lists all the Remote Servers that are running the active Container. Each Remote Server

is rendered as a Card, which displays to users status and endpoint.

Note

Only started Containers are deployed to remote servers.

Workbench (General)

320

Figure 9.153. Status Container

Version Configuration tab allow users change the current version of the Container. User's can

upgrade manually to a specific version using the "Upgrade" button, or enable/disable the Scanner.

It's also possible to execute a ScanNow operation, that will scan for new versions only once.

Figure 9.154. Version Configuration

Process Configuration is the same form that is displayed during New Container Wizard for Tem-

plate Servers that have Process Capability. If Template Server doesn't have such capability, the

action buttons will be disabled.

Workbench (General)

321

Figure 9.155. Process Configuration

9.11.3. Remote Server

Remote Server is a Managed KIE Server instance running that has a controller configured.

Note

By default Workbench comes with a Controller embedded.

The list of Remote Servers are displayed just under the list of Containers. Once selected the

screens reveals the Remote Server details and a list of cards, each card represents a running

Container.

Workbench (General)

322

Figure 9.156. Remote Servers

323

Chapter 10. Workbench Integration

10.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and ma-

nipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,

that is, they continue their execution after the call was performed as a job. The job ID is returned

by every calls to allow after the REST API call was performed to request the job status and verify

whether the job finished successfully. Parameters of these calls are provided in the form of JSON

entities.

When using Java code to interface with the REST API, the classes used in

POST operations or otherwise returned by various operations can be found in the

(org.kie.workbench.services:)kie-wb-common-services JAR. All of the classes mentioned

below can be found in the org.kie.workbench.common.services.shared.rest package in that

JAR.

10.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the

calls are asynchronous and you need to be able to reference the job to check its status as it goes

through its lifecycle. During its lifecycle, a job can have the following statuses:

• ACCEPTED: the job was accepted and is being processed

• BAD_REQUEST: the request was not accepted as it contained incorrect content

• RESOURCE_NOT_EXIST: the requested resource (path) does not exist

• DUPLICATE_RESOURCE: the resource already exists

• SERVER_ERROR: an error on the server occurred

• SUCCESS: the job finished successfully

• FAIL: the job failed

• DENIED: the job was denied

• GONE: the job ID could not be found

A job can be GONE in the following cases:

• The job was explicitly removed

• The job finished and has been deleted from the status cache (the job is removed from status

cache after the cache has reached its maximum capacity)

• The job never existed

Workbench Integration

324

The following job calls are provided:

[GET] /jobs/{jobID}

Returns the job status

Returns a JobResult instance

Example 10.1. An example (formatted) response body to the get job call

on a repository clone request

"{

 "status":"SUCCESS",

 "jodId":"1377770574783-27",

 "result":"Alias: testInstallAndDeployProject, Scheme: git, Uri: git://

testInstallAndDeployProject",

 "lastModified":1377770578194,"detailedResult":null

}"

[DELETE] /jobs/{jobID}

Removes the job: If the job is not yet being processed, this will remove the job from the job

queue. However, this will not cancel or stop an ongoing job

Returns a JobResult instance

10.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories

and their projects.

The following repositories calls are provided:

[GET] /repositories

Gets information about the repositories in the Knowledge Store

Returns a Collection<Map<String, String>> or Collection<RepositoryRequest> in-

stance, depending on the JSON serialization library being used. The keys used in the

Map<String, String> instance match the fields in the RepositoryRequest class

Example 10.2. An example (formatted) response body to the get

repositories call

[

 {

 "name":"wb-assets",

 "description":"generic assets",

 "userName":null,

 "password":null,

Workbench Integration

325

 "requestType":null,

 "gitURL":"git://bpms-assets"

 },

 {

 "name":"loanProject",

 "description":"Loan processes and rules",

 "userName":null,

 "password":null,

 "requestType":null,

 "gitURL":"git://loansProject"

 }

]

[GET] /repositories/{repositoryName}

Gets information about a repository

Returns a Map<String, String> or RepositoryRequest instance, depending on the JSON

serialization library being used. The keys used in the Map<String, String> instance match

the fields in the RepositoryRequest class

Example 10.3. An example (formatted) response body to the get

repository call

{

 "name":"wb-assets",

 "description":"generic assets",

 "userName":null,

 "password":null,

 "requestType":null,

 "gitURL":"git://bpms-assets"

}

[POST] /repositories

Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a RepositoryRequest instance

Returns a CreateOrCloneRepositoryRequest instance

Example 10.4. An example (formatted) response body to the create

repositories call

{

 "name":"new-project-repo",

 "description":"repo for my new project",

 "userName":null,"password":null,

 "requestType":"new",

 "gitURL":null

}

Workbench Integration

326

[DELETE] /repositories/{repositoryName}

Removes the repository from the Knowledge Store

Returns a RemoveRepositoryRequest instance

[POST] /repositories/{repositoryName}/projects/

Creates a project in the repository

Consumes an Entity instance

Returns a CreateProjectRequest instance

Example 10.5. An example (formatted) request body that defines the

project to be created

{

 "name":"myProject",

 "description": "my project"

}

[DELETE] /repositories/{repositoryName}/projects/

Deletes the project in the repository

Returns a DeleteProjectRequest instance

[GET] /repositories/{repositoryName}/projects/

Gets information about the projects

Returns a Collection<Map<String, String>> or Collection<ProjectResponse> in-

stance, depending on the JSON serialization library being used. The keys used in the

Map<String, String> instance match the fields in the ProjectResponse class

Example 10.6. An example (formatted) response body to the get projects

call

[

 {

 "name":"wb-assets",

 "description":"generic assets",

 "groupId":"org.test",

 "version":"1.0"

 },

 {

 "name":"loanProject",

 "description":"Loan processes and rules",

 "groupId":"com.bank",

 "version":"3.7"

 }

]

Workbench Integration

327

10.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its organiza-

tional units, so as to organize the connected Git repositories.

The following organizationalUnits calls are provided:

[POST] /organizationalunits

Creates an organizational unit in the Knowledge Store

Consumes an OrganizationalUnit instance

Returns a CreateOrganizationalUnitRequest instance

Example 10.7. An example (formatted) request body defining a new

organizational unit to be created

{

 "name":"testgroup",

 "description":"",

 "owner":"tester",

 "repositories":["testGroupRepository"]

}

[GET] /organizationalunits/{orgUnitName}

Creates an organizational unit

Consumes an OrganizationalUnit instance

Returns a CreateOrganizationalUnitRequest instance

Example 10.8. An example (formatted) request body defining a new

organizational unit to be created

{

 "name":"testgroup",

 "description":"",

 "owner":"tester",

 "repositories":["testGroupRepository"]

}

[POST] /organizationalunits/{orgUnitName}

Creates an organizational unit in the Knowledge Store

Consumes an UpdateOrganizationalUnit instance

Returns a UpdateOrganizationalUnitRequest instance

Workbench Integration

328

Example 10.9. An example (formatted) request body defining a new

organizational unit to be created

{

 "name":"testgroup",

 "description":"",

 "owner":"tester",

 "repositories":["testGroupRepository"]

}

[DELETE] /organizationalunits/{organizationalUnitName}

Deletes a organizational unit

Returns a RemoveOrganizationalUnitRequest instance

[POST] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}

Adds the repository to the organizational unit

Returns a AddRepositoryToOrganizationalUnitRequest instance

[DELETE] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}

Removes the repository from the organizational unit

Returns a RemoveRepositoryFromOrganizationalUnitRequest instance

10.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the

Project resources.

The following maven calls are provided:

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/compile

Compiles the project (equivalent to mvn compile)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the op-

eration and may be left blank.

Returns a CompileProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/install

Installs the project (equivalent to mvn install)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the op-

eration and may be left blank.

Returns a InstallProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/test

Compiles the project runs a test as part of compilation

Workbench Integration

329

Consumes a BuildConfig instance

Returns a TestProjectRequest instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/deploy

Deploys the project (equivalent to mvn deploy)

Consumes a BuildConfig instance. While this must be supplied, it's not needed for the op-

eration and may be left blank.

Returns a DeployProjectRequest instance

10.1.5. REST summary

The URL templates in the table below are relative the following URL:

• http://server:port/business-central/rest

Table 10.1. Knowledge Store REST calls

URL Template Type Description

/jobs/{jobID} GET return the job status

/jobs/{jobID} DELETEremove the job

/organizationalunits GET return a list of organiza-

tional units

/organizationalunits POST create an organization-

al unit in the Knowledge

Store described by the

JSON OrganizationalU-

nit entity

/organizationalunits/{organizationalUnitName}/reposito-

ries/{repositoryName}

POST add a repository to an or-

ganizational unit

/organizationalunits/{organizationalUnitName}/reposito-

ries/{repositoryName}

DELETEremove a repository from

an organizational unit

/repositories/ POST add the repository to the

organizational unit de-

scribed by the JSON

RepositoryReqest entity

/repositories GET return the repositories in

the Knowledge Store

/repositories/{repositoryName} DELETEremove the repository

from the Knowledge Store

/repositories/ POST create or clone the repos-

itory defined by the JSON

RepositoryRequest entity

Workbench Integration

330

URL Template Type Description

/repositories/{repositoryName}/projects/ POST create the project defined

by the JSON entity in the

repository

/repositories/{repositoryName}/projects/{project-

Name}/maven/compile/

POST compile the project

/repositories/{repositoryName}/projects/{project-

Name}/maven/install

POST install the project

/repositories/{repositoryName}/projects/{project-

Name}/maven/test/

POST compile the project and

run tests as part of compi-

lation

/repositories/{repositoryName}/projects/{project-

Name}/maven/deploy/

POST deploy the project

10.2. Keycloak SSO integration

Single Sign On (SSO) and related token exchange mechanisms are becoming the most common

scenario for the authentication and authorization in different environments on the web, specially

when moving into the cloud.

This section talks about the integration of Keycloak with jBPM or Drools applications in order to

use all the features provided on Keycloak. Keycloak is an integrated SSO and IDM for browser

applications and RESTful web services. Lean more about it in the Keycloak's home page [http://

keycloak.jboss.org/].

The result of the integration with Keycloak has lots of advantages such as:

• Provide an integrated SSO and IDM environment for different clients, including jBPM and Drools

workbenches

• Social logins - use your Facebook, Google, Linkedin, etc accounts

• User session management

• And much more...

Next sections cover the following integration points with Keycloak:

• Workbench authentication through a Keycloak server

It basically consists of securing both web client and remote service clients through the Keycloak

SSO. So either web interface or remote service consumers (whether a user or a service) will

authenticate into trough KC.

• Execution server authentication through a Keycloak server

http://keycloak.jboss.org/
http://keycloak.jboss.org/
http://keycloak.jboss.org/

Workbench Integration

331

Consists of securing the remote services provided by the execution server (as it does not pro-

vides web interface). Any remote service consumer (whether a user or a service) will authen-

ticate trough KC.

• Consuming remote services

This section describes how a third party clients can consume the remote service endpoints

provided by both Workbench and Execution Server.

10.2.1. Scenario

Consider the following diagram as the environment for this document's example:

Keycloak is a standalone process that provides remote authentication, authorization and admin-

istration services that can be potentially consumed by one or more jBPM applications over the

network.

Figure 10.1.

Consider these main steps for building this environment:

• Install and setup a Keycloak server

• Create and setup a Realm for this example - Configure realm's clients, users and roles

• Install and setup the SSO client adapter & jBPM application

Note: The resulting environment and the different configurations for this document are based on

the jBPM (KIE) Workbench, but same ones can also be applied for the KIE Drools Workbench

as well.

Workbench Integration

332

10.2.2. Install and setup a Keycloak server

Keycloak provides an extensive documentation and several articles about the installation on

different environments. This section describes the minimal setup for being able to build the

integrated environment for the example. Please refer to the Keycloak documentation [http://

keycloak.jboss.org/docs] if you need more information.

Here are the steps for a minimal Keycloak installation and setup:

• Download latest version of Keycloak from the Downloads [http://keycloak.jboss.org/downloads]

section. This example is based on Keycloak 1.9.0.Final

• Unzip the downloaded distribution of Keycloak into a folder, let's refer it as

$KC_HOME

• Run the KC server - This example is based on running both Keycloak and jBPM on same host.

In order to avoid port conflicts you can use a port offset for the Keycloak's server as:

$KC_HOME/bin/standalone.sh -Djboss.socket.binding.port-offset=100

• Create a Keycloak's administration user - Execute the following command to create an admin

user for this example:

$KC_HOME/bin/add-user.sh -r master -u 'admin' -p 'admin'

The Keycloak administration console will be available at http://localhost:8180/auth/admin (use the

admin/admin for login credentials).

10.2.3. Create and setup the demo realm

Security realms are used to restrict the access for the different application's resources.

Once the Keycloak server is running next step is about creating a realm. This realm will provide

the different users, roles, sessions, etc for the jBPM application/s.

Keycloak provides several examples for the realm creation and management, from the official

examples [https://github.com/keycloak/keycloak/tree/master/examples] to different articles with

more examples.

Follow these steps in order to create the demo realm used later in this document:

• Go to the Keycloak administration console [http://localhost:8180/auth/admin] and click on Add

realm button. Give it the name demo.

http://keycloak.jboss.org/docs
http://keycloak.jboss.org/docs
http://keycloak.jboss.org/docs
http://keycloak.jboss.org/downloads
http://keycloak.jboss.org/downloads
http://localhost:8180/auth/admin
https://github.com/keycloak/keycloak/tree/master/examples
https://github.com/keycloak/keycloak/tree/master/examples
https://github.com/keycloak/keycloak/tree/master/examples
http://localhost:8180/auth/admin
http://localhost:8180/auth/admin

Workbench Integration

333

• Go to the Clients section (from the main admin console menu) and create a new client for the

demo realm:

• Client ID: kie

• Client protocol: openid-connect

• Acces type: confidential

• Root URL: http://localhost:8080

• Base URL: /kie-wb-6.4.0.Final

• Redirect URIs: /kie-wb-6.4.0.Final/*

The resulting kie client settings screen:

Figure 10.2.

Workbench Integration

334

Note: As you can see in the above settings it's being considered the value kie-wb-6.4.0.Final for

the application's context path. If your jbpm application will be deployed on a different context path,

host or port, just use your concrete settings here.

Last step for being able to use the demo realm from the jBPM workbench is create the application's

user and roles:

• Go to the Roles section and create the roles admin, kiemgmt and rest-all

• Go to the Users section and create the admin user. Set the password with value "password" in

the credentials tab, unset the temporary switch.

• In the Users section navigate to the Role Mappings tab and assign the admin, kiemgmt and

rest-all roles to the admin user

Figure 10.3.

At this point a Keycloak server is running on the host, setup with a minimal configuration set. Let's

move to the jBPM workbench setup.

10.2.4. Install and setup jBPM Workbench

For this tutorial let's use a Wildfly as the application server for the jBPM workbench, as the jBPM

installer does by default.

Let's assume, after running the jBPM installer, the $JBPM_HOME as the root path for the Wildfly

server where the application has been deployed.

10.2.4.1. Install the KC adapter

In order to use the Keycloak's authentication and authorization modules from the jBPM application,

the Keycloak adapter [https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html]

for Wildfly must be installed on our server at $JBPM_HOME. Keycloak provides multiple adapters

for different containers out of the box, if you are using another container or need to use another

https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html

Workbench Integration

335

adapter, please take a look at the adapters configuration [https://keycloak.github.io/docs/user-

guide/keycloak-server/html/ch08.html]from Keycloak docs. Here are the steps to install and setup

the adapter for Wildfly 8.2.x:

• Download the adapter from here [https://repository.jboss.org/nexus/service/local/reposito-

ries/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-

dist-1.9.0.Final.zip]

• Execute the following commands on your shell:

cd $JBPM_HOME/unzip keycloak-wf8-adapter-dist.zip // Install the KC client adaptercd

 $JBPM_HOME/bin./standalone.sh -c standalone-full.xml // Setup the KC client adapter.// **

 Once server is up, open a new command line terminal and run:cd $JBPM_HOME/bin./jboss-cli.sh

 -c --file=adapter-install.cli

client adaptercd

 $JBPM_HOME/bin./standalone.sh -c standalone-full.xml // Setup the KC

client adapter.// ** Once server is up, open a new command line terminal

and run:cd

 $JBPM_HOME/bin./jboss-cli.sh -c

10.2.4.2. Configure the KC adapter

Once installed the KC adapter into Wildfly, next step is to configure the adapter in order to specify

different settings such as the location for the authentication server, the realm to use and so on.

Keycloak provides two ways of configuring the adapter:

• Per WAR configuration

• Via Keycloak subsystem

In this example let's use the second option, use the Keycloak subsystem, so our WAR is free from

this kind of settings. If you want to use the per WAR approach, please take a look here [https://

keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932].

Edit the configuration file $JBPM_HOME/standalone/configuration/standalone-full.xml and locate

the subsystem configuration section. Add the following content:

<subsystem xmlns="urn:jboss:domain:keycloak:1.1"> <secure-deployment name="kie-wb-6.4.0-

Final.war"> <realm>demo</realm> <realm-public-key>MIIBIjANBgkqhkiG9w0BAQEFAAOCA...</

realm-public-key> <auth-server-url>http://localhost:8180/auth</auth-server-url> <ssl-

required>external</ssl-required> <resource>kie</resource> <enable-basic-auth>true</enable-

basic-auth> <credential name="secret">925f9190-a7c1-4cfd-8a3c-004f9c73dae6</credential>

 <principal-attribute>preferred_username</principal-attribute> </secure-deployment></

subsystem>

 xmlns="urn:jboss:domain:keycloak:1.1"> <secure-deployment name="kie-

https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://repository.jboss.org/nexus/service/local/repositories/central/content/org/keycloak/keycloak-wf8-adapter-dist/1.9.0.Final/keycloak-wf8-adapter-dist-1.9.0.Final.zip
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#d4e932

Workbench Integration

336

wb-6.4.0-Final.war">

<realm>demo</realm> <realm-public-key>MIIBIjANBgkqhkiG9w0BAQEFAAOCA...</realm-

public-key> <auth-server-url>http://localhost:8180/auth</auth-

server-url> <ssl-required>external</

ssl-required>

<resource>kie</resource> <enable-basic-auth>true</enable-

basic-auth> <credential name="secret">925f9190-

a7c1-4cfd-8a3c-004f9c73dae6</credential> <principal-attribute>preferred_username</

principal-attribute> </

secure-deployment>

If you have imported the example json files from this document in step 2, you can just use same

configuration as above by using your concrete deployment name . Otherwise please use your

values for these configurations:

• Name for the secure deployment - Use your concrete application's WAR file name

• Realm - Is the realm that the applications will use, in our example, the demo realm created the

previous step.

• Realm Public Key - Provide here the public key for the demo realm. It's not mandatory, if it's not

specified, it will be retrieved from the server. Otherwise, you can find it in the Keycloak admin

console -> Realm settings (for demo realm) -> Keys

• Authentication server URL - The URL for the Keycloak's authentication server

• Resource - The name for the client created on step 2. In our example, use the value kie.

• Enable basic auth - For this example let's enable Basic authentication mechanism as well, so

clients can use both Token (Baerer) and Basic approaches to perform the requests.

• Credential - Use the password value for the kie client. You can find it in the Keycloak admin

console -> Clients -> kie -> Credentials tab -> Copy the value for the secret.

For this example you have to take care about using your concrete values for secure-deployment

name, realm-public-key and credential password. You can find detailed information about the

KC adapter configurations here [https://keycloak.github.io/docs/userguide/keycloak-server/html/

ch08.html#adapter-config].

10.2.4.3. Run the environment

At this point a Keycloak server is up and running on the host, and the KC adapter is installed and

configured for the jBPM application server. You can run the application using:

$JBPM_HOME/bin/standalone.sh -c standalone-full.xml

You can navigate into the application once the server is up at:

https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#adapter-config
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#adapter-config
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html#adapter-config

Workbench Integration

337

 http://localhost:8080/kie-wb-6.4.0.Final

Figure 10.4.

Use your Keycloak's admin user credentials to login: admin/password.

10.2.5. Securing workbench remote services via Keycloak

Both jBPM and Drools workbenches provides different remote service endpoints that can be

consumed by third party clients using the remote API [http://docs.jboss.org/jbpm/v6.3/user-

guide/ch17.html].

In order to authenticate those services thorough Keycloak the BasicAuthSecurityFilter must be

disabled, apply those modifications for the the WEB-INF/web.xml file (app deployment descriptor)

from jBPM's WAR file:

• Remove the following filter from the deployment descriptor:

<filter> <filter-name>HTTP Basic Auth Filter</filter-name> <filter-

class>org.uberfire.ext.security.server.BasicAuthSecurityFilter</filter-class> <init-param>

 <param-name>realmName</param-name> <param-value>KIE Workbench Realm</param-value> </

init-param></filter><filter-mapping> <filter-name>HTTP Basic Auth Filter</filter-name> <url-

pattern>/rest/*</url-pattern> <url-pattern>/maven2/*</url-pattern> <url-pattern>/ws/*</url-

pattern></filter-mapping>

 <filter-name>HTTP Basic Auth Filter</filter-

name> <filter-class>org.uberfire.ext.security.server.BasicAuthSecurityFilter</filter-

class> <init-

param> <param-name>realmName</param-

name> <param-value>KIE Workbench Realm</param-

value> </init-

param></

filter><filter-

mapping> <filter-name>HTTP Basic Auth Filter</filter-

name> <url-pattern>/rest/*</url-

http://localhost:8080/kie-wb-6.4.0.Final
http://docs.jboss.org/jbpm/v6.3/userguide/ch17.html
http://docs.jboss.org/jbpm/v6.3/userguide/ch17.html
http://docs.jboss.org/jbpm/v6.3/userguide/ch17.html

Workbench Integration

338

pattern> <url-pattern>/maven2/*</url-

pattern> <url-pattern>/ws/*</url-

pattern></filter-

• Constraint the remote services URL patterns as:

<security-constraint> <web-resource-collection> <web-resource-name>remote-services</web-

resource-name> <url-pattern>/rest/*</url-pattern> <url-pattern>/maven2/*</url-pattern>

 <url-pattern>/ws/*</url-pattern> </web-resource-collection> <auth-constraint> <role-

name>rest-all</role-name> </auth-constraint></security-constraint>

rity-constraint>

 <web-resource-collection> <web-resource-name>remote-

services</web-resource-name> <url-pattern>/

rest/*</url-pattern> <url-pattern>/

maven2/*</url-pattern> <url-pattern>/

ws/*</url-pattern>

</web-resource-collection>

 <auth-constraint> <role-

name>rest-all</role-name>

 </auth-

Important note: The user that consumes the remote services must be member of role rest-all. As

on described previous steps, the admin user in this example it's already a member of the rest-

all role.

10.2.6. Execution server

The KIE Execution Server provides a REST API [https://docs.jboss.org/drools/release/lat-

est/drools-docs/html/ch22.html] than can be consumed for any third party clients,. This this section

is about how to integration the KIE Execution Server with the Keycloak SSO in order to delegate

the third party clients identity management to the SSO server.

Consider the above environment running, so consider having:

• A Keycloak server running and listening on http://localhost:8180/auth

• A realm named demo with a client named kie for the jBPM Workbench

• A jBPM Workbench running at http://localhost:8080/kie-wb-6.4.0-Final

Follow these steps in order to add an execution server into this environment:

• Create the client for the execution server on Keycloak

• Install setup and the Execution server (with the KC client adapter)

10.2.6.1. Create the execution server's client on Keycloak

As per each execution server is going to be deployed, you have to create a new client on the

demo realm in Keycloak.:

https://docs.jboss.org/drools/release/latest/drools-docs/html/ch22.html
https://docs.jboss.org/drools/release/latest/drools-docs/html/ch22.html
https://docs.jboss.org/drools/release/latest/drools-docs/html/ch22.html

Workbench Integration

339

• Go to the KC admin console [https://mojo.redhat.com/external-link.jspa?url=http%3A%2F

%2Flocalhost%3A8180%2Fauth%2Fadmin] -> Clients -> New client

• Name: kie-execution-server

• Root URL: http://localhost:8280/

• Client protocol: openid-connect

• Access type: confidential (or public if you want so, but not recommended for production envi-

ronments)

• Valid redirect URIs: /kie-server-6.4.0.Final/*

• Base URL: /kie-server-6.4.0.Final

In this example the admin user already created on previous steps is the one used for the client

requests. So ensure that the admin user is member of the role kie-server in order to use the

execution server's remote services. If the role does not exist, create it.

Note: This example considers that the execution server will be configured to run using a port offset

of 200, so the HTTP port will be available at localhost:8280.

10.2.6.2. Install and setup the KC adapter on the execution server

At this point, a client named kie-execution-server is ready on the KC server to use from the exe-

cution server.

Let's install, setup and deploy the execution server:

• Install another Wildfly server to use for the execution server and the KC client adapter as well.

You can follow above instructions for the Workbench or follow the official adapters documenta-

tion [https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html]

• Edit the standalone-full.xml file from the Wildfly server's configuration path and configure the

KC subsystem adapter as:

<secure-deployment name="kie-server-6.4.0.Final.war"> <realm>demo</realm>

 <realm-public-key>MIGfMA0GCSqGSIb...</realm-public-key> <auth-server-url>http://

localhost:8180/auth</auth-server-url> <ssl-required>external</ssl-required>

 <resource>kie-execution-server</resource> <enable-basic-auth>true</enable-basic-auth>

 <credential name="secret">e92ec68d-6177-4239-be05-28ef2f3460ff</credential> <principal-

attribute>preferred_username</principal-attribute></secure-deployment>

 name="kie-server-6.4.0.Final.war">

 <realm>demo</realm> <realm-public-key>MIGfMA0GCSqGSIb...</

realm-public-key> <auth-server-url>http://localhost:8180/auth</

auth-server-url> <ssl-

required>external</ssl-required> <resource>kie-

execution-server</resource> <enable-basic-auth>true</

enable-basic-auth> <credential

https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Flocalhost%3A8180%2Fauth%2Fadmin
https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Flocalhost%3A8180%2Fauth%2Fadmin
https://mojo.redhat.com/external-link.jspa?url=http%3A%2F%2Flocalhost%3A8180%2Fauth%2Fadmin
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html
https://keycloak.github.io/docs/userguide/keycloak-server/html/ch08.html

Workbench Integration

340

name="secret">e92ec68d-6177-4239-be05-28ef2f3460ff</credential> <principal-

attribute>preferred_username</principal-attribute>

Consider your concrete environment settings if different from this example:

• Secure deployment name -> use the name of the execution server war file being deployed

• Public key -> Use the demo realm public key or leave it blank, the server will provide one if so

• Resource -> This time, instead of the kie client used in the WB configuration, use the kie-

execution-server client

• Enable basic auth -> Up to you. You can enable Basic auth for third party service consumers

• Credential -> Use the secret key for the kie-execution-server client. You can find it in the Cre-

dentialstab of the KC admin console

10.2.6.3. Deploy and run the execution server

Just deploy the execution server in Wildfly using any of the available mechanisms. Run the exe-

cution server using this command:

$EXEC_SERVER_HOME/bin/standalone.sh -c standalone-full.xml -Djboss.socket.binding.port-

offset=200 -Dorg.kie.server.id=<ID> -Dorg.kie.server.user=<USER> -

Dorg.kie.server.pwd=<PWD> -Dorg.kie.server.location=<LOCATION_URL> -

Dorg.kie.server.controller=<CONTROLLER_URL> -Dorg.kie.server.controller.user=<CONTROLLER_USER>

 -Dorg.kie.server.controller.pwd=<CONTOLLER_PASSWORD>

Example:

$EXEC_SERVER_HOME/bin/standalone.sh -c standalone-full.xml -Djboss.socket.binding.port-

offset=200 -Dorg.kie.server.id=kieserver1 -Dorg.kie.server.user=admin -

Dorg.kie.server.pwd=password -Dorg.kie.server.location=http://localhost:8280/kie-

server-6.4.0.Final/services/rest/server -Dorg.kie.server.controller=http://localhost:8080/kie-

wb-6.4.0.Final/rest/controller -Dorg.kie.server.controller.user=admin -

Dorg.kie.server.controller.pwd=password

mportant note: The users that will consume the execution server remote service endpoints must

have the role kie-server assigned. So create and assign this role in the KC admin console for the

users that will consume the execution server remote services.

Once up, you can check the server status as (considered using Basic authentication for this re-

quest, see nextConsuming remote services for more information):

curl http://admin:password@localhost:8280/kie-server-6.4.0.Final/services/rest/server/

Workbench Integration

341

10.2.7. Consuming remote services

In order to use the different remote services provided by the Workbench or by an Execution Server,

your client must be authenticated on the KC server and have a valid token to perform the requests.

Remember that in order to use the remote services, the authenticated user must have assigned:

• The role rest-all for using the WB remote services

• The role kie-server for using the Execution Server remote services

Please ensure necessary roles are created and assigned to the users that will consume the remote

services on the Keycloak admin console.

You have two options to consume the different remove service endpoints:

• Using basic authentication, if the application's client supports it

• Using Bearer (token) based authentication

10.2.7.1. Using basic authentication

If the KC client adapter configuration has the Basic authentication enabled, as proposed in this

guide for both WB (step 3.2) and Execution Server, you can avoid the token grant/refresh calls

and just call the services as the following examples.

Example for a WB remote repositories endpoint:

curl http://admin:password@localhost:8080/kie-wb-6.4.0.Final/rest/repositories

Example to check the status for the Execution Server:

curl http://admin:password@localhost:8280/kie-server-6.4.0.Final/services/rest/server/

10.2.7.2. Using token based authentication

First step is to create a new client on Keycloak that allows the third party remote service clients

to obtain a token. It can be done as:

• Go to the KC admin console and create a new client using this configuration:

• Client id: kie-remote

• Client protocol: openid-connect

Workbench Integration

342

• Access type: public

• Valid redirect URIs: http://localhost/

• As we are going to manually obtain a token and invoke the service let's increase the lifespan

of tokens slightly. In production access tokens should have a relatively low timeout, ideally less

than 5 minutes:

• Go to the KC admin console

• Click on your Realm Settings

• Click on Tokens tab

• Change the value for Access Token Lifespan to 15 minutes (That should give us plenty of

time to obtain a token and invoke the service before it expires)

Once a public client for our remote clients has been created, you can now obtain the token by

performing an HTTP request to the KC server's tokens endpoint. Here is an example for command

line:

RESULT=`curl --data "grant_type=password&client_id=kie-

remote&username=admin&passwordpassword=<the_client_secret>" http://localhost:8180/auth/realms/

demo/protocol/openid-connect/token`

TOKEN=`echo $RESULT | sed 's/.*access_token":"//g' | sed 's/".*//g'`

At this point, if you echo the $TOKEN it will output the token string obtained from the KC server,

that can be now used to authorize further calls to the remote endpoints. For exmple, if you want

to check the internal jBPM repositories:

curl -H "Authorization: bearer $TOKEN" http://localhost:8080/kie-wb-6.4.0.Final/rest/reposito

ries

343

Chapter 11. Workbench High

Availability

11.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,

process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in

sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is

the cluster management component that registers all cluster details (nodes, resources and the

cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide

VFS clustering.

To create a VFS cluster:

1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://

helix.incubator.apache.org/].

2. Install both:

a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).

b. In $ZOOKEEPER_HOME, copy zoo_sample.conf to zoo.conf

c. Edit zoo.conf. Adjust the settings if needed. Usually only these 2 properties are relevant:

the directory where the snapshot is stored.dataDir=/tmp/zookeeper# the port at which the

 clients will connectclientPort=2181

 is

stored.dataDir=/tmp/zookeeper# the port at which the clients

d. Unzip Helix into a directory ($HELIX_HOME).

3. Configure the cluster in Zookeeper:

a. Go to its bin directory:

$ cd $ZOOKEEPER_HOME/bin

b. Start the Zookeeper server:

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/

Workbench High Availability

344

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dataDir (as specified in zoo.conf) is accessible.

c. To review Zookeeper's activities, open zookeeper.out:

$ cat $ZOOKEEPER_HOME/bin/zookeeper.out

4. Configure the cluster in Helix:

a. Go to its bin directory:

$ cd $HELIX_HOME/bin

b. Create the cluster:

$./helix-admin.sh --zkSvr localhost:2181 --addCluster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (kie-cluster)

can be changed as needed.

c. Add nodes to the cluster:

Node 1

$./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster nodeOne:12345

Node 2

$./helix-admin.sh --zkSvr localhost:2181 --addNode kie-cluster nodeTwo:12346

...

Usually the number of nodes a in cluster equal the number of application servers in the

cluster. The node names (nodeOne:12345 , ...) can be changed as needed.

Note

nodeOne:12345 is the unique identifier of the node, which will be referenced

later on when configuring application servers. It is not a host and port number,

but instead it is used to uniquely identify the logical node.

d. Add resources to the cluster:

Workbench High Availability

345

$./helix-admin.sh --zkSvr localhost:2181 --addResource kie-cluster vfs-repo 1 LeaderS

tandby AUTO_REBALANCE

The resource name (vfs-repo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$./helix-admin.sh --zkSvr localhost:2181 --rebalance kie-cluster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$./run-helix-controller.sh --zkSvr localhost:2181 --cluster kie-cluster 2>&1 > /tmp/

controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and

JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/domain.xml.

For simplicity sake, presume we use the default domain configuration which uses the profile

full that defines two server nodes as part of main-server-group.

b. Locate the profile full and add a new security domain by copying the other security domain

already defined there by default:

<security-domain name="kie-ide" cache-type="default"> <authentication> <login-

module code="Remoting" flag="optional"> <module-option name="password-stacking"

 value="useFirstPass"/> </login-module> <login-module code="RealmDirect"

 flag="required"> <module-option name="password-stacking" value="useFirstPass"/

> </login-module> </authentication></security-domain>

ide" cache-type="default">

 <authentication> <login-module

 code="Remoting" flag="optional"> <module-option name="password-

stacking" value="useFirstPass"/>

 </login-module> <login-module

 code="RealmDirect" flag="required"> <module-option name="password-

stacking" value="useFirstPass"/>

 </login-module>

 </

Important

The security-domain name is a magic value.

Workbench High Availability

346

6. Configure the system properties for the cluster on the application server. For example on Wild-

Fly and JBoss EAP:

a. Edit the file $JBOSS_HOME/domain/configuration/host.xml.

b. Locate the XML elements server that belong to the main-server-group and add the nec-

essary system property.

For example for nodeOne:

<system-properties>

 <property name="jboss.node.name" value="nodeOne" boot-time="false"/>

 <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodeone" boot-time="false"/>

 <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/nodeone" boot-

time="false"/>

 <property name="org.uberfire.cluster.id" value="kie-cluster" boot-time="false"/>

 <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-time="false"/>

 <property name="org.uberfire.cluster.local.id" value="nodeOne_12345" boot-time="false"/>

 <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-time="false"/>

 <!-- If you're running both nodes on the same machine: -->

 <property name="org.uberfire.nio.git.daemon.port" value="9418" boot-time="false"/>

</system-properties>

And for nodeTwo:

<system-properties>

 <property name="jboss.node.name" value="nodeTwo" boot-time="false"/>

 <property name="org.uberfire.nio.git.dir" value="/tmp/kie/nodetwo" boot-time="false"/>

 <property name="org.uberfire.metadata.index.dir" value="/tmp/kie/nodetwo" boot-

time="false"/>

 <property name="org.uberfire.cluster.id" value="kie-cluster" boot-time="false"/>

 <property name="org.uberfire.cluster.zk" value="localhost:2181" boot-time="false"/>

 <property name="org.uberfire.cluster.local.id" value="nodeTwo_12346" boot-time="false"/>

 <property name="org.uberfire.cluster.vfs.lock" value="vfs-repo" boot-time="false"/>

 <!-- If you're running both nodes on the same machine: -->

 <property name="org.uberfire.nio.git.daemon.port" value="9419" boot-time="false"/>

</system-properties>

Make sure the cluster, node and resource names match those configured in Helix.

11.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this

blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html] to configure the

database etc correctly.

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html

347

Chapter 12. Designer
Designer is a graphical web-based BPMN2 editor. It allows users to model and simulate exe-

cutable BPMN2 processes. The main goal of Designe is to provide intuitive means to both tech-

nical and non-technical users to quickly create their executable business processes. This chapter

intends to describe all feature Designer offers currently.

Figure 12.1. Designer

Designer targets the following business process modelling scenarios:

• View and/or edit existing BPMN2 processes: Designer allows you to open existing BPMN2

processes (for example created using the BPMN2 Eclipse editor or any other tooling that exports

BPMN2 XML).

• Create fully executable BPMN2 processes: A user can create a new BPMN2 process in the

Designer and use the editing capabilities (drag and drop and filling in properties in the properties

panel) to fill in the details. This for example allows business users to create complete business

processes all inside a a browser. The integration with Drools Guvnor allows for your business

processes as wells as other business assets such as business rules, process forms/images,

etc. to be stored and versioned inside a content repository.

• View and/or edit Human Task forms during process modelling (using the in-line form editor or

the Form Modeller).

• Simulate your business process models. Busines Process Simulation is based on the BPSIM

1.0 specification.

Designer

348

Designer supports all BPMN2 elements that are also supported by jBPM as well as all jBPM-

specific BPMN2 extension elements and attributes.

12.1. Designer UI Explained

Designer UI is composed of a number of sections as shown below:

Figure 12.2. Designer sections

• (1) Modelling Canvas - this is your process drawing board. After dropping different shapes onto

the canvas, you can move them around, connect them, etc. Clicking on a shape on the canvas

allows you to set its properties in the expandable Properties Window (3) (as well as create

connecting shapes and morph the shape into other shapes).

• (2) Toolbar - the toolbar contains a vast number of functions offered by Designer (described

later). These includes operations that can be performed on shapes present on the Canvas.

Individual operations are disabled or enabled depending on what is selected. For example, if

no shapes are selected, the Cut/Paste/Delete operations are disabled, and become enabled

once you select a shape. Hovering over the icons in the Toolbar displays the description text

of the operation.

• (3) Properties Panel - this expandable section on the right side of Designer allows you to set

both process and shape properties. It is divided in four sections, namely "Core properties", and

"Extra Properties, "Graphical Settings", and "Simulation Properties" are is expandable. When

clicking on a shape in the Canvas, this panel is reloaded to show properties specific to the

shape type. If you click on the canvas itself (not on a shape) the section shows your general

process properties.

Designer

349

• (4) Object Repository Panel - the expandable section on the left side of Designer shows the

jBPM BPMN2 (default) shape repository tree. It includes all shapes of the jBPM BPMN2 stencil

set which can be used to assemble your processes. If you expand each section sub-group you

can see the BPMN2 elements that can be placed onto the Designer Canvas (1) by dragging

and dropping the shape onto it.

• (5) View Tabs - currently Designer offers functionality tabs for Process Modelling and Simula-

tion. Process Modelling is the default tab. When users run process simulation, its results are

presented in the Simulation tab.

• (6) Info Tabls - On the bottom Designer shows two different Info tabs. The Business Process

tab includes the process modeling while the Metadata tab displays the process metadata such

as created by and last modified information.

12.2. Getting started with Modelling

The Object Repository panel provide means for users to select and drag/drop BPMN2 shapes

onto the modelling canvas. Shapes are divided into sections as shown below:

Designer

350

Figure 12.3. Object Repository

Once a shape is dropped onto the canvas users have a much faster way of continuing modelling

without having to go back to the Object Repository panel. This is realized through the shape

morphing menu which is presented when a shape on the drawing canvas is clicked on. This menu

Designer

351

allows users to either select a connecting shape (next shape) or morph the selected node into

another node type. In addition this menu includes means to store the shape name as a dictionary

item (explained later), view the specific BPMN2 code of the selected shape, as well as create/edit

the task form (in the case of user tasks only).

Figure 12.4. Morphing Menu for shapes

When connecting shapes Designer applies connection rules that follow the BPMN2 specification.

The connection shapes presented in the morphing menu only show shapes that are allowed to be

connections. Similarly same rules are applied when dropping a shape from the Object Library from

the canvas and trying to connect an existing shape to it. Additional connection rules for boundary

events are also available (explained later) and applied when for example moving an intermediate

event node onto the edge of a task node.

Users can give names to every shape on the drawing canvas. This is done by double-clicking

onto the shape as shown below.

Designer

352

Figure 12.5. Naming a shape

The name of a shape can be pulled from the Process Dictionary. If terms are set up in the dictio-

nary, auto-complete can be used for the node names:

Figure 12.6. Name auto-completion from dictionary

Designer also shows three buttons on top of a clicked shape as shown below.

Designer

353

Figure 12.7. Extra in-line options

These include:

• (1) Add To Dictionary - this option allows users to add the name of the task to the Process

Dictionary (explained in more details later)

• (2) Edit Task Form - allows users to create/edit the Task Form. This option is only available

for User Tasks

• (3) View shape sources - shows the BPMN2 for this particular shape only.

The section should get you started with creating simple business process models by drag-

ging/dropping BPMN2 shapes onto the drawing canvas. Next sections will dive deeper into many

other aspects of Designer.

12.3. Designer Toolbar

The Designer toolbar contains many different functions which can be used during process mod-

elling.

Figure 12.8. Toolbar Buttons

We will now go through each of the buttons in the Designer Toolbar and give a brief overview

of what it does.

(1) Save - allows users to save, copy, rename and delete the business process model. In addition

users can turn on auto-save which will automatically save the business process within a defined

time interval.

Designer

354

Figure 12.9. Save Button

(2) Cut - enabled when a portion of the model is selected.

(3) Copy - enabled when a portion of the model is selected.

(4) Paste - paste the copied portion of the model onto the drawing board.

(5) Delete - enabled when there is a portion of the model is selected and removes it.

(6, 7) Undo/Redo - undo the last performed operation on the drawing canvas.

(8) Local History - local history allows continuous storage of your business process onto your

browsers internal storage. Stored version of the business process can persist internet outages

or browser crashes so your work will not be lost. This feature is disabled by default and must

be enabled by users. Once local history has been enabled users are able to view all previously

stored snapshots of their business model, clear local history, configure the snapshot interval, or

disable local history. Note that local history will only take a snapshot of your business process on

the set storing interval if there were some changes done in the model. If at the end of the snapshot

interval Designer detects that there were no changes since the last local history save, no new

snapshot will be created.

Designer

355

Figure 12.10. Local History

The Local History results screen allows users to select a stored snapshot of the model and view

its process image, and restore it back onto their drawing board.

Figure 12.11. Local History Sample Results

(9) Object positioning - allows users to position one or more nodes in the business. Note that at

last one shape must be selected first, otherwise these options are disable. Contains options "Bring

to Front", "Bring to back", "Bring forward", and "Bring Backward"

(10) Alignment: enabled when a portion of the model is selected. Includes options "Align Bottom",

"Align Middle", "Align Top", "Align Left", "Align Center", "Align Right", and "Align Same Size".

(11, 12) Group and Ungroup - allows grouping and ungrouping of selected shapes on the drawing

board.

(13, 14) Locking and Unlocking - allows parts of the business model to be locked and unlocked.

Locked parts of the model cannot be edited (visual display and properties are both locked). Locked

nodes are displayed in a light blue color. This feature fosters collaboration of process modelling

by allowing users to set parts of their model as "completed" and preventing any further changes

to that portion. Other parts of the model can continue to be edited.

Designer

356

Figure 12.12. Locked Nodes

(15, 16) Add/Remove Docker - this allows users to add or remove Dockers, or edge points, to

sequence flows in the model. Enables when a sequence flow (connector) is selected. It allows

users to create very customized connection points from one shape to another. Users can add and

remove as many dockers as they would like on a single sequence flow.

Figure 12.13. Adding dockers to a sequence flow

(17) Color Themes - Colors are a big part or process modelling as they help with expressing intent

as well as help allowing visually impaired users to better view the model. Designer provides two

default color themes out of the box named "jBPM" and "High Contrast". The jBPM theme is the

default theme used for all new business processes created. Users can switch color themes and

the changes will be applied to all nodes that are currently on the model, as well as any new shapes

added. Users have the ability to add new custom color themes by adding their own definitions in

the Designer themes.json file. Color theme selection is persisted over browser close or possible

crash/internet loss.

Designer

357

Figure 12.14. Color Themes selection

Figure 12.15. Switching to High Contrast Color Theme

(18) Process and Task forms - here users have the ability to generate/edit process and task forms.

When no user task is selected the default enabled options are "Edit Process Form" and "Generate

all Forms". Generate all forms will apply the current model information such as process variables,

data objects, and the user tasks data input/output parameters and associations to generate default

executable input forms. Upon editing a process and task form, users have the choice between

two form editors, the jBPM Form Modeler, and the Designer in-line meta editor. The Designer

meta editor is targeted more to technical users as it is text based with the ability for live preview.

When the user selects an user task in the model, the "Edit Task Form" and "Generate Task Form"

options are enabled which allow users to edit the particular task form, or choose to apply the same

generation logic to create a task form for the selected task only. Users have the ability to extend

the default form generation templates in designer to create fully customized templates. Node that

in the case of the Designer meta editor for forms, generating forms will overwrite existing forms

for the process and user tasks. In the case of Form Modeler form generation, a merging algorithm

is applied when generating.

Designer

358

Figure 12.16. Form generation selection

When selecting a task, users have the ability to edit the selected tasks form via the form button

shown above the user task node.

Figure 12.17. In-line task editing

When editing forms, users are asked to choose between the Form Modeler and the Designer in-

line meta editor. If the user selects Form Modeler the form is shown in a new asset tab separately

from Designer. Designer meta editor is in-line and part of the Designer application.

Figure 12.18. Form Editor Selection

The Designer in-line meta form editor is a powerful text-based editor with a live preview feature

as well as auto-completion on process variables and user task data inputs/outputs.

Designer

359

Figure 12.19. Designer in-line form meta editor with live-preview

(19) Process Information Sharing - this section includes many functions that help with sharing

information of your model. These include:

• Share process image - generates a stand-alone HTML image tag which contains a Base64

encoded image source of the current model on the canvas. This link can be shared to team

members or other parties and embedded in any HTML content or email that allows HTML con-

tent embedding.

• Share process PDF - generates a stand-alone HTML object tag which contains a Base64 en-

coded PDF source of the current model on the canvas. This can similarly be shared and em-

bedded in any HTML content.

• Download process PNG - generates a PNG image of the current process on the drawing board

which users can download and share.

• Download process PDF - generates a PDF of the current process on the drawing board which

can be downloaded and shared.

• View Process Sources - displays the current process sources in various formats, namely

BPMN2, JSON, SVG, and ERDF. Also has the option to download the BPMN2 sources.

Designer

360

Figure 12.20. Process Sources View

(20) Extra tooling - this section allows users to import their existing BPMN2 processes into designer

as well as be able to migrate their old jPDL based processes to BPMN2. For BPMN2 or JSON

imports users can choose to add the import ontop of the existing model on the drawing board or

choose to replace the current one with the import.

Figure 12.21. Extra tooling section

Designer

361

Figure 12.22. Import existing BPMN2 panel

Designer

362

Figure 12.23. Process Migration panel

(21) Visual Validation - Designer includes over 100 validation checks and this list is growing. It

allows users to view validation issues in real-time as they are modelling their business process.

Users can enable visual validation, disable it, as well as view all validation issues at once. If Visual

Validation is turned on, Designer with set the shape border of shapes that do not pass validation

to red color. Users can then click on that particular shape to view the validation issues for that

particular shape only. Alternatively "View All Issues" present a combined list of all validation errors

currently found. Note that you do not have to periodically save your business process in order for

validation to update. It will do so on its own short intervals during modelling. Users can extend

the list of validation issues to include their own types of validation on certain elements of their

business model.

Designer

363

Figure 12.24. Visual Validation Toolbar

Figure 12.25. Shapes with validation errors displayed with red border

Figure 12.26. Single shape validation issues display

Designer

364

Figure 12.27. View all issues validation display

(22) Process Simulation - Business Process Simulation deals with statistical analysis of process

models over time. It's main goals include

• Pre-execution and post-execution optimization

• Reducing the risk of change in business processes

• Predict business process performance

• Foster continuous improvements of performance, quality and resource utilization of business

processes

Designer includes a powerful simulation engine which is based on jBPM and Drools and a graph-

ical user interface to view and interpret simulation results. In addition users are able to view all

process paths included in their current model on the drawing board. Designer Process Simulation

is based on the BPSim 1.0 specification. Details of Process Simulation capabilities in Designer

are can be found in its Simulation documentation chapter. Here we just give a brief overview of

all features it contains.

Figure 12.28. Simulation tooling section

When selecting Process Paths, the simulation engine find all possible paths in the business model.

Users can choose certain found paths and choose to display them. The chosen path is marked

with given colors as shown below.

Designer

365

Figure 12.29. View all issues validation display

When selecting "Run Simulation", users have to enter in simulation runtime properties. These

include the number of instances of this business process to simulate and the interval time and

units. This interval is the time in-between consecutive simulation.

Designer

366

Figure 12.30. Simulation runtime properties

Each shape on the drawing board includes Simulation properties (properties panel) where users

can set numerous simulation properties for that particular shape. More info on each of these

properties can be found in the Simulation chapter of the documentation. Designer pre-sets some

defaults for new processes, which allows business processes to be simulated by default without

any modifications of these properties. Note however that the results of the default settings may

not be optimal or targeted for the users particular needs.

Figure 12.31. Simulation properties for shapes

Once the simulation runtime has completed, users are shown the simulation results in the "Simu-

lation Results" tab of Designer. The results default to the process results. Users can switch to re-

Designer

367

sults for each particular shape in their business process to see more specific detauls. In addition,

the results contain process paths simulation results for each path in the business process.

Figure 12.32. Sample simulation results

Designer simulation presents the users with many different chart types. These include:

• Process results: Execution times, Activity instances, Total cost

• Human Task results: Execution times, Resource Utilization, Resource Cost

• All other nodes: Execution times

• Process Paths: Path Execution

The below image shows a number of possible chart types users can view after process simulation

has completed.

Designer

368

Figure 12.33. Types of simulation results charts

In addition to the chart results, Designer simulation also offers a full timeline display that includes

all details of what happened during simulation. This timeline allows users to navigate through each

event that happened during process simulation and select a particular node to display results at

that particular point in time.

Designer

369

Figure 12.34. Simulation timeline

The simulation timeline can be switched to the Model view. This view displays the process model

with the currently selected node in the timeline highlighted. The highlighted node displays the

simulation results at that particular point in time of the simulation.

Designer

370

Figure 12.35. Simulation timeline model view

Path execution results shows a chart displaying the chosen path as well as path instance execution

details.

Designer

371

Figure 12.36. Path execution details

(23) Service Repository - this feature allows users to connect to an existing service tasks repos-

itory to install service tasks into their list of available shapes. Mode default of this can be found

in the Service Repository chapter of the documentation. Users have to enter the URL to the ex-

isting service repository and then can install the available service nodes by double-clicking on a

particular results row.

Designer

372

Figure 12.37. Service Repository installation view

(24) Full screen Modev - allows users to place the drawing board of Designer into full-screen

mode. This can help with better visualizing larger business processes without having to scroll.

Note that this feature is possible only if your browser has full screen mode capabilities. If it does

not designer will show a message stating this to the user.

Designer

373

Figure 12.38. Full Screen Mode

(25) Process Dictionary - Designer Dictionary Editor allows users to create their own dictionary

entries or harvest from process documentation or business requirement documents. Process Dic-

tionary entries can be used as auto-completion for shape names. This will be expanded in the

future versions to allow mapping of node patters to specific dictionary entries as well. Users can

add entries to the dictionary in the Dictioanry Editor or from the selected shapes directly.

Designer

374

Figure 12.39. Process Dictionary entry screen

Figure 12.40. Addint to process dictionary from selected shape

(26, 27, 28, 29) Zooming - zooming allows users to zoom in/out of the model, zoom in/out back

to the original setting as well as zoom the process model on the drawing board to fit the currently

dimensions of the drawing board.

375

Chapter 13. Forms
This chapter intends to describe in a simple ways all the steps required to create a process with

human tasks, generate and modify the forms for these tasks and execute them. It will provide initial

guidance to perform all initial steps, but it will not provide a full description of all available features.

Given that forms are going to be used in tasks, it's possible to generate forms automatically from

process variables and task definitions. These forms can be later be modified by using the form

editor. In runtime, forms will receive data from process variables, display it to the user and capture

his input, and then finally updating process variables again with the new values.

The following example will show all the steps to follow to create a form for the 'Create order' task

in the process below.

Figure 13.1. Process example

This form must look like the following in execution:

Forms

376

Figure 13.2. Process example

Forms

377

13.1. Configure process and human tasks

To hold values capture by forms, process variables can be created. These variables can be of a

simple type like 'String' or a complex type. These complex types can be defined by using the Data

Modeler tool, or be just regular POJOs (Plain Java Objects) created with any Java IDE.

In this example, we define a variable 'po' of type 'org.jbpm.examples.purchases.PurchaseOrder',

defined with the Data Modeler tool.

Figure 13.3. Process variable definition

This variable is declared in the 'variables definition' property for the process.

After that, we must configure which variables are set as input parameters to the task, which ones

will receive the response back from the form and establish the mappings. This is done by set-

ting the 'DataInputSet', 'DataOutputSet' and 'Assignments' properties for any human task. See

screenshots below for details.

Forms

378

Figure 13.4. Data input variable definition

Figure 13.5. Data output variable definition

Forms

379

Figure 13.6. Variable mapping definition

13.2. Generate forms from task definitions

The Process Designer module provides some functionality to generate the forms automatically

from task and variable definitions, as well as easily open the right form from the modeler.

This is done with the following menu option.

Figure 13.7. Form automatic generation

You can also click on the icon on top of task to open the form directly.

Forms

380

Figure 13.8. Access to form edition

Forms are related to tasks by following a naming convention. If a form with a name formName-task-

form is defined in the same package as the process, then this form is used by the human task

engine to display and capture information from user.

Also, if a form named ProcessId-task form is created, it will be used as the initial form when starting

this process.

For example, for our process the following forms would be generated.

Forms

381

Figure 13.9. Access to form edition

Forms

382

13.3. Edit forms

Once the forms have been generated, you can start editing them. There are several artifacts that

are generated in the previous process, but also can be created manually.

13.3.1. Form generated description

When the form has been generated automatically, this tab contain the process variables as data

origins. This allow bind form fields with them, this relation it’s linked creating data bindings.

A data binding define how task inputs will be mapped to form variables, and when the form is

validated and submitted, how the values will update the task outputs.

Figure 13.10. Generated form

For example, for this process, the following bindings are generated. Notice that the identifiers are

automatically generated. You can have as many data origins as required, and can use a different

colour to identify it.

In automatic form generation, a data origin is created for each process variable. The generated

form have a field for each data origin bindable item (view FieldTypes) and this automatic fields

have the binding defined too.

When these fields are displayed in editor the color of the data origin is shown over the field to

make easy view if the field is correctly bound and the data origin implied.

13.3.2. Customizing form

We can change the way the form is displayed to the user in the task list. Next, we will show different

levels of customization that will allow change it

13.3.2.1. Moving fields

The fields may be placed in different regions of the form. To move a field the user can access the

contextual menu of the field and select 'Move field'.

Forms

383

Figure 13.11. Move field option

This will display the different regions of the form where you can place it.

Figure 13.12. Destination areas to move the field

A field can be moved to the first or the last region with the contextual icons for that purpose.

13.3.2.2. Adding new fields

You can add fields to forms either by its origin or by selecting one type of form field.

Let's see what has been created automatically for this purchase order form.

Forms

384

Figure 13.13. Form properties have been added by default, but are not still

configured

• Add fields by origin: this tab allows you to add fields to the form based on the data origins

defined. These fields will have the correct configuration on the "Input binding expression" and

"Output binding expression" properties, so when the form is submitted, the fields values will be

stored in the corresponding Data Origin.

Forms

385

Figure 13.14. Add field by origin

• Add fields by type: this tab allows you to freely add fields to the form from the Field Types palette

on the Form Modeler. These fields won't be storing their values on any Data Origin until they

have a correct configuration on the "Input binding expression" and "Output binding expression"

properties.

Figure 13.15. Add field by type

Forms

386

To see a complete list of the available field types go to Field types section.

Notice the data model 'po' of type 'org.jbpm.examples.purchases.PurchaseOrder' is composed of

three properties.

• Simple: property of type text (description). We will adjust the view settings.

• Complex: property of type object (header).

• Complex: property of type array of objects (lines)

Now all these properties had to be configured.

13.3.2.3. Field configuration

Each field can be configured to enhance performance in the form. There are a group of common

properties, that we call ‘Generic field properties’ and a group of specific properties that depends

on the field type.

13.3.2.3.1. Generic field properties

There are a group of properties that are common to all field types. We will detail them below:

Table 13.1.

Field type Can change the field type to other compatible

field types

Field Name Will be used as identifier in formulas calcula-

tion

Label The text that will be shown as field label

Error message When something goes wrong with the field,

like validations,.. this message will be dis-

played

Label ccs class Allows enter a class css to apply in label visu-

alization

Label css style to enter directly the style to apply to the label.

Help text The text introduced is displayed as alt at-

tribute to help to the user in data introduction

Style class Allows enter a class css to apply in field visu-

alization

Css style to enter directly the style to apply to the label.

Read Only When this check is on, the field will be used

only for read

Forms

387

Input binding expression This expression defines the link between field

and process task input variable. It will be used

in runtime to set the field value with that task

input variable data.

Output binding expression This expression defines the link between field

and process task output variable. It will be

used in runtime to set that task output vari-

able.

13.3.2.3.2. Specific field properties

Let's explain the specific properties of each field type:

• Short Text (java.lang.String)

• Compatible field type: Long text, E-mail, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Show HTML: indicates whether the contents of the field is interpreted as HTML in show

mode.

• Formula. to enter expressions that will be evaluated to set the field value. These expres-

sions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify the validation of the field. In case that

the field value introduced hasn’t match the expression, and error is thrown and the error

message has to be shown.

• Default Value formula. Expression to set the field default value.

• Long Text (java.lang.String)

• Compatible field type: Long text, E-mail, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

Forms

388

• Required: Indicates if it’s mandatory to fill this field.

• Height: The number or rows to show at text area.

• Formula. to enter expressions that will be evaluated to set the field value. These expres-

sions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify the validation of the field. In case that

the field value introduced hasn’t match the expression, and error is thrown and the error

message has to be shown.

• Default Value formula. Expression to set the field default value.

• Float (java.lang.Float)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These expres-

sions are described in Formula & expression section .

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section

• Pattern. Allow introduce an expression to specify how the Float value has to be

displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/

api/java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• Decimal (java.lang.Double)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Forms

389

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Pattern. Allow introduce an expression to specify how the Double value has to be

displayed. The pattern allowed is show in section pattern in http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/javase/6/docs/

api/java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• BigDecimal (java.math.BigDecimal)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Pattern. Allow introduce an expression to specify how the BigDecimal value has

to be displayed. The pattern allowed is show in section pattern in http://

docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html [http://docs.oracle.com/

javase/6/docs/api/java/text/DecimalFormat.html]

• Default Value formula. Expression to set the field default value.

• Big integer (java.math.BigInteger)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/DecimalFormat.html

Forms

390

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Short (java.lang.Short)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Integer (java.lang.Integer)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• Long Integer (java.lang.Long)

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

Forms

391

• Required: Indicates if it’s mandatory to fill this field.

• Formula. Used to enter expressions that will be evaluated to set the field value. These

expressions are described in Formula & expression section.

• Range value. A range formula allows you to let you specify the values that the user can

select from an specific field. These expressions are described in Formula & expression

section .

• Default Value formula. Expression to set the field default value.

• E-mail (java.lang.String)

• Compatible field type: Short text, Long text, Rich text

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Default Value formula. Expression to set the field default value.

• Checkbox (java.lang.Boolean)

• Specific properties

• Required: Indicates if it’s mandatory to fill this field.

• Default Value formula. Expression to set the field default value.

• Rich text: (java.lang.String)

• Compatible field type: Short text, Long text, E-mail

• Specific properties

• Size: input text length.

• MaxLength: Maximum number of characters allowed.

• Required: Indicates if it’s mandatory to fill this field.

• Height: The number or rows to show at text area.

• Default Value formula. Expression to set the field default value.

• Timestamp (java.util.Date)

• Compatible field type: Short date

Forms

392

• Specific properties

• Size: input text length.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These expres-

sions are described in Formula & expression section .

• Default Value formula. Expression to set the field default value.

• Short date (java.util.Date)

• Compatible field type: Timestamp

• Specific properties

• Size: input text length.

• Required: Indicates if it’s mandatory to fill this field.

• Formula. to enter expressions that will be evaluated to set the field value. These expres-

sions are described in Formula & expression section .

• Default Value formula. Expression to set the field default value.

• Document (org.jbpm.document.Document)

• Specific properties

• Required: Indicates if it’s mandatory to fill this field.

• Simple subform (Object)

• For more details see sectionSimple Object (Subform field Type).

Specific properties

• Default form. Show the list of available forms to select what one will be displayed to show

the object.

• Multiple subform (Multiple Object)

• For more details see sectionArrays of objects.(Multiple subform field Type).

Specific properties

• Default form. Show the list of available forms to select what one will be displayed to show

the object when no other form is configured with an specific purpose.

• Preview form. If a form is specified, it will be used to show the item details

Forms

393

• Table form. If a form is specified, it will be used to show the table columns when the item

list is showed

• New item text. Text to show at New Item button

• Add item text. Text to show at Add Item button

• Cancel text. Text to show at Cancel button

• Allow remove Items. If this check is selected, the form allow remove items in table view.

• Allow edit items. If this check is selected, the form allow edit items in table view.

• Allow preview items. If this check is selected, the form allow preview items in table view.

• Hide creation button. Check to not show the creation button

• Expanded. If is checked, when a new item is being added, the field display the table with

the existing items and the creation form at same time

• Allow data enter in table mode. Allow modify data in table view directly.

13.3.2.3.3. Complex Fields Configuration

There are two types of complex fields: fields representing an object, and fields representing an

object array.

Once the field is added to the form, either automatically or manually, it must be configured so that

the form had to know how to display the objects that will contain in execution time.

Next we describe how can be the configuration process:

• The first thing to do is define how the contained object will be displayed. This is done creating

a form that represents the object.

• In case of the object array, you can define a form to show in preview(edition), or to show when

table is shown

Once the form to represent the object, the parent form has to be configured to use them in the

parent Subform or Multiple subform.

Below we will describe how the setup would be:

13.3.2.3.3.1. Simple Object (Subform field Type)

One possible way of setting the value for an object property is by using an existing form, and

embedding this form into the parent. This is called subform.

In this example, the Purchase Order header data is held in an object. Therefore, we must create

a form to enter all the purchase order header data and link it from the parent task form.

Forms

394

We will follow the steps:

1. Create new form.

Figure 13.16. Create new form

2. Create new data origin, selecting the type of the purchase order header.

Forms

395

Figure 13.17. Create new data origin

Figure 13.18. Data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one

by one or all of them at once.

Forms

396

Figure 13.19. Add fields by origin

All the properties have been added to the form, and now we can edit each of them and move

them around.

Figure 13.20. All data origin fields added

4. Configure the fields and customize form.

5. Once the form has been saved, open the initial parent form and set the field property 'Default

form'.

Forms

397

Figure 13.21. Configure the parent form

This will insert the subform inside the parent form, and will be shown as below:

Forms

398

Figure 13.22. Parent form visualization after subform configuration

13.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

Now, we want to be able to create, edit and remove purchase order lines, by displaying a table with

all the values and being able to capture information through a form. This will be done as follows:

Create a form that will hold and capture the information for each line's value (description, amount,

unitPrice and total), following the same steps as above. This will be done as follows:

1. Create new form.

Forms

399

Figure 13.23. Create new form

2. Create new data origin.

Forms

400

Figure 13.24. Create new data origin

3. Add fields by origin. All the properties are shown, and can be added to the form, either one

by one or all of them at once.

Figure 13.25. Configure the parent form

4. Customize form. Change display options to improve the form visualization

Forms

401

5. Configure the fields. After creating the basic form structure, we can use a formula to calculate

automatically the total field. This formulas and expressions are described in Formula & expres-

sion section.

Figure 13.26. Configuring formulas

6. Finally, we save the lines form and go back to the parent form and configure all the lines prop-

erties.

Forms

402

Figure 13.27. Configure the parent form

13.3.2.3.4. Formulas

Form Modeler provides a Formula Engine that you can use to automatically calculate field values.

That Formula engine supports Java and XPATH expressions to access the form fields values.

Let’s see some examples.

• Setting a Default value formula

Imagine that you have a form that contains a date field “Creation date” that has to be set by

default with the current date. To do that you should edit the field properties and set a Default

value formula like:

=new java.util.Date();

Forms

403

Figure 13.28. Setting default value formula

After setting a Default formula value on a field properties, when the form is rendered by the first

time the field will have the specified value.

Figure 13.29. Rendering field with default formula

As you can see, you can use a default formula any expression that return a value supported

for the field.

• Setting a Formula

The formula engine allows you to calculate formulas that depend on other Field values using

XPATH expressions to refer to fields values like {a_field_nane}, standard operators (+, -, *, /,

%...) to operate with them or calls to Java Functions for more complex operations.

To start let’s see how you can create a formula to calculate the line_total of a Purchase Order

Line. Look at the image below and look at the formula on the line_total properties.

Forms

404

Figure 13.30. Rendering field with default formula

With this expression:

={line_unitPrice}*{line_amount}

we’re forcing the Total of the line value to be the result of the the Unit price multiplied by the

Amount, so when the user fills the Amount and Unit Price fields automatically the Total Amount

field value is going to be calculated and filled with the operation result:

Figure 13.31. Rendering field with default formula result

Is possible to create formulas to operate with values stored in subforms using expressions like

={a_field/a_subform_field}

Look at the next image to see how it works:

Forms

405

Figure 13.32.

This form has a subform field called po_header that is showing a form with the fields

header_creationDate, header_customer and header_project. We want the Description field on

our parent form to show some information from the header. Look at the Description field prop-

erties formula.

="Customer: " + {po_header/header_customer} + " Project: " + {po_header/header_project}

This formula returns a text when the fields header_customer and header_projects are filled on

the child form, so from now the parent form will be filled like this:

Forms

406

Figure 13.33.

Ok, you’ve seen how to create formulas that access to a subform fields values, now we are

going to see how to work with values stored in Multiple Subforms. Imagine that we have a

Purchase Order Line form that contains a multiple subform of Purchase Order Lines, and we

want to calculate the total amount of the lines created. Look at the image below and how the

TOTAL field is configured.

Forms

407

Figure 13.34.

On the formula expression: ={sum(po_lines/line_total)} we are using the XPATH function

sum() that is going to summarize the totals of all the lines. So after creating some Lines the

form will look like this:

Forms

408

Figure 13.35.

Note that the line_total child field corresponds with the field line_total field on then form selected

as a Default Form selected on the Lines field configuration.

Forms

409

On this sample we are using the sum() XPATH function to calculate the total of the Purchase

Order, but XPATH provides a lot of possibilities to select values from a set of children and also

a lot functions to summarize values (sum, count, avg...). For more information about XPATH

you can take a look at http://www.w3schools.com/xpath/

• Setting a Range Formula

A range formula allows you to let you specify the values that the user can select from an spe-

cific field, showing it like a select box. It can be used on all simple types except Dates and

Checkboxes.

To see how it works look the next image and look at the Review Status field configuration.

Figure 13.36. Setting default value formula

As you can see that field is being shown as a select box and it has a range formula that specifies

the values like this:

{approve,Approve order;reject,Reject order;modifications,Request Modifications}

This expression is defining 3 duos of value/”text to show” separated with the character ‘,’ and

each of this duos is separated from each other other with the ‘;’ character. So due this formula

the resulting select box will show:

Table 13.2.

Value stored in input Text shown on Select Box

approve Approve order

http://www.w3schools.com/xpath/

Forms

410

Value stored in input Text shown on Select Box

reject Reject order

modifications Request Modifications

13.3.2.4. Customizing form layout

When you need an extra customization level and have more control over the HTML that is dis-

played. The form modeler provides the ability to edit the HTML directly.

To use this functionality, the user have to specify that in the ‘Form properties’ tab, 'Custom form

layout' option and save.

Now the form is displayed with the custom HTML. To access this HTML editing, we click on the

icon 'Edit'

The HTML editor is displayed; the HTML code will define how the form has to be shown. In this

editor the user can directly create the HTML i locate the fields and labels with the syntax described

below:

$field{fieldName} for field identified fieldName

$label{fieldName} for field identified fieldName label

These expressions will be replaced by the field or label rendering when the form will be shown.

Form modeler also provides two ways to help in the form HTML creation.

• 'Insert form elements'

Two select: one for the fields and another for the labels. Clicking on that, the field or label text

is added to HTML. These selects only show the form fields haven’t been added yet.

• 'Generate template based on'

This functionality generates the HTML using all fields (default, alignment fields or Not aligned)

depending on the selected value and overwrite the HTML.

13.3.3. Field types

There are three types of field types that you can use to model your form:

• Simple types

These field types are used to represent simple properties like texts, numeric, dates, etc. The

supported Field types are:

Forms

411

Table 13.3. Field types

Name Description Java Type Default on generat-

ed forms

Short Text Simple input to enter

short texts.

java.lang.String yes

Long Text Text area to enter

long text.

java.lang.String no

Rich Text HTMLEditor to enter

formatted texts .

java.lang.String no

Email Simple input to enter

short text with email

pattern.

java.lang.String no

Float Input to enter short

decimals.

java.lang.Float yes

Decimal Input to enter number

with decimals.

java.lang.Double yes

BigDecimal Input to enter big

decimal numbers.

java.math.BigDecimal yes

BigInteger Input to enter big in-

tegers.

java.math.BigInteger yes

Short Input to enter short

integers

java.lang.Short yes

Integer Input to enter inte-

gers.

java.lang.Integer yes

Long Integer Input to enter long in-

tegers

java.lang.Long yes

Checkbox Checkbox to enter

true/false values

java.lang.Boolean yes

Timestamp Input to enter date &

time values

java.util.Date yes

Short Date Input to enter date

values.

java.util.Date no

Document File input to upload

documents.

org.jbpm.document.Documentyes

• Complex types

Forms

412

These field types are made to deal with properties that are Java Objects instead of basic types.

These field types need extra forms to be created in order to show and write values onto the

specified Java Object/s

Table 13.4. Complex types

Name Description Java Type Default on generat-

ed forms

Simple subform Renders the a form,

it is used to deal with

1:1 relationships.

java.lang.Object yes

Multiple subform This field type is

used to deal with 1:N

relationships. It al-

lows to create, edit

and delete a set child

Objects.Text area to

enter long text.

java.util.List yes

• Decorators

Decorators are a type of field types that don’t store data in the Object shown on the form. They

can be used with aesthetic purpose

Table 13.5. Decorators

Name Description

HTML label Allows the user to create HTML code that

will be rendered in the form

Separator Renders an HTML separator

13.3.3.1. Custom Field Types

Is possible to extend the platform to add Custom Field Types that make a specific field (of any

type) on the form to look and behave totally different than the standard platform fields. On this

section we will take a look on how to create them and how to configure them.

13.3.3.1.1. How to create Custom Field Types

Basically a Custom Field Type is a Java class that implements the

org.jbpm.formModeler.core.fieldTypes.CustomFieldType interface and is packaged inside inside

a JAR file that is placed on the Application Server classpath or inside the application WAR.

Lets take a look atorg.jbpm.formModeler.core.fieldTypes.CustomFieldType:

Forms

413

package org.jbpm.formModeler.core.fieldTypes;

import java.util.Locale;

import java.util.Map;

/**

* Definition interface for custom fields

*/

public interface CustomFieldType {

 /**

 * This method returns a text definition for the custom type. This text will be shown

 * on the UI to identify the CustomFieldType

 * @param locale The current user locale

 * @return A String that describes the field type on the specified locale.

 */

 public String getDescription(Locale locale);

 /**

 * This method returns a string that contains the HTML code that will be used to show

 * the field value on screen

 * @param value The current field value

 * @param fieldName The field name

 * @param namespace The unique id for the rendered form, it should be used to generate

 * identifiers inside the HTML code.

 * @param required Determines if the field is required or not

 * @param readonly Determines if the field must be shown on read only mode

 * @param params A list of configuration params that can be set on the field

 * configuration screen

 * @return The HTML that will be used to show the field value

 */

 public String getShowHTML(Object value, String fieldName, String namespace,

 boolean required, boolean readonly, String... params);

 /**

 * This method returns a String that contains the HTML code that will show the input

 * view of the field. That will be used to set the field value.

 * @param value The current field value

 * @param fieldName The field name

 * @param namespace The unique id for the rendered form, it should be used to

 * generate identifiers inside the HTML code.

 * @param required Determines if the field is required or not

 * @param readonly Determines if the field must be shown on read only mode

 * @param params A list of configuration params that can be set on the field

 * configuration screen

 * @return The HTML code that will be used to show the input view of the field.

 */

 public String getInputHTML(Object value, String fieldName, String namespace,

 boolean required, boolean readonly, String... params);

 /**

 * This method is used to obtain the field value from the submitted values.

 * @param requestParameters A Map containing the request parameters for the

 * submitted form

 * @param requestFiles A Map containing the java.io.Files uploaded on the request

 * @param fieldName The field name

 * @param namespace The unique id for the rendered form, it should be used to generate

 * identifiers inside the HTML code.

Forms

414

 * @param previousValue The previous value of the current field

 * @param required Determines if the field is required or not

 * @param readonly Determines if the field must be shown on read only mode

 * @param params A list of configuration params that can be set on the field

 * configuration screen

 * @return The value of the field based on the submitted form values.

 */

 public Object getValue(Map requestParameters, Map requestFiles, String fieldName,

 String namespace, Object previousValue, boolean required, boolean readonly,

 String... params);

}

As you can see this Interface defines the methods that determines how the field has to be

shown on the screen for when the form is shown on insert(getInputHTML(...)) or readonly

(getShowHTML(...)) mode. It also provides the method (getValue(...)) that reads the needed pa-

rameters from the request and to obtain the correct field value. Te returned value type must match

with the type of the field added on the form.

13.3.3.1.2. Configuring and using Custom Field Types

Now let's see how to use and configure and use a Custom Field type. Following the example on

the previous chapter, we have created a File Input type and we have it already installed on our

application. So now we are going to create a new form and add a Short Text property and turn it

into a File Input and edit the field properties changing the Field Type from Short text toCustom field.

Figure 13.37. Changing a field type toCustom field

After changing the field type a new set of properties will appear:

Forms

415

Figure 13.38. Custom field properties configuration form

Forms

416

Table 13.6. Custom field properties

Property Description

Field type Can change the field type to other compatible

field types

Field Name Will be used as identifier in formulas calcula-

tion

Label The text that will be shown as field label

Custom field A list containing all the Custom Field Types

available on the platform

First parameter A String parameter that can be user to pass

custom configuration needed by the Custom

Field Type implementation

Second parameter A String parameter that can be user to pass

custom configuration needed by the Custom

Field Type implementation

Third parameter A String parameter that can be user to pass

custom configuration needed by the Custom

Field Type implementation

Fourth parameter A String parameter that can be user to pass

custom configuration needed by the Custom

Field Type implementation

Fifth parameter A String parameter that can be user to pass

custom configuration needed by the Custom

Field Type implementation

Required Indicates if it’s mandatory to fill this field.

Read Only When this check is on, the field will be used

only for read

Input binding expression This expression defines the link between field

and process task input variable. It will be used

in runtime to set the field value with that task

input variable data.

Output binding expression This expression defines the link between field

and process task output variable. It will be

used in runtime to set that task output vari-

able.

So opening the Custom field select box we'll be able to select the File Input from the available

custom types:

Forms

417

Figure 13.39. Available custom types

Forms

418

After selecting the File Input type on the list and saving the field properties the form will look like:

Figure 13.40. Custom type display in a form

If we build a simple process and configure a Short text to be shown as the sampleFile Input, if

we build the project on runtime the field will behave uploading the chosen files to the server and

allowing the user to download it like this:

Figure 13.41. Choosing the file to upload

Forms

419

Figure 13.42. File uploaded, showing the download link

If we take a look at what's the process variable value, we'll see that is storing a String with the

file path stored in server.

Figure 13.43. Process variable storing custom type results

13.4. Document attachments

On this section we are going to describe step by step how to attach documents to your process

variables from your forms and how you can configure to store the uploaded documents anywhere

(File System, Data Base, Alfresco...) using the Pluggable Variable Persistence.

13.4.1. Process and forms configuration

To make your process manage documents you have to define your process variables as usual

using the Custom Type org.jbpm.document.Document. Each variable defined as Document will

be shown on the form as a FILE input.

Forms

420

Figure 13.44. Defining a document variable

When the process forms are genereated and a org.jbpm.document.Document variable si found

a File input will be placed on the form.

Forms

421

Figure 13.45. Form generated showing a org.jbpm.document.Document input

Each time a document is uploaded using a form the Form Engine will generate an instance of

org.jbpm.document.Document to be stored on the process variable.

13.4.2. Marshalling strategy and deployment configuration

In order to store the document using the Pluggable Variable Persistence you'll have to define your

Marshalling Strategy to manage the uploaded Documents. To start create a Maven project with

your favourite IDE and add the following dependencies:

<dependency>

 <groupId>org.kie</groupId>

 <artifactId>kie-api</artifactId>

 <version>{version}</version>

</dependency>

<dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-document</artifactId>

 <version>{version}</version>

</dependency>

Forms

422

Once you did that is time to create your Document Marshalling Strategy, to do so you just have

to create a class that extends:

package org.jbpm.document.marshalling;

public abstract class AbstractDocumentMarshallingStrategy implements ObjectMarshallingStrategy {

 public abstract Document buildDocument(String name, long size, Date lastModified, Map<String, String> params);

 public void write(ObjectOutputStream os, Object object)

 throws IOException;

 public Object read(ObjectInputStream os)

 throws IOException, ClassNotFoundException;

 public byte[] marshal(Context context, ObjectOutputStream os, Object object)

 throws IOException;

 public Object unmarshal(Context context, ObjectInputStream is, byte[] object,

 ClassLoader classloader) throws IOException, ClassNotFoundException;

 public Context createContext();

}

The methods to implement are:

• Document buildDocument(String name, long size, Date lastModified, Map<String,

String> params): Creates a valid Document instance with the data received. This method is

called when a document is uploaded to create the Document instance before marshalling the

document content.

• byte[] marshal(Context context, ObjectOutputStream os, Object object): Marshals the

given object and returns the marshalled object as byte[]

• Object unmarshal(Context context, ObjectInputStream is, byte[] object, ClassLoader

classloader): Reads the object received as byte[] and returns the unmarshalled object

• void write(ObjectOutputStream os, Object object): Implement for backguards compatibil-

ity, it should do the same functionallity than byte[] marshal(Context context, ObjectOut-

putStream os, Object object)

• Object read(ObjectInputStream os): Implement for backguards compatibility, it should do the

same functionallity than Object unmarshal(Context context, ObjectInputStream is, byte[]

object, ClassLoader classloader)

You can see how the default DocumentMarshallingStrategy is implemented looking at

this link [https://github.com/droolsjbpm/jbpm/blob/master/jbpm-document/src/main/java/org/jbpm/

document/marshalling/DocumentMarshallingStrategy.java].

https://github.com/droolsjbpm/jbpm/blob/master/jbpm-document/src/main/java/org/jbpm/document/marshalling/DocumentMarshallingStrategy.java
https://github.com/droolsjbpm/jbpm/blob/master/jbpm-document/src/main/java/org/jbpm/document/marshalling/DocumentMarshallingStrategy.java
https://github.com/droolsjbpm/jbpm/blob/master/jbpm-document/src/main/java/org/jbpm/document/marshalling/DocumentMarshallingStrategy.java

Forms

423

After creating your Document Marshalling Strategy and add it to your server classpath the on-

ly thing remaining is to configure your project deployment descriptor add it to the marshalling

strategies list. To do it you just have to open the Kie-Workbench on your browser, open your

project on the Authoring view and edit the kie-deployment-descriptor.xml file located on <your-

project>/src/main/resources/META-INF and add your Document Marshalling Strategy to the

<marshalling-strategies> list like this:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<deployment-descriptor

 xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <persistence-unit>org.jbpm.domain</persistence-unit>

 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>

 <audit-mode>JPA</audit-mode>

 <persistence-mode>JPA</persistence-mode>

 <runtime-strategy>SINGLETON</runtime-strategy>

 <marshalling-strategies>

 <marshalling-strategy>

 <resolver>reflection</resolver>

 <identifier>

 org.jbpm.document.marshalling.DocumentMarshallingStrategy

 </identifier>

 </marshalling-strategy>

 </marshalling-strategies>

 <event-listeners/>

 <task-event-listeners/>

 <globals/>

 <work-item-handlers/>

 <environment-entries/>

 <configurations/>

 <required-roles/>

</deployment-descriptor>

Since this is done you're able to build your project and upload your documents on your process.

Figure 13.46. File input before file is uploaded

Forms

424

Figure 13.47. File input with an uploaded file

Note

On this example we are configuring the default DocumentMarshallingStrategy,

please use it for test and demo purposes.

13.5. Using forms on client applications

This chapter intends to describe how you can embed process forms and interact with them on

another webapp including the new Javascript API provided by the platform.

You can find the library inside the kie-wb-*.war on the js file located on js/jbpm-forms-rest-

integration.js.

13.5.1. What does the API provides?

This JavaScript API tries to be a simple mechanism to use forms on remote applications allowing

to load the forms from different KIE Workbench instances, submit them, launch processes/tasks

and execute callback functions when the actions are done.

The basic methods are:

showStartProcessForm(hostUrl, deploymentId, processId, divId, onsuccessCallback, on-

errorCallback): Makes a call to the REST endpoint to obtain the form URL and if it gets a valid

response will embed the process start form on the given div. The parameteres needed are:

• hostURL: the URL of the KIE Workbench instance that holds the deployments.

• deploymentId: the deployment identifier that contains the process to run.

• processId: the identifier of the process to run.

• divId: the identifier of the div that has to contain the form.

• onsuccessCallback (optional): a javascript function that will be executed if the form is going

to be rendered. This function will receive the server response as a parameter

Forms

425

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to render the form. This function will receive the server response as

a parameter

startProcess(divId, onsuccessCallback, onerrorCallback): Submits the form loaded on the

given div and starts the process. The parameteres needed are:

• divId: the identifier of the div that to contains the form.

• onsuccessCallback (optional): a javascript function that will be executed after the process

is started. This function will receive the server response as a parameter

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to start the process. This function will receive the server response as

a parameter

showTaskForm(hostUrl, taskId, divId, onsuccessCallback, onerrorCallback): Makes a call

to the REST endpoint to obtain the form URL and if it gets a valid response will embed the task

form on the given div. The parameteres needed are:

• hostURL: the URL of the KIE Workbench instance that holds the deployments.

• taskId: the identifier of the task to show the form.

• divId: the identifier of the div that has to contain the form.

• onsuccessCallback (optional): a javascript function that will be executed if the form is going

to be rendered. This function will receive the server response as a parameter

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to render the form. This function will receive the server response as

a parameter

claimTask(divId, onsuccessCallback, onerrorCallback): Claims the task whose form is being

rendered

• divId: the identifier of the div that contains the form.

• onsuccessCallback (optional): a javascript function that will be executed after the task is

claimed. This function will receive the server response as a parameter

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to claim the task. This function will receive the server response as a

parameter

startTask(divId, onsuccessCallback, onerrorCallback): Starts the task whose form is being

rendered

• divId: the identifier of the div that contains the form.

Forms

426

• onsuccessCallback (optional): a javascript function that will be executed after the task is

started. This function will receive the server response as a parameter

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to start the task. This function will receive the server response as a

parameter

releaseTask(divId, onsuccessCallback, onerrorCallback): Releases the task whose form is

being rendered

• divId: the identifier of the div that contains the form.

• onsuccessCallback (optional): a javascript function that will be executed after the task is

released. This function will receive the server response as a parameter

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to release the task. This function will receive the server response as

a parameter

saveTask(divId, onsuccessCallback, onerrorCallback): Submits the form and saves the state

of the task whose form is being rendered

• divId: the identifier of the div that contains the form.

• onsuccessCallback (optional): a javascript function that will be executed after the task is

saved. This function will receive the server response as a parameter

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to save the task. This function will receive the server response as a

parameter

completeTask(divId, onsuccessCallback, onerrorCallback): Submits the form and completes

task whose form is being rendered

• divId: the identifier of the div that contains the form.

• onsuccessCallback (optional): a javascript function that will be executed after the task is

completed. This function will receive the server response as a parameter

• onerrorCallback (optional): a javascript function that will be executed if any error occurs

and it is impossible to complete the task. This function will receive the server response as

a parameter

clearContainer(divId): Cleans the div content and the related data stored on the component.

• divId: the identifier of the div that contains the form.

13.5.2. Sample usage

Now let's see an example how you can use the library to load the HR process form and start a new

process instance. We are going to define a HTML page that will contain very simple components:

Forms

427

• "Show Process Form" BUTTON: The button that is going to make a call to a showProcessForm()

function to embedd the process form.

• "myform" DIV: the div that will containt the form

• "Start Process" BUTTON: the button that will call the startProcess() function that submits the

form and start a new process instance. At the begining it will be hidden and only will be displayed

when the form is going to be rendered.

First we are look at the HTML code:

<head>

 <script src="js/jbpm-forms-rest-integration.js"></script>

 <script>

 var formsAPI = new jBPMFormsAPI();

 </script>

</head>

<body>

 <input type="button" id="showformButton"

 value="Show Process Form" onclick="showProcessForm()">

 <p/>

 <div id="myform" style="border: solid black 1px; width: 500px; height: 200px;">

 </div>

 <p/>

 <input type="button" id="startprocessButton"

 style="display: none;" value="Start Process" onclick="startProcess()">

</body>

Notice that in first place we have added the js library and created an instance of the jBPMFormsAPI

object that will manage the form rendering.

Now let's see how the showProcessForm() function looks like:

function showProcessForm() {

 var onsuccessCallback = function(response) {

 document.getElementById("showformButton").style.display = "none";

 document.getElementById("startprocessButton").style.display = "block";

 }

 var onerrorCallback = function(errorMessage) {

 alert("Unable to load the form, something wrong happened: " + errorMessage);

 formsAPI.clearContainer("myform");

 }

 formsAPI.showStartProcessForm("http://localhost:8080/kie-wb/", "org.jbpm:HR:1.0", "hiring",

 "myform", onsuccessCallback, onerrorCallback);

}

As you can see, first we are defining the callback functions:

Forms

428

onsuccessCallback: This function is going to be called when the call to the REST endpoint and

the form is going to be rendered. On this example we simply hide the "Show Process Form" button

and show the "Start Process" button in order to allow to submit the form and start the process. This

function takes as a parameter the response of the REST call to inform the user that everything

gone well.

onerrorCallback: This function is going to be called if any error occurs (e.g. any communication

error with the REST endpoint or unexpected js errors) On this example we simply show an alert

showing the error message received and clear the "myform" DIV status.

Once we defined the callback function we proceed to call the

formsAPI.showStartProcessForm(...) that is going make the REST call and embedd the form

inside the specified div. Notice that we are providing a bunch of information in order to load the

form, the URL where the KIE-Workbench is running (in this example "http://localhost:8080/kie-

wb/"), the deployment where the process is located ("org.jbpm:HR:1.0"), the process id ("hiring"),

the DIV id that is going to contain the form ("myform") and the callback functions (onsuccessCall-

back and onerrorCallback).

Now let's take a look at the startProcess() that is the one that is going to submit the form and

start the process:

function startProcess() {

 var onsuccessCallback = function(response) {

 document.getElementById("showformButton").style.display = "block";

 document.getElementById("startprocessButton").style.display = "none";

 formsAPI.clearContainer("myform");

 alert(response);

 }

 var onerrorCallback = function(response) {

 document.getElementById("showformButton").style.display = "block";

 document.getElementById("startprocessButton").style.display = "none";

 formsAPI.clearContainer("myform");

 alert("Unable to start the process, something wrong happened: " + response);

 }

 formsAPI.startProcess("myform", onsuccessCallback, onerrorCallback);

}

As showProcessForm(), first we are defining the callback functions. Both are doing basically

the same:

• Show the "Show Process Form" button and hide the "Start Process" button to allow start another

process instance.

• Clear the "myform" DIV status

• Show an alert with the response notifying that the process has started well or if an error occured

Forms

429

Once that is done we just do the call to the formsAPI.startProcess(...) that will send a message

to the component that renders the form inside the "myform" DIV and will exectue the callback

functions when the action is done. Notice that we don't need the provide any other information

than the DIV that contains the form and optionally the callback functions.

With a simple code like this you'll be able to run process/task forms that are located on different

Kie-Workbench instances from any other application.

Figure 13.48. Using forms on client applications I: Before showing the form

Forms

430

Figure 13.49. Using forms on client applications II: Showing the process

form

Figure 13.50. Using forms on client applications III: After process started

431

Chapter 14. Runtime Management

14.1. Deployments

In version 5.x processes were stored in so called packages produced by Guvnor and next down-

loaded by jbpm console for execution using KnowledgeAgent. Alternatively one could drop their

process files (bpmn2 files) into a predefined directory that was scanned on the jbpm console start.

That was it. That enforces users to always use Guvnor when dynamic deployment was needed.

Although there is nothing wrong with it, actually that was recommended approach but not every-

time it was desired.

Version 6, on the other hand moves away from proprietary packages in favor of, well known and

mature, Apache Maven based packaging - known as knowledge archives - kjar. Processes, rules

etc (aka business assets) are now part of a simple jar file built and managed by Maven. Along the

business assets, java classes and other file types are stored in the jar file too. Moreover, as any

other maven artifact, kjar can have defined dependencies on other artifacts including other kjars.

What makes the kjar special when compared with regular jars is a single descriptor file kept inside

META-INF directory of the kjar - kmodule.xml. That descriptor allows to define:

• knowledge bases and their properties

• knowledge sessions and their properties

• work item handlers

• event listeners

By default, this descriptor is empty (just kmodule root element) and is considered as marker

file. Whenever a runtime component (such as jbpm console) is about to process kjar it looks up

kmodule.xml to build its runtime representation. In addition to kmodule.xml a deployment descrip-

tor (that provides fine graind control over deployment) is available (since 6.1).

14.1.1. Deployment descriptors

While kmodule is mainly targeting on knowledge base and knowledge session basic configura-

tion, deployment descriptors are considered more technical configuration. Following are the items

available for configuration via deployment descriptors:

• persistence unit name for runtime data

• persistence unit for audit data

• persistence mode (JPA or NONE)

Runtime Management

432

• audit mode (JPA, JMS, NONE)

• runtime strategy (SINGLETON, PER_REQUEST, PER_PROCESS_INSTANCE)

• list of event listeners to be registered

• list of task event listeners to be registered

• list of work item handlers to be registered

• list of globals to be registered

• marshalling strategies to be registered (for pluggable variable persistence)

• required roles to be granted access to resources of the kjar

• additional configuration options of knowledge session

• additional environment entries for knowledge session

• list of fully qualified class names that shall be added to the classes used for serialization by

remote services

• whether or not to limit the classes from the deployment used for serialization by the remote

services

Deployment descriptor is an xml file that is placed inside META-INF folder of the kjar, although it

is an optional file and deployments will succeed even when such descriptor is missing.

<deployment-descriptor xsi:schemaLocation="http://www.jboss.org/jbpm deployment-descriptor.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <persistence-unit>org.jbpm.domain</persistence-unit>

 <audit-persistence-unit>org.jbpm.domain</audit-persistence-unit>

 <audit-mode>JPA</audit-mode>

 <persistence-mode>JPA</persistence-mode>

 <runtime-strategy>PER_PROCESS_INSTANCE</runtime-strategy>

 <marshalling-strategies/>

 <event-listeners/>

 <task-event-listeners/>

 <globals/>

 <work-item-handlers/>

 <environment-entries/>

 <configurations/>

 <required-roles/>

 <remoteable-classes/>

 <limit-serialization-classes/>

</deployment-descriptor>

It provides more configuration options then the standard deployment has. Deployment descriptors

are used in hierarchical way meaning they can be placed on various levels of the system and

merged on runtime. jBPM supports following levels of deployment descriptors:

Runtime Management

433

• server level - this is the main and considered default deployment descriptos that apply to all

deployments on given server

• kjar level - this is dedicated deployment descriptor to given kjar

• deploy time level - this is deployment descriptor that is given at the time of deployment

Deployment descriptors on different levels are merged on deployment time where the master is

considered descriptor lower in the hierarchy and slave one that is higher in hierarchy. To give

an example, when a kjar is deployed and it contains deployment descriptor kjar's deployment

descriptor is considered slave and server level descriptor is considered master. With default merge

mode it will override all master entries with slave ones as long as they are not empty and combine

all collections.

Since kjar can have dependencies to other kjars, and in turn that dependencies might have de-

ployment descriptors as well, they will be placed in deployment descriptors hierarchy lower than

the actual kjar that is being deployed. With that said, this is how it will look like from hierarchy

point of view, starting with master (server level):

• server level

• dependency kjar level

• kjar level

That in default merging mode will result in deployment descriptor where with non empty values

from kjar's deployment descriptors and merged collection from all levels.

So far all merging was done with default mode, which is MERGE_COLLECTIONS but that's not

the only mode that is available:

• KEEP_ALL - meaning that the master wins - all configuration defined in master will be retained

• OVERRIDE_ALL - meaning that slave wins - all configuration defined in master will be retained

• OVERRIDE_EMPTY - meaning all non empty configuration items from slave will replace those

in master, including collections

• MERGE_COLLECTIONS - meaning all non empty configuration items from slave will replace

those in master but collections will me merged (combined)

Tip

Deployment descriptos can be given as partial xml documents, meaning they do

not need to be complete set of all configuration items, e.g. if user would like to

override only the audit mode in kjar, it's enough to have following deployment de-

scriptor:

Runtime Management

434

<?xml version="1.0" encoding="UTF-8" standalone="yes"?><deployment-

descriptor xsi:schemaLocation="http://www.jboss.org/jbpm deployment-

descriptor.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <audit-

mode>JPA</audit-mode></deployment-descriptor>

><deployment-descriptor xsi:schemaLocation="http://www.jboss.org/jbpm

deployment-descriptor.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"> <audit-mode>JPA</audit-

mode></deployment-

Although it's worth noting that when using OVERRIDE_ALL merge mode all con-

figuration items should be specified since it will always use them and do not merge

with any other deployment descriptor in the hierarchy.

Default deployment descriptor

There is always default deployment descriptor available, even if it was not explicitly configured,

when running in jbpm-console (kie-workbench) the default values are as follows:

• persistence-unit is set to org.jbpm.domain

• audit-persistence-unit is set to org.jbpm.domain

• persistence-mode is set to JPA

• audit-mode is set to JPA

• runtime-strategy is set to SINGLETON

• all collection based configuration items are left empty

Note

Regardless of collection elements in default deployment descriptor are empty there

will be some work item handlers/listeners registered that are required to support

functionality of the jbpm console such as BAM listeners or human task work item

handler.

Default deployment descriptor can be altered by specifying valid URL location to an xml file that

will provide fully defined deployment descriptor. By fully defined we mean that all elements should

be specified as this deployment descriptor will become server level deployment descriptor.

-Dorg.kie.deployment.desc.location=file:/my/custom/location/deployment-descriptor.xml

Collection configuration items

Runtime Management

435

Deployment descriptor consists of collection based items (event listeners, work item handlers,

globals, etc) that usually require definition of an object that should be created on runtime. There

are two types of collection based configuration items:

• object model - that is clear definition of the object to be built or looked up in available registry

• named object model - that is an extension to object model and allows to provide name of the

object which will be used to register object

Object model consits of:

• identifier - defines main information about the object, such as fully qualified class name, spring

bean id, mvel expression

• parameters - optional parameters that should be used while creating object instance from the

model

• resolver - identifier of the resolver that will be used to create object instances from the model

- (reflection, mvel, spring)

Table 14.1. Object models

Configuration item Type of collection items

event-listeners ObjectModel

task-event-listeners ObjectModel

marshalling-strategies ObjectModel

work-item-handlers NamedObjectModel

globals NamedObjectModel

environment-entries NamedObjectModel

configurations NamedObjectModel

required-roles String

Depending on resolver type, creation or look up of the object will be performed. The default (and

easiest) is reflection that will use both parameters and identifier (in this case is FQCN) to construct

the object. Parameters in this case can be String or another object model for representing other

types than String. Following is an example of an object model that will create an instance of

org.jbpm.test.CustomStrategy using reflection resolver that will use constructor of that class with

two String parameters. Note that String paramaters are created with different ways (using object

model - first param, directly by giving String - second param).

Example 14.1.

...

<marshalling-strategy>

Runtime Management

436

 <resolver>reflection</resolver>

 <identifier>org.jbpm.test.CustomStrategy</identifier>

 <parameters>

 <parameter xsi:type="objectModel">

 <resolver>reflection</resolver>

 <identifier>java.lang.String</identifier>

 <parameters>

 <parameter xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema">param1</

parameter>

 </parameters>

 </parameter>

 <parameter xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema">param2</

parameter>

 </parameters>

</marshalling-strategy>

...

Same can be done by using DeploymentDescriptor fluent API:

// create instance of DeploymentDescriptor with default persistence unit

 nameDeploymentDescriptor descriptor = new DeploymentDescriptorImpl("org.jbpm.domain");//

 get builder and modify the descriptor descriptor.getBuilder().addMarshalingStrategy(new

 ObjectModel("org.jbpm.testCustomStrategy", new Object[]{ new

 ObjectModel("java.lang.String", new Object[]{"param1"}), "param2"}));

default persistence unit

nameDeploymentDescriptor descriptor = new DeploymentDescriptorImpl("org.jbpm.domain");// get builder

and modify

the descriptor descriptor.getBuilder().addMarshalingStrategy(new

 ObjectModel("org.jbpm.testCustomStrategy", new Object[]{

 new

Reflection based object model resolver is the most verbose in case there are parameters involved

but there are few parameters that are available out of the box and do not need to be created, they

are simply referenced by name:

• entityManagerFactory (type of this parameter is javax.persistence.EntityManagerFactory)

• runtimeManager (type of this parameter is org.kie.api.runtime.manager.RuntimeManager)

• kieSession (type of this parameter is org.kie.api.KieServices)

• taskService (type of this parameter is org.kie.api.task.TaskService)

• executorService (type of this parameter is org.kie.internal.executor.api.ExecutorService)

So to be able to use one of these it's enough to reference them by name and make sure that

proper object type is used within your class:

...

Runtime Management

437

<marshalling-strategy>

 <resolver>reflection</resolver>

 <identifier>org.jbpm.test.CustomStrategy</identifier>

 <parameters>

 <parameter xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/

XMLSchema">runtimeManager</parameter>

 </parameters>

</marshalling-strategy>

...

In case reflection based resolver is not enough, more advanced resolver can be used that utilizes

power of MVEL language. It's much easier in the configuration as it expects mvel expression as

identifier of the object model. It will provide the out of the box parameters (listed above: runtime

manager, kie session, etc) into the mvel context while evaluating expression. To define object

model with mvel resolver use following xml (that will be equivalent to replection based above):

...

<marshalling-strategy>

 <resolver>mvel</resolver>

 <identifier>new org.jbpm.test.CustomStrategy(runtimeManager)</identifier>

</marshalling-strategy>

...

Last but not least, there is Spring based resolver available as well that allows to simply look up

a bean by its identifier from spring application context. This resolver is not used in jbpm console

(kie-workbench) as it does not use spring but whenever jBPM is used together with Spring it

might become handy when deploying kjars into the runtime. It's very simple definition in xml,

again equivalent to the other one assuming org.jbpm.test.CustomStrategy is registered in spring

application context under customStrategy id.

...

<marshalling-strategy>

 <resolver>spring</resolver>

 <identifier>customStrategy</identifier>

</marshalling-strategy>

...

Manage deployment descriptor

Deployment descriptor is created as soon as project is created. It does contins the most basic

deployment descriptor that is based on the default one. Meaning all settings present in default de-

ployment descriptor will be copied into the one placed in the project. Further changes can be done

directly in the xml content (in next versions more user friendly editor will most likely be provided).

It is accessible from Administration perspecitve as this is considered technical administration task

rather than business related activity.

Runtime Management

438

Restrict access to runtime engine

jbpm console (kie-workbench) provides access restriction to repositories that can be configured

with supplementary tool called kie-config-cli. This protects repositories in the authoring perspsec-

tive based on roles membership. Deployment descriptors moves this capability to the runtime

engine by ensuring that access to processes will be granted only to users that belong to groups

defined in the deployment descriptor as required roles. By default when project is created (at

the same time deployment descriptor is created as well) required roles are automatically filled in

based on repository restrictions. These roles can be still altered by editing deployment descriptor

via Administration perspective as presented in Manage deployment descriptor section.

Security is enforced on two levels:

• user interface - user will see only process definitions that are available for his/her roles

• runtime manager - each access to get RuntimeEngine out of RuntimeManager is pretected

based on the role membership, in case unauthorized access it attempted SecurityException

will be thrown

Required roles are defined as simple strings that should match actual roles defined in security

realm. Following is a xml snippet that shows definition of required roles in deployment descriptor:

<deployment-descriptor>... <required-roles> <required-role>experts</required-role>

 </required-roles>...</deployment-descriptor>

ment-

descriptor>...

 <required-roles>

<required-role>experts</required-role>

</required-roles>

In case fine grained control is required defined roles can be prefixed with one of the following to

control it on further level:

Runtime Management

439

• view:

to restrict access to be able to see given process definitions/instances on UI

• executre:

to restrict access to be able to execute given process definitions

• all:

applies to both view and execute restrictions and this is the default when no prefix is given.

For example to restrict access to show process from given kjar only to group 'management' but

still allow them to be executed by anyone (sort of system processes) one could define it as follows:

<deployment-descriptor>

...

 <required-roles>

 <required-role>view:management</required-role>

 </required-roles>

...

</deployment-descriptor>

Classes used for serialization in the remote services

When processes make use of custom types (or in general non promitive types) and there is a use

case to include remote api invocations (REST, SOAP, JMS) such types must be available to the

remote services marshalling mechanism that is based on JAXB for XML type. By default all types

defined in kjar will be automatically included in JAXB context and therefore will be avialble for

remote interaction. Though there might be more classes (like from dependent model) that shall

be included there too.

Upon deployment, jBPM will scan classpath of given kjar to automatically register classes that

might be needed for remote interaction. This is done based on following rules:

• all classes included in kjar project itself

• all classes included as dependency of projects type kjar

• classes that are annotated with @XmlRootElement (JAXB annotation) and included as regular

dependency of the kjar

• classes that are annotated with @Remotable (kie annotation) and included as regular depen-

dency of the kjar

If that is not enough deployment descriptor allows to manually specify classes that shall be added

to the JAXB context via remoteable-classes element:

Runtime Management

440

<remoteable-classes> ... <remotable-class>org.jbpm.test.CustomClass</remotable-class>

 <remotable-class>org.jbpm.test.AnotherCustomClass</remotable-class> ...</remoteable-classes>

able-classes>

 ... <remotable-

class>org.jbpm.test.CustomClass</remotable-class> <remotable-

class>org.jbpm.test.AnotherCustomClass</remotable-class>

 ...

With this all classes can be added to the JAXB context to properly marshal and unmarshal data

types when interacting with jBPM remotely.

Limiting classes usd for serialization in the remote services

When there are classes in the kjar project or in the dependencies of the kjar project that woudl

cause problems when used for serialization, the limit-serialization-classes property can

be used to limit which classes are used for serialization

<limit-serialization-classes>true</limit-serialization-classes>

This property limits classes used for serialization to classes which fulfill both of the following "lo-

cation" and "annotation" criteria:

Classes that:

1. are located in the kjar project

2. are in a direct dependency of the kjar project

3. are listed in the remoteable-classes element and are available on the classpath of the kjar

These classes must also be annotated with one of the following type annotations:

• javax.xml.bind.annotation.XmlRootElement

• javax.xml.bind.annotation.XmlType

• org.kie.api.remote.Remotable

Additionally, classes will be excluded if they are any of the following: interfaces, local classes,

member classes or anonymous classes.

14.2. Process Deployments

You can access to the Process Deployments List under the Deploy top level menu of the KIE

Workbench

Runtime Management

441

The Deployed Unit list shows all the Process Deployed Units into the platform that are already

enabled to be used. Each deployment unit can contain multiple business processes and business

rules. In order to have your process and rules deployed and listed in this list, you need ot Build

and Deploy your KIE projects from the Authoring Perspective or via the Remote Endpoints. If your

processes and rules are in a KIE Project listed in this list and you have correspondent the rights

you should be able to see the process definitions in the Process Definitions Perspective.

From the Authoring Perspective (Build and Deploy), a default deployment will be performed, for

a more advanced deployments you can trigger a custom deployment with other options from this

screen.

Runtime Management

442

By clicking the New Deployment Unit (+) button you will be able to select a different KIE Base, KIE

Session, Strategy and Merge Mode for your deployment. By default the "DEFAULT" KIE Base

and KIE Sessions are used, the SINGLETON Strategy is selected and the Merge Mode is set to

"Merge Collection".

14.3. Jobs

The Jobs perspective allows you to monitor and trigger Asynchronous Jobs schedulled to the

jBPM Executor Service. You can access to the Jobs List from the Deploy top level menu of the

KIE Workbench.

Runtime Management

443

The Jobs List shows all the Jobs that were schedulled and their status. The Filter on top of the

table helps the administrator to monitor the Jobs execution and take corrective actions in case of

Failure. Check the jBPM Executor section of the documentation for more information.

Administrators have also the option to configure the jBPM Executor Service Settings and to start

and stop the service from the User Interface via the Actions -> Settings option.

Runtime Management

444

Administrators can also schedulle manually new Jobs from the User Interface via the Actions -

> Settings option. By specifing the command class name and the parameters needed to run the

command a new Job can be created. This manually created jobs will not be associated with any

process instance. Notice also that the Due Date paramenter allows the execution to be derrefered

for the future. If the Due Date is the time of schedulling the jBPM Executor Service will execute the

command as soon as there is an Executor Thread available. The number of retries will help the

command to be executed more than once if it fails. This can help in situations when the business

logic requires an external service to be called where the runtime cannot rely on that service to

be available 100% of the time.

445

Chapter 15. Process and Task

Management

15.1. Process Management

This chapter describes the screens related with the creation and management of process defini-

tions and process instances.

Once you have modelled, configured all the technical details and build and deployed your projects

containing your business processes you should be able to see all the available process definitions

in the Process Definition List. For all the process definitions listed in the Process Definitions List

you will be able to inspect the Process Definition details and start as many Process Instances as

needed. The following sections describes the features provided by all the screens in charge of the

manipulation of process definitions and process instances. You can find these screens under the

Process Management Menu, in the jBPM Console NG or in KIE Workbench.

You can find the source code related with the process definition and instances manupi-

lation inside this module: http://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-con-

sole-ng-process-runtime [http://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-con-

sole-ng-process-runtime] Feel free to report issues, send Pull Requests and get in contact with

the team via comments in github.

15.1.1. Process Definitions

The process definition section is composed by two main screens: the Process Definition Lists and

the Process Definition Details.

15.1.1.1. The Process Definition List

The process definition list shows all the available process definitions that were deployed into

the platform. Look at the Deployments section for more information about how to check all the

deploymed units available in the platform runtime.

http://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-process-runtime
http://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-process-runtime
http://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-process-runtime
http://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-process-runtime

Process and Task Management

446

You can click in the list rows to access to the details of the process definition.

15.1.1.2. The Process Definition Details

The process definition details shows all the available information about the process definition. You

can consider this screen as a brief about the process model. You can quickly see if there is a

Sub Process associated with it, or how many users and groups are participating in the selected

definition.

Process and Task Management

447

Notice that you can View the Process Model (Read Only mode) using the Options Menu in the

top bar. You can also look at all the process instances for the selected process definition by going

to Options -> View Process Instances.

Process and Task Management

448

15.1.1.3. Creating Process Instances

You can create new Process Instances from the Process Definition List (Action Column), from the

Process Definition Detail view or from the Process Instance.

When you create a Process Instance usually a Form will be presented to introduce the information

required by the process to be started. Once you complete the required information and click on

the Submit button, the instance will be created and the details of the Process Instance will be

displayed on top of the Process Definition Details.

15.1.2. Process Instances

The process instances section is composed by two main screens: the Process Instance Lists and

the Process Instance Details. In this case the Process Instance Details provides several tabs with

the runtime information related with the process.

Process and Task Management

449

Each row inside the process instance list represent a running process instance from a particular

Process Definition. Each execution is differentiated from all the others by the internal state of the

information that the process is manipulating. In order to inspect this information you can click in

each row to see the process instance details.

As you can see the Process Instance Detail first tab gives you a quick overview about what is going

on inside the process. This is by showing the current state of the instance and also the current

activity that is being executed. The process variables tab display all the process variables that are

being manipulated by the instance with the exception of the variables that contains documents.

Process and Task Management

450

If the process contains a variable of the type: org.jbpm.Document it will be listed in the Documents

tab, for easy access, download and manipulation of the attached documents. Notice that at this

point you cannot attach new documents to currently running instances, but this feature will be

added in future versions.

Process and Task Management

451

Finally, the Logs tab shows two types of logs for different end users. There are two types of Logs

available inside the tab: Business and Technical.

To complement the process logs you can open the Process Model that shows the completed

activies in grey and the current activities highlighted in red.

Process and Task Management

452

15.1.2.2. Process Instance List

This list works with the concept of view. A view is a set of visualization parameters that modify

what items has to be displayed and how the items details has to be shown.

A view embrace

• Columns to be shown

• Items by page

• Restrictions over the displayed process instances

• A Name to be shown at tab name

• A Description as title when the view is selected

We find here different areas with different purposes:Filtering, general section configuration and

specific view parameter setting in the data grid presentation:

15.1.2.2.1. Filtering. Views on tabs

Here, there are the available views as tabs. When a tab is selected, the related parameters are

applied to the data grid. Here we have include the Dataset technology for queries and its queries

editor as a powerful tool to create the filters

The user can remove existing tabs clicking the cross button near the tab name

Process and Task Management

453

A new view can be created clicking the last tab, over the '+' button. A New Items list popup appears

and lets the user introduce parameters related with the new tab like: the name, the description

and the filter.

If the view has to include a restriction over a specific column, then the link 'Add new' has to be

selected. A drop down list with all the columns to create restrictions

Process and Task Management

454

Once the column is selected, depending of its type, a new dropdown list is open with the kind of

restrictions available for the selected column and the necessary form to add them.

One filter can include a list of different conditions over different columns and the editor allow

remove each one clicking th 'x' button near them

Process and Task Management

455

Once the view creation parameters are defined, the 'Ok' button makes the new view appears as

a new tab.

15.1.2.2.2. General section configuration. Auto refresh and default views

restore

In this area, the user can create a new item (in this case process instance), can refresh manually

the view that is being displayed, can configure autorefresh option and can restore default filters.

Auto refresh is a functionality that allows define how often the data grid has to be refresed. The

user can select one of the different values (1,5 or 10 minutes),or disable this feature, clicking

'Disable'. If the auto refresh is enabled, then the last view displayed is refreshed after the amount

of time defined.

The last button is the 'Restore default filters'. There is a set of predefined views that appears the

first time the user access to the section, in the case of process instances list they are: Active,

Complete and Aborted. The user can remove every view includind the default ones, but in this

area the default views can be restored clicking 'Restore default filters'.

15.1.2.2.3. Specific view configuration. Columns, Bulk actions, number of

items

In this area the user can change dynamically the view editable parameters like visible columns,

or set the number of items to show in a page.

Here we have the posibility or execute bulk actions over the items marked as selected. I this case

the available actions are 'Abort' or 'Signal'

Process and Task Management

456

The number of items to show in a page can be configurable too, from the page size dropdown list

15.1.2.2.4. Special filter in process instance list

There is an specific restriction than makes the process instance list view, have a different behav-

iour. This happend when a filter over the column 'PROCESSID' is defined.

In this case, the columns available to show have been incremented with the specified process

variables which have value. The user can then, view process instance variables from a specific

process id, in the same grid of the process instances.

15.2. Tasks

This chapter introduces the Task Management screens and the its integration with the Form

Modeller component to allow users to work on their assigned tasks. You can find the source

code of these screens here: https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-

console-ng-human-tasks [https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-con-

sole-ng-human-tasks] . Feel free to report issues, send Pull Requests and get in contact with the

https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks
https://github.com/droolsjbpm/jbpm-console-ng/tree/master/jbpm-console-ng-human-tasks

Process and Task Management

457

team via comments in github. At the end of this section you will find a technical description about

how to customize these views.

15.2.1. Task List

Every user with access to the platform will have access to its personal task list where tasks as-

signed to him/her will be displayed. Each user will be able to create its own personal tasks or work

on tasks that were create as a result of a business process execution.

You can access to the Task List accessing Tasks main menu:

15.2.1.1. Task List (Personal and Group Tasks)

Pending tasks for each user will be displayed in their task list screen. Notice that you will not be

able to see assigned tasks from another user different from the one that is currenlty logged in.

15.2.1.1.1. Task List

The list will show all the tasks that match with the defined restrictions ordered by the columns

presented. You can change the default ordering clicking on the column header. This view offer a

more traditional BPM Task List view where you can sort the data based on different columns.

Here appears again the concept of view versus just filtering as we explained in the process instante

list. The default views here have the following restrictions over the tasks to show:

Process and Task Management

458

• Active: all the Active tasks that user can work on. That means Personal and Group Tasks.

• Personal: all the personal tasks that already belong to the user.

• Group: all the group tasks that needs to be claimed by the user in order to start working on them.

• All: show all the tasks no matter the status. It will show completed tasks as well with the excep-

tion of completed tasks that belongs to a process that is already finished. In such cases the tasks

are cleaned up after the process is completed and for that reason they will not be displayed.

• Admin: show all the tasks where the currently logged user was set as business administrator

for such task.

Note

The user can always restore the default filters selecting the option 'Restore default

filters'

15.2.1.1.2. Task List custom filters. Ability to show bussiness data at task

list.

As was explained in the process instance list, the user can define custom filters adding new tab

and defining restrictions over task data in this case.

The user can now create a specific filter that provides domain specific columns to be added to

a task list. When the user creates a custom filter for a specific task name the task variables are

enabled as columns.

Figure 15.1. Basic available columns that every task list allows select to be

displayed.

Process and Task Management

459

The custom filter that activates the capability to display task variables as columns is set a filter

with the restriction Name="taskName".

Figure 15.2. Filter by task name creation

When the filter with the restriction over a specific task name is applied, the task associated vari-

ables appear as a selectable columns, to the task list.

Figure 15.3. task list with task name restriction applied

Process and Task Management

460

15.2.1.2. Task Details

You can access to the Task Details by clicking in a task row. The details associated with a task

can be changed, like for example the Due Date, the Priority or the task description.

The task details appear in a new region with different sections that allow view the task associated

information:

Work In this tab the associated form is displayed if the task has one. In this section is where the

user can interact with the process, executing the available actions in each moment.

Details Here the basic task data is accessible: priority, status, description

Process and Task Management

461

Process Context Data related with the process instance associated. If the task was created by

a Business Process, you will have access to see the Process Instance status that has created it.

Assignments The Task Assignments tab allows you to delegate the task to another person or

group if you are not able to continue working on it.

Process and Task Management

462

Comments You can also add while you are working on a task comments about the progress.

15.2.1.3. Work on a Task

Tasks can have associated a Form to store data. If tasks are part of a Business Process, usually

some data needs to be collected and propagated to the business process for further usage. For

that reason, tasks has to provide a way to gather and store data. Forms can be created for specific

tasks using the Form Modeller. If no form is provided a dynamic form will be created based on

the information that the task needs to handle. If a task is created as an ad-hoc task (not related

with any process) there will be no such information to generate a form and only basic actions will

be provided.

Process and Task Management

463

15.2.1.4. Task Forms generated by the Form Modeller

As part of your projects you can model your forms for your human tasks, providing a rich interface

for collecting data. This shows the Form Modeller canvas while designing the previously Task

Form.

15.2.2. New Task (Ad-Hoc Task)

As mentioned in the introduction a User can create their own tasks, which will not be associated

with any Business Process. These tasks can be used to keep track of your personal list of TO

DOs. You can also create tasks and assign them to different people in your team or group.

Process and Task Management

464

At the advanced tab the user can define information like priority or the task due on date.

When a user creates a new task, can associate an existing form. At the 'Form' tab, the deployment

id has to be selected from the list of available deployments id

Process and Task Management

465

In that moment, the next list of form names is filled with the available forms at that deployment.

Once the 'Create' button has been selected, a task is created with the associated form and the

status 'In Progress'. The complete action on task shows the selected form.

466

Chapter 16. Business Activity

Monitoring

16.1. Overview

Imagine you are developing a BPM solution which mixes process with business data. Imagine

also you need some forms to be used within processes in order to let the users enter data. More-

over, you'll likely want to have some kind of dashboards to display metrics and key performance

indicators in order to quickly assess how your processes are doing. So far so good.

jBPM brings you all the ingredients you need to develop end-to-end business process solutions.

The jBPM's BAM module (also known as Dashbuilder) allows for composing custom business

dashboards by mixing data coming from heterogeneous sources of information. The module is

now fully integrated into KIE workbench. A new specific section for dealing with dashboards has

been added and it can be accessed either from the home page or from the menu bar, as shown

in the next figure.

Figure 16.1. BAM menu options in the KIE Workbench home page

In the figure, within the highlighted sections, there exists two options:

• Business Dashboards: This option is intended to give users access to the generic dashboard

tooling either to compose new dashboards or just to consume existing ones.

Business Activity Monitoring

467

• Process & Task Dashboard: It opens up the Process Dashboard perspective which contains

several performance indicators related to the jBPM execution engine.

16.2. Business Dashboards

BPM solutions are not only made up with processes, rules or forms but also with data belonging

to the customer business domain. Such data is handled in the forms, the rules and, of course, the

dashboards that are part of the solution. Usually, dashboards feed with data coming from several

sources of information, from business domain entities persisted into relational databases to data

hold in legacy systems. In order to cope with this kind of scenarios a generic highly customizable

dashboard tooling is needed.

It's obviously expected that a customer building a BPM solution want to track how its processes are

performing. To do so the customer need a monitoring and reporting tool. This is the main reason

why the Dashbuilder project has been included as a core module of the jBPM ecosystem. Notice

also that Dashbuilder, as an independent project, is not only used by jBPM but also by many other

projects like, for example, JBoss Teiid a data virtualization system that allows applications to use

data from multiple, heterogeneous data stores.

Note
Please, read the Dashbuilder book in order to get detailed information about how

to build custom dashboards.

An example of dashboard is the Sales Dashboard which comes built-in any installation of Dash-

builder. Two screenshots below:

Business Activity Monitoring

468

Figure 16.2. Sales opportunities by country

Business Activity Monitoring

469

Figure 16.3. Sales opportunities report table

16.3. Process Dashboard

The jBPM Process Dashboard is an specific use case of a dashboard feed from data coming

from a relational database via SQL queries. In this case, the database tables consumed are:

processinstancelog and bamtasksummary both belonging to the jBPM engine.

Every time the jBPM runtime updates the information stored into such tables the data becomes

automatically available to the dashboard indicators. The following picture shows the main screen

that users get when navigating to the Process & Task Dashboard.

Business Activity Monitoring

470

Figure 16.4. Processes dashboard

Note
Notice, those are generic metrics not tied to any specific business process.

Nonetheless, it's worth to mention that it would be very easy for customers to mod-

ify, extend or adapt this generic dashboard for custom needs. A customer could

take the jBPM Process Dashboard as the base template for building a custom

dashboard which mixes data coming from the jBPM engine plus data coming from

its own business domain.

As you can see there exists two tabs in the top of the screen: Processes and Tasks. As their name

indicates, every tab contains only indicators related to either processes or tasks.

To filter through the data users can click on the charts in order to select, for instance, a given

process, a given status, etc... Every time a filter is applied, all the indicators are automatically

updated and synced according to the criteria set. The next picture shows, for instance, what hap-

pens when both the process Sales and the status Active are selected.

Business Activity Monitoring

471

Figure 16.5. Active Process Filter

Using the built-in filter features is a good way to select the process instances the users want to

look into. Additionally, at any time, no matter whether there is any active filter or not, users can also

navigate to the actual list of instances the dashboard indicators are showing. The Show Instances

link at the top right side on the screen can be used to display those instances. Once clicked, the

view is switched to the screen shown in the next picture:

Business Activity Monitoring

472

Figure 16.6. Process Instance List

From this view, users can sort the instances just by clicking on any column. They can get a detailed

view of a particular instance just by clicking on the desired row as well.

Figure 16.7. Process Instance Details

The process instance details panel is shown on the right of the screen just after clicking on a

row. Notice this is a read only view, just for monitoring purposes. After identifying a target process

instance the next step is to use the jBPM Process Instance Console in case the user needs to

manage such process instance.

Business Activity Monitoring

473

16.3.1. Task Dashboard

To switch from the process view to the task view just click on the Tasks tab at the top of the screen.

Figure 16.8. Task Dashboard

The task view only contains indicators related to tasks. It basically provides the same features

introduced above for process instances (filters, show instances, get details), this time related to

tasks instead of processes though.

Figure 16.9. Task Instance List

Business Activity Monitoring

474

Figure 16.10. Task Instance Details

To sum up, the jBPM Process & Task Dashboard let users:

• To monitor their processes and tasks

• To apply the proper filters in order quickly identify problematic instances

• To get the required information about a given instance in order to be able to fix any unexpected

issue

475

Chapter 17. Remote API
The workbench contains an execution server (for executing processes and tasks), which also

allows you to invoke various process and task related operations through a remote API. As a

result, you can setup your process engine "as a service" and integrate this into your applications

easily by doing remote requests and/or sending the necessary triggers to the execution server

whenever necessary (without the need to embed or manage this as part of your application).

Both a REST and JMS based service are available (which you can use directly), and a Java

remote client allows you to invoke these operations using the existing KieSession and TaskService

interfaces (you also use for local interaction), making remote integration as easy as if you were

interacting with a local process engine.

17.1. Remote Java API

The Remote Java API provides KieSession, TaskService and AuditService interfaces to the

JMS and REST APIs.

The interface implementations provided by the Remote Java API take care of the underlying logic

needed to communicate with the JMS or REST APIs. In other words, these implementations will

allow you to interact with a remote workbench instance (i.e. KIE workbench or the jBPM Console)

via known interfaces such as the KieSession or TaskService interface, without having to deal

with the underlying transport and serialization details.

The first step in interacting with the remote runtime is to use a RemoteRuntimeEngineFactory sta-

tic newRestBuilder(), newJmsBuilder() or newCommandWebServiceClientBuilder() to cre-

ate a builder instance. Use the new builder instance to configure and to create a RuntimeEngine

instance to interact with the server.

Each of the REST, JMS or WebService RemoteClientBuilder instances exposes different meth-

ods that allow the configuration of properties like the base URL of the REST API, JMS queue

locations or timeout while waiting for responses.

The Remote Java API provides clients, not "instances"

While the KieSession, TaskSerivce and AuditService instances provided by the

Remote Java API may "look" and "feel" like local instances of the same interfaces,

please make sure to remember that these instances are only wrappers around a

REST or jMS client that interacts with a remote REST or JMS API.

This means that if a requested operation fails on the server, the Remote Java API

client instance on the client side will throw a RuntimeException indicating that the

REST call failed. This is different from the behaviour of a "real" (or local) instance of

Remote API

476

a KieSession, TaskSerivce and AuditService instance because the exception

the local instances will throw will relate to how the operation failed. Operations on a

Remote Java API client instance that would normally throw other exceptions (such

as the TaskService.claim(taskId, userId) operation when called by a user

who is not a potential owner), will now throw a RuntimeException instead when

the requested operation fails on the server.

Also, while local instances require different handling (such as having to dispose of

a KieSession), client instances provided by the Remote Java API hold no state

and thus do not require any special handling.

Finally, the instances returned by the client KieSession and TaskService in-

stances (for example, process instances or task summaries) are not the same (in-

ternal) objects as used by the core engines. Instead, these returned instances are

simple data transfer objects (DTOs) that implement the same interfaces but are

designed to only return the associated data. Modifying or casting these returned

instances to an internal implementation class will not succeed.

Creating a Remote Java Client Instance

The following is a simple example of creating a REST-based client. The appName variable

in the code below will be either "business-central" or "kie-wb" dependending on whether

you’re using product or community.

 String deploymentId = "com.burns.reactor:homer:1.0";

 String serverInstanceUrl = "http://localhost:8080/" + appName;

 RuntimeEngine engine = RemoteRuntimeEngineFactory.newRestBuilder()

 .addDeploymentId(deploymentId)

 .addUrl(new URL(serverInstanceUrl))

 .addUserName("homer")

 .addPassword("d0nut5R!!!")

 .build();

 KieSession kieSessionClient = engine.getKieSession();

Create the appropriate builder instance. The method .newJmsBuilder() is available

to create JMS based builder instances

Call the appropriate methods and pass the appropriate parameters to configure the

client

"Build" or instantiate the actual client RuntimeEngine instance which you can then use

to interact with the server

Remote API

477

17.1.1. Remote REST Java API Client Configuration

Each builder has a number of different (required or optional) methods to configure a client Run-

timeEngine instance.

• Methods with always next to them are always required.

• Methods with when next to them are required depending on the factors described ("required

when…") and otherwise optional.

• All other methods are optional.

Remote Rest Runtime Engine Builder methods

addDeploymentId(String deploymentId) when

Set the deployment id of the deployment

Required when:

doing an operation on a client instance that affects a process instance

addExtraJaxbClasses(Class… extraJaxbClasses) when

Add extra classes to the classpath available to the serialization mechanisms

When passing instances of user-defined classes in a Remote Java API call, it’s important to

use this method first to add the classes so that the class instances can be serialized correctly.

Required when:

passing custom class instances as arguments to an operation on a client instance

addPassword(String password) always

Set the password of the user connecting to the server

addProcessInstanceId(long process) when

Set the process instance id of the deployment

Required when:

interacting with a PER_PROCESS_INSTANCE deployment

addTimeout(int timeoutInSeconds)

Set the timeout for the REST call

The default is 5 seconds.

addUrl(URL serverInstanceUrl) always

Set the URL for the application instance

This should be a URL that roughly corresponds to http://server:port/business-cen-

tral/ or http://server:port/kie-wb/ .

addUserName(String userName) always

Set the name of the user connecting to the server

http://server:port/business-central/
http://server:port/business-central/
http://server:port/kie-wb/

Remote API

478

clearJaxbClasses()

Clears the list of (user-defined) Classes that the client instance should know about

17.1.1.1. Example REST Remote Java Client Configuration

The following example illustrates how the Remote Java API can be used with the REST API.

public void startProcessAndHandleTaskViaRestRemoteJavaAPI(URL serverRestUrl, String deploymen

tId, String user, String password) {

 // the serverRestUrl should contain a URL similar to "http://localhost:8080/jbpm-console/"

 // Setup the factory class with the necessarry information to communicate with the

 REST services

 RuntimeEngine engine = RemoteRuntimeEngineFactory.newRestBuilder()

 .addUrl(serverRestUrl)

 .addTimeout(5)

 .addDeploymentId(deploymentId)

 .addUserName(user)

 .addPassword(password)

 // if you're sending custom class parameters, make sure that

 // the remote client instance knows about them!

 .addExtraJaxbClasses(MyType.class)

 .build();

 // Create KieSession and TaskService instances and use them

 KieSession ksession = engine.getKieSession();

 TaskService taskService = engine.getTaskService();

 // Each operation on a KieSession, TaskService or AuditLogService (client) instance

 // sends a request for the operation to the server side and waits for the response

 // If something goes wrong on the server side, the client will throw an exception.

 Map<String, Object> params = new HashMap<String, Object>();

 params.put("paramName", new MyType("name", 23));

 ProcessInstance processInstance

 = ksession.startProcess("com.burns.reactor.maintenance.cycle", params);

 long procId = processInstance.getId();

 String taskUserId = user;

 taskService = engine.getTaskService();

 List<TaskSummary> tasks = taskService.getTasksAssignedAsPotentialOwner(user, "en-UK");

 long taskId = -1;

 for (TaskSummary task : tasks) {

 if (task.getProcessInstanceId() == procId) {

 taskId = task.getId();

 }

 }

 if (taskId == -1) {

 throw new IllegalStateException("Unable to find task for " + user +

 " in process instance " + procId);

 }

 taskService.start(taskId, taskUserId);

 // resultData can also just be null

 Map<String, Object> resultData = new HashMap<String, Object>();

Remote API

479

 taskService.complete(taskId, taskUserId, resultData);

 }

17.1.2. Remote JMS Java API Client Configuration

When configuring the remote JMS client, you must choose one of the following ways to configure

the JMS connection:

1. Pass the ConnectionFactory instance and the KieSession, TaskService and Response Queue

instances when configuring the remote java client. To do that, please use the following methods:

• addConnectionFactory(ConnectionFactory)

• addKieSessionQueue(Queue)

• addTaskServiceQueue(Queue)

• addResponseQueue(Queue)

• addHostName(String)

• addJmsConnectorPort(String)

2. or pass a remote InitialContext instance that contains references to the necessary Connec-

tionFactory and Queue instances (see previous bullet).

• please then use the method addRemoteInitialContext(InitialContext)

3. or pass a String with the hostname of the JBoss EAP server that KIE Workbench is running on

• please then use the method addJbossServerHostName(String)

In addition, if you are doing an operation on a task via the remote JMS client (and are not using

the disableTaskSecurity() method), then you must also configure SSL. The following methods

(described in more detail below) are available for this:

• addHostName(String)

• addJmsConnectorPort(int)

• addKeystoreLocation(String)

• addKeystorePassword(String)

• addTruststoreLocation(String)

• addTruststorePassword(String)

• useKeystoreAsTruststore()

Remote API

480

17.1.2.1. Example JMS Remote Java Client Configuration

Example JMS Remote Java Client Configuration with a remote javax.jms classes

The following example illustrates how to configure a Remote Java API JMS client using

instances of the ConnectionFactory and Queue classes.

private static final String CONNECTION_FACTORY_NAME = "jms/RemoteConnectionFactory";

 private static final String KSESSION_QUEUE_NAME = "jms/queue/KIE.SESSION";

 private static final String TASK_QUEUE_NAME = "jms/queue/KIE.TASK";

 private static final String RESPONSE_QUEUE_NAME = "jms/queue/KIE.RESPONSE";

 public void startProcessViaJmsRemoteJavaAPI(String hostname, int jmsConnPort,

 String deploymentId, String user, String password,

 String processId) throws NamingException {

 InitialContext remoteInitialContext = getRemoteInitialContext();

 String queueName = KSESSION_QUEUE_NAME;

 Queue sessionQueue = (Queue) remoteInitialContext.lookup(queueName);

 queueName = TASK_QUEUE_NAME;

 Queue taskQueue = (Queue) remoteInitialContext.lookup(queueName);

 queueName = RESPONSE_QUEUE_NAME;

 Queue responseQueue = (Queue) remoteInitialContext.lookup(queueName);

 String connFactoryName = CONNECTION_FACTORY_NAME;

 ConnectionFactory connFact = (ConnectionFactory) remoteInitialContext.lookup(connFactoryName);

 RuntimeEngine engine = RemoteRuntimeEngineFactory.newJmsBuilder()

 .addDeploymentId(deploymentId)

 .addConnectionFactory(connFact)

 .addKieSessionQueue(sessionQueue)

 .addTaskServiceQueue(taskQueue)

 .addResponseQueue(responseQueue)

 .addUserName(user)

 .addPassword(password)

 .addHostName(hostname)

 .addJmsConnectorPort(jmsConnPort)

 .disableTaskSecurity()

 .build();

 // Create KieSession instances and use them

 KieSession ksession = engine.getKieSession();

 // Each operation on a KieSession, TaskService or AuditLogService (client) instance

 // sends a request for the operation to the server side and waits for the response

 // If something goes wrong on the server side, the client will throw an exception.

 ProcessInstance processInstance = ksession.startProcess(processId);

 long procId = processInstance.getId();

 }

The names of the ConnectionFactory and Queue instances may differ depending on

your application server

Here we add the connection factory and queue instances.

Remote API

481

If we are not using SSL, but are doing operations on tasks, then we have to explictly call

the disableTaskSecurity() method. SSL is necessary for security reasons (plain-

text password in message) when doing task operations via the remote Java API.

Example JMS Remote Java Client Configuration with a remote InitialContext

instance

The following example illustrates how to configure a Remote Java API JMS client using a

remote InitialContext instance. See your application server documentation for how to

instantiate a remote instance of your application server’s InitialContext.

public void startProcessViaJmsRemoteJavaAPIInitialContext(String hostname, int jmsCon

nPort,

 String deploymentId, String user, String password,

 String processId) {

 // See your application server documentation for how to initialize

 // a remote InitialContext instance for your server instance

 InitialContext remoteInitialContext = getRemoteInitialContext();

 RuntimeEngine engine = RemoteRuntimeEngineFactory.newJmsBuilder()

 .addDeploymentId(deploymentId)

 .addRemoteInitialContext(remoteInitialContext)

 .addUserName(user)

 .addPassword(password)

 .build();

 // Create KieSession instances and use them

 KieSession ksession = engine.getKieSession();

 // Each operation on a KieSession, TaskService or AuditLogService (client) instance

 // sends a request for the operation to the server side and waits for the response

 // If something goes wrong on the server side, the client will throw an exception.

 ProcessInstance processInstance = ksession.startProcess(processId);

 long procId = processInstance.getId();

 }

Example JMS Remote Java Client Configuration with JBoss EAP hostname

The following example illustrates how to configure a Remote Java API JMS client using the

hostname of the JBoss EAP server on which kie-wb or business-central is running.

public void startProcessViaJmsRemoteJavaAPI(String hostNameOrIpAdress,

 String deploymentId, String user, String password,

 String processId) {

 // this requires that you also have the following dependencies

 // - org.jboss.as:jboss-naming artifact appropriate to the EAP version you're using

 RuntimeEngine engine = RemoteRuntimeEngineFactory.newJmsBuilder()

 .addJbossServerHostName(hostNameOrIpAdress)

Remote API

482

 .addDeploymentId(deploymentId)

 .addUserName(user)

 .addPassword(password)

 .build();

 }

17.1.2.2. Remote JMS Runtime Engine Builder methods

Each builder has a number of different (required or optional) methods to configure a client Run-

timeEngine instance.

• Methods with always next to them are always required.

• Methods with when next to them are required depending on the factors described ("required

when…") and otherwise optional.

• All other methods are optional.

Remote JMS Runtime Engine Builder methods

addConnectionFactory(ConnectionFactory connectionFactory) when

Add a ConnectionFactory used to create JMS session to send and receive messages

Required when:

configuring the JMS java client by passing ConnectionFactory and Queue instances

addDeploymentId(String deploymentId) when

Set the deployment id of the deployment

Required when:

doing an operation on a client instance that affects a process instance — this also includes

completing or failing tasks created by process instances

addExtraJaxbClasses(Class… extraJaxbClasses) when

Add extra classes to the client for when user-defined class instances are passed as parame-

ters to client methods

When passing instances of user-defined classes in a Remote Java API call, it’s important to

use this method first to add the classes so that the class instances can be serialized correctly.

Required when:

passing custom class instances as arguments to an operation on a client instance

addHostName(String hostname) when

Set the host name for the server that the client is making a JMS connection with

Required when:

configuring the JMS java client by setting ConnectionFactory and Queue instances

Remote API

483

configuring the JMS java client to use SSL

addJbossServerHostName(String hostname)

Set the host name of the JBoss EAP server that the client is making a JMS connection with

After using this method, no other configuration is needed with regards to the server. However,

additional server parameters (host name, port) may be needed when also configuring SSL.

Make sure that the EAP version-appropriate org.jboss.naming:jboss-naming dependency

is available on the classpath when doing this

addJmsConnectorPort(int port) when

Set the port used for the JMS connection connection with the server

Required when:

configuring the JMS java client by passing ConnectionFactory and Queue instances

configuring the JMS java client to use SSL

addKeystoreLocation(String keystorePath) when

Set the location (path) of the keystore

Required when:

configuring the JMS java client to use SSL

addKeystorePassword(String keystorePassword) when

Set the password for the keystore

Required when:

configuring the JMS java client to use SSL

addKieSessionQueue(Queue ksessionQueue) when

Pass the javax.jms.Queue instance representing the KIE.SESSION queue used to receive

process instance requests from the client

Required when:

configuring the JMS java client by setting ConnectionFactory and Queue instances

addPassword(String password) always

Set the password of the user connecting to the server

addProcessInstanceId(long process) when

Set the process instance id of the deployment

Required when:

interacting with a `PER_PROCESS_INSTANCE` deployment

addRemoteInitialContext(InitialContext remoteInitialContext)

Set the remote InitialContext instance from the remote application server, which is then

used to retrieve the ConnectionFactory and Queue instances

Remote API

484

After using this method, no other configuration is needed with regards to the server. However,

additional server parameters (host name, port) may be needed when also configuring SSL.

addResponseQueue(Queue responseQueue) when

Pass the javax.jms.Queue instance representing the KIE.RESPONSE queue used to send

responses to the client

Required when:

configuring the JMS java client by setting ConnectionFactory and Queue instances

addTaskServiceQueue(Queue taskServiceQueue) when

Pass the javax.jms.Queue instance representing the KIE.TASK queue used to receive task

operation requests to the client

Required when:

configuring the JMS java client by setting ConnectionFactory and Queue instances

addTimeout(int timeoutInSeconds)

Set the timeout for the JMS message. The default is 5 seconds.

addTruststoreLocation(String truststorePath) when

Set the location (path) of the keystore

Required when:

configuring the JMS java client to use SSL

addTruststoreLocation(String truststorePassword) when

Set the password for the keystore

Required when:

configuring the JMS java client to use SSL

addUserName(String userName) always

Set the name of the user connecting to the server

This is also the user whose permissions will be used when doing any task operations

clearJaxbClasses()

Clears the list of (user-defined) Classes that the client instance should know about

disableTaskSecurity()

Enables configuration of a client that can send task-related operation requests without having

to use SSL. If this option is not used and a task operation is called, the client will throw an

exception.

useKeystoreAsTruststore()

Uses the same file (location) and password for the truststore configuration when configuring

SSL.

Remote API

485

Important

In order to instantiate a remote InitialContext via JNDI, the application-serv-

er-specific dependencies need to be included on the classpath.

For JBoss EAP 6, the artifact (jar) containing this class is the org.jboss:jboss-

remote-naming artifact (jar), version 1.0.5.Final or higher. Depending on the

version of AS 7 or EAP 6 that you use, this version may vary.

If you are using a different application server, please see your specific applica-

tion server documentation for the parameters and artifacts necessary to create an

InitialContextFactory instance or otherwise get a remote InitialContext in-

stance (via JNDI) from the application server instance.

17.1.2.3. Example JMS client configuration and usage with SSL

The following example illustrates how to configure a Remote Java API JMS client using a remote

InitialContext instance along with SSL. In this case, the same file is being used as both the

client’s keystore (the client’s identifying keys and certificates) and as the client’s truststore (the

client’s list of trusted certificates from other parties, in this case, the server).

public void startProcessAndHandleTaskViaJmsRemoteJavaAPISsl(String hostNameOrIpAdress, int jm

sSslConnectorPort,

 String deploymentId, String user, String password,

 String keyTrustStoreLocation, String keyTrustStorePassword,

 String processId) {

 InitialContext remoteInitialContext = getRemoteInitialContext();

 RuntimeEngine engine = RemoteRuntimeEngineFactory.newJmsBuilder()

 .addDeploymentId(deploymentId)

 .addRemoteInitialContext(remoteInitialContext)

 .addUserName(user)

 .addPassword(password)

 .addHostName(hostNameOrIpAdress)

 .addJmsConnectorPort(jmsSslConnectorPort)

 .useKeystoreAsTruststore()

 .addKeystoreLocation(keyTrustStoreLocation)

 .addKeystorePassword(keyTrustStorePassword)

 .build();

 // create JMS request

 KieSession ksession = engine.getKieSession();

 ProcessInstance processInstance = ksession.startProcess(processId);

 long procInstId = processInstance.getId();

 logger.debug("Started process instance: " + procInstId);

 TaskService taskService = engine.getTaskService();

 List<TaskSummary> taskSumList

 = taskService.getTasksAssignedAsPotentialOwner(user, "en-UK");

 TaskSummary taskSum = null;

Remote API

486

 for(TaskSummary taskSumElem : taskSumList) {

 if(taskSumElem.getProcessInstanceId().equals(procInstId)) {

 taskSum = taskSumElem;

 }

 }

 long taskId = taskSum.getId();

 logger.debug("Found task " + taskId);

 // get other info from task if you want to

 Task task = taskService.getTaskById(taskId);

 logger.debug("Retrieved task " + taskId);

 taskService.start(taskId, user);

 Map<String, Object> resultData = new HashMap<String, Object>();

 // insert results for task in resultData

 taskService.complete(taskId, user, resultData);

 logger.debug("Completed task " + taskId);

 }

17.1.3. Remote CommandWebService Java API Client Configu-

ration

Starting with this release, a simple webservice has been added to the remote API.

Example WebService Remote Java Client Configuration

The following example illustrates how to configure a Remote Java API WebService client

using the hostname of the JBoss EAP server on which kie-wb or business-central is running.

import java.net.URL;

 import java.util.List;

 import java.util.Map;

 import org.kie.api.command.Command;

 import org.kie.api.task.model.Task;

 import org.kie.remote.client.documentation.objects.MyType;

 import org.kie.remote.client.jaxb.JaxbCommandsRequest;

 import org.kie.remote.client.jaxb.JaxbCommandsResponse;

 import org.kie.remote.jaxb.gen.GetTaskCommand;

 import org.kie.remote.jaxb.gen.GetTaskContentCommand;

 import org.kie.remote.jaxb.gen.GetTasksByProcessInstanceIdCommand;

 import org.kie.remote.jaxb.gen.JaxbStringObjectPairArray;

 import org.kie.remote.jaxb.gen.StartProcessCommand;

 import org.kie.remote.jaxb.gen.util.JaxbStringObjectPair;

 import org.kie.remote.services.ws.command.generated.CommandWebService;

 import org.kie.remote.services.ws.command.generated.CommandWebServiceException;

 import org.kie.services.client.api.RemoteRuntimeEngineFactory;

 import org.kie.services.client.serialization.jaxb.impl.JaxbCommandResponse;

 import org.kie.services.client.serialization.jaxb.impl.JaxbLongListResponse;

 import org.kie.services.client.serialization.jaxb.impl.process.JaxbProcessInstanceResponse;

 import org.slf4j.Logger;

 import org.slf4j.LoggerFactory;

Remote API

487

 public class WebserviceJavaApiExamples {

 private Logger logger = LoggerFactory.getLogger(WebserviceJavaApiExamples.class);

 /**

 * Create the webservice client

 * @param applicationUrl Something like "http://localhost:8080/kie-wb/"

 * or "http://localhost:8080/business-central/"

 * @param user The user doing the webservice requests

 * @param password The user's password

 * @param deploymentId The deployment id that the request will interact with

 * @return A {@link CommandWebService} client instance

 */

 private static CommandWebService createWebserviceClient(URL applicationUrl,

 String user, String password, String deploymentId) {

 CommandWebService client =

 RemoteRuntimeEngineFactory.newCommandWebServiceClientBuilder()

 .addServerUrl(applicationUrl)

 .addUserName(user)

 .addPassword(password)

 .addDeploymentId(deploymentId)

 .addExtraJaxbClasses(MyType.class)

 .buildBasicAuthClient();

 return client;

 }

 /**

 * Send a webservice request with a single command

 * @param service The webserivce client instance

 * @param cmd The command that we're sending (see the

 * 'org.kie.remote.jaxb.gen package' in kie-remote-client)

 * @param respClass The class that we expect as a response

 * @param deploymentId The id of the deployment that we will interact with

 * @return the response object

 * @throws CommandWebServiceException if the webservice operation fails

 */

 private static <T> T doWebserviceSingleCommandRequest(CommandWebService service,

 Command<?> cmd, Class<T> respClass, String deploymentId)

 throws CommandWebServiceException {

 // Get a response from the WebService

 JaxbCommandsRequest req = new JaxbCommandsRequest(deploymentId, cmd);

 JaxbCommandsResponse response = service.execute(req);

 // check response

 JaxbCommandResponse<?> cmdResp = response.getResponses().get(0);

 return (T) cmdResp;

 }

 /**

 * Start a simple process, and retrieve the task information and content

 * via the webservice

 *

 * @param applicationUrl Something like "http://localhost:8080/kie-wb/"

 * or "http://localhost:8080/business-central/"

 * @param user The user doing the webservice requests

 * @param password The user's password

 * @param deploymentId The deployment id that the request will interact with

Remote API

488

 * @param processId The id of the process we want to start

 * @throws Exception if something goes wrong

 */

 public static void startSimpleProcess(URL applicationUrl,

 String user, String password, String deploymentId, String processId)

 throws Exception {

 CommandWebService commandWebService

 = createWebserviceClient(applicationUrl, user, password, deploymentId);

 // Create start process command

 StartProcessCommand spc = new StartProcessCommand();

 spc.setProcessId(processId);

 JaxbStringObjectPairArray map = new JaxbStringObjectPairArray();

 JaxbStringObjectPair keyValue = new JaxbStringObjectPair();

 keyValue.setKey("myobject");

 keyValue.setValue(new MyType("variable", 29));

 map.getItems().add(keyValue);

 spc.setParameter(map);

 // Do webService request

 JaxbProcessInstanceResponse jpir

 = doWebserviceSingleCommandRequest(commandWebService, spc,

 JaxbProcessInstanceResponse.class, deploymentId);

 long procInstId = ((JaxbProcessInstanceResponse) jpir).getId();

 // Create command

 GetTasksByProcessInstanceIdCommand gtbic = new GetTasksByProcessInstanceIdCommand();

 gtbic.setProcessInstanceId(procInstId);

 // Do webservice request

 JaxbLongListResponse jllr

 = doWebserviceSingleCommandRequest(commandWebService, gtbic,

 JaxbLongListResponse.class, deploymentId);

 List<Long> taskIds = jllr.getResult();

 long taskId = taskIds.get(0);

 // Commands for task and task content

 GetTaskCommand gtc = new GetTaskCommand();

 gtc.setTaskId(taskId);

 GetTaskContentCommand gtcc = new GetTaskContentCommand();

 gtcc.setTaskId(taskId);

 // Do webservice request (with both commands)

 JaxbCommandsRequest req = new JaxbCommandsRequest(deploymentId, gtc);

 req.getCommands().add(gtcc);

 JaxbCommandsResponse response = commandWebService.execute(req);

 // Get task and content response

 Task task = (Task) response.getResponses().get(0).getResult();

 Map<String, Object> contentMap

 = (Map<String, Object>) response.getResponses().get(1).getResult();

 }

 }

Remote API

489

All commands that can be used with the webservice can be found in the

org.kie.remote.jaxb.gen package in the kie-remote-client module. These com-

mands contain the same data as the commands that they are based on (that have the

same name) in the core jbpm and drools modules.

The addExtraJaxbClasses(Class…) method must be used when using instances of

user-defined classes in a command sent in a webservice request.

Similar to the REST /execute method, multiple commands can be sent in one web-

service request

Remote Webservice Client Builder methods

addDeploymentId(String deploymentId) when

Set the deployment id of the deployment

Required when:

doing an operation on a client instance that affects a process instance — this also includes

completing or failing tasks created by process instances

addExtraJaxbClasses(Class… extraJaxbClasses) when

Add extra classes to the client for when user-defined class instances are passed as parame-

ters to client methods

When passing instances of user-defined classes in a Remote Java API call, it’s important to

use this method first to add the classes so that the class instances can be serialized correctly.

Required when:

passing custom class instances as arguments to an operation on a client instance

addServerUrl(URL applicationUrl) always

Set the URL for the application (kie-wb or business-central) that the webservice request will

be sent to

addPassword(String password) always

Set the password of the user connecting to the server

addTimeout(int timeoutInSeconds)

Set the timeout for the Webservice response. The default is 5 seconds.

addUserName(String userName) always

Set the name of the user connecting to the server

This is also the user whose permissions will be used when doing any task operations

setWsdlLocationRelativePath()

OCRAM

useHttpRedirect()

OCRAM

Remote API

490

17.1.4. Supported methods

As mentioned above, the Remote Java API provides client-like instances of the RuntimeEngine,

KieSession, TaskService and AuditService interfaces.

This means that while many of the methods in those interfaces are available, some are not. The

following tables lists the methods which are available. Methods not listed in the below, will throw

an UnsupportedOperationException explaining that the called method is not available.

Table 17.1. Available process-related KieSession methods

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

voidabort-

ProcessIn-

stance(

long

processIn-

stanceId)

Abort

the

process

in-

stance

ProcessIn-

stance

get-

ProcessIn-

stance(

long

processIn-

stanceId)

Re-

turn

the

process

in-

stance

ProcessIn-

stance

get-

ProcessIn-

stance(

long

processIn-

stanceId,

boolean

read-

On-

ly)

Re-

turn

the

process

in-

stance

List<ProcessInstance>get-

ProcessIn-

stances()

Re-

turn

all

(ac-

tive)

process

Remote API

491

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

in-

stances

voidsig-

nalEvent(

String

sig-

nal,

Ob-

ject

event)

Sig-

nal

all

(ac-

tive)

process

in-

stances

voidsig-

nalEvent(

String

sig-

nal,

Ob-

ject

event,

long

processIn-

stanceId)

Sig-

nal

the

process

in-

stance

ProcessIn-

stance

start-

Process(

String

processId,

Cor-

re-

la-

tion-

Key

cor-

re-

la-

tion-

Key,

Map<String,

Ob-

ject>

pa-

Start

a

new

process

and

re-

turn

the

process

in-

stance

(if

the

process

in-

stance

has

not

Remote API

492

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

ra-

me-

ters)

im-

me-

di-

ate-

ly

com-

plet-

ed)

ProcessIn-

stance

startProcess(String

processId,

Map<String,

Ob-

ject>

pa-

ra-

me-

ters)

Start

a

new

process

and

re-

turn

the

process

in-

stance

(if

the

process

in-

stance

has

not

im-

me-

di-

ate-

ly

com-

plet-

ed)

Remote API

493

Table 17.2. Available rules-related KieSession methods<

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

Longget-

Fact-

Count()

Re-

turn

the

to-

tal

fact

count

Ob-

ject

getGlobal(String

iden-

ti-

fi-

er)

Re-

turn

a

glob-

al

fact

In-

te-

ger

getId()Re-

turn

the

id

of

the

KieSes-

sion

voidsetGlobal(String

iden-

ti-

fi-

er,

Ob-

ject

val-

ue)

Set

a

glob-

al

fact

voidfire-

All-

Rules()

Fire

all

rules

Remote API

494

Table 17.3. Available WorkItemManager methods

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

voidabortWorkItem(long

workItemId)

Abort

the

work

item

voidcompleteWorkItem(long

workItemId,

Map<String,

Ob-

ject>

re-

sults)

Com-

plete

the

work

item

WorkItemgetWorkItem(long

workItemId)

Re-

turn

the

work

item

Table 17.4. Available task operation TaskService methods

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

LongaddTask(Task

task,

Map<String,

Ob-

ject>

params)

Add

a

new

task

voidactivate(long

taskId,

String

userId)

Ac-

ti-

vate

a

task

voidclaim(long

taskId,

Claim

a

task

Remote API

495

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

String

userId)

voidclaim(long

taskId,

String

userId,

List<String>

groupIds)

Claim

a

task

voidclaimNextAvailable(String

userId,

String

lan-

guage)

Claim

the

next

avail-

able

task

for

a

user

voidclaimNextAvailable(String

userId,

List<String>

groupIds,

String

lan-

guage)

Claim

the

next

avail-

able

task

for

a

user

voidcomplete(long

taskId,

String

userId,

Map<String,

Ob-

ject>

da-

ta)

Com-

plete

a

task

voiddelegate(long

taskId,

String

userId,

Del-

e-

gate

Remote API

496

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

String

tar-

ge-

tUserId)

a

task

voidexit(long

taskId,

String

userId)

Ex-

it

a

task

voidfail(long

taskId,

String

userId,

Map<String,

Ob-

ject>

fault-

Da-

ta)

Fail

a

task

voidforward(long

taskId,

String

userId,

String

tar-

ge-

tEn-

ti-

tyId)

For-

ward

a

task

voidnominate(long

taskId,

String

userId,

List<OrganizationalEntity>

po-

ten-

tialOwn-

ers)

Nom-

i-

nate

a

task

voidrelease(long

taskId,

Re-

lease

Remote API

497

Re-

turn

type

Method

sig-

na-

ture

De-

scrip-

tion

String

userId)

a

task

voidremove(long

taskId,

String

userId)

Re-

move

a

task

voidresume(long

taskId,

String

userId)

Re-

sume

a

task

voidskip(long

taskId,

String

userId)

Skip

a

task

voidstart(long

taskId,

String

userId)

Start

a

task

voidstop(long

taskId,

String

userId)

Stop

a

task

voidsuspend(long

taskId,

String

userId)

Sus-

pend

a

task

Table 17.5. Available task retrieval and query TaskService methods

Re-

turn

type

Method

sig-

na-

ture

TaskgetTaskByWorkItemId(long

workItemId)

TaskgetTaskById(long

taskId)

Remote API

498

Re-

turn

type

Method

sig-

na-

ture

List<TaskSummary>getTasksAssignedAsBusinessAdministrator(String

userId,

String

lan-

guage)

List<TaskSummary>getTasksAssignedAsPotentialOwner(String

userId,

String

lan-

guage)

List<TaskSummary>getTasksAssignedAsPotentialOwnerByStatus(String

userId,

List<Status>

sta-

tus,

String

lan-

guage)

List<TaskSummary>getTasksOwned(String

userId,

String

lan-

guage)

List<TaskSummary>getTasksOwnedByStatus(String

userId,

List<Status>

sta-

tus,

String

lan-

guage)

List<TaskSummary>getTasksByStatusByProcessInstanceId(long

processIn-

stanceId,

List<Status>

sta-

tus,

String

Remote API

499

Re-

turn

type

Method

sig-

na-

ture

lan-

guage)

List<TaskSummary>getTasksByProcessInstanceId(long

processIn-

stanceId)

`List<TaskSummary>getTasksByVariousFields(List<Long>

workItemIds,

List<Long>

taskIds,

List<Long>

procIn-

stIds,

List<String>

bu-

sAd-

mins,

List<String>

po-

tOwn-

ers,

List<String>

taskOwn-

ers,

List<Status>

sta-

tus,

boolean

union)

List<TaskSummary>getTasksByVariousFields(Map

<String,

List<?

>>

pa-

ra-

me-

ters,

boolean

union)

Remote API

500

Re-

turn

type

Method

sig-

na-

ture

Con-

tent

getContentById(long

con-

tentId)

At-

tach-

ment

getAttachmentById(long

at-

tachId)

Table 17.6. Available AuditService methods

Re-

turn

type

Method

sig-

na-

ture

List<ProcessInstanceLog>find-

ProcessIn-

stances()

List<ProcessInstanceLog>findProcessInstances(String

processId)

List<ProcessInstanceLog>findActiveProcessInstances(String

processId)

ProcessIn-

stanceL-

og

findProcessInstance(long

processIn-

stanceId)

List<ProcessInstanceLog>findSubProcessInstances(long

processIn-

stanceId)

List<NodeInstanceLog>findNodeInstances(long

processIn-

stanceId)

List<NodeInstanceLog>findNodeInstances(long

processIn-

stanceId,

String

nodeId)

List<VariableInstanceLog>findVariableInstances(long

processIn-

stanceId)

Remote API

501

Re-

turn

type

Method

sig-

na-

ture

List<VariableInstanceLog>findVariableInstances(long

processIn-

stanceId,

String

vari-

ableId)

List<VariableInstanceLog>findVariableInstancesByName(String

vari-

ableId,

boolean

only-

Ac-

tive-

Process-

es)

List<VariableInstanceLog>findVariableInstancesByNameAndValue(String

vari-

ableId,

String

val-

ue,

boolean

only-

Ac-

tive-

Process-

es)

voidclear()

17.2. REST

REST API calls to the execution server allow you to remotely manage processes and tasks and

retrieve various dynamic information from the execution server. The majority of the calls are syn-

chronous, which means that the call will only finish once the requested operation has completed

on the server. The exceptions to this are the deployment POST calls, which will return the status

of the request while the actual operation requested will asynchronously execute.

When using Java code to interface with the REST API, the classes used in POST operations

or otherwise returned by various operations can be found in the (org.kie.remote:)kie-ser-

vices-client JAR.

Remote API

502

17.2.1. REST permissions

As of the community 6.2.0.Final release, users now need to be assigned one of the following roles

in order to be able to access REST URLs:

Table 17.7. REST permission roles

RoleDescription

rest-

all

May use all REST URLs

rest-

project

May use REST URLs relating to project management, including repository and organizational

unit management

rest-

de-

ploy-

ment

May use REST URLs relating to deployment management

rest-

process

May use REST URLs relating to process management

rest-

process-

read-

on-

ly

May use REST URLs that return info about processes

rest-

task

May use REST URLs relating to task management

rest-

task-

read-

on-

ly

May use REST URLs that return info about tasks

rest-

query

May use the query REST URLs

rest-

client

May use the REST URL relating to the java remote client

Specifically, the roles give the user access to the following URLs:

Table 17.8. REST permission roles

Role Description

rest-all All REST URLs

rest-project Only the following URLs are available with this role:

Remote API

503

Role Description

• [GET] …/rest/jobs/{jobsId}

• [DELETE] …/rest/jobs/{jobsId}

• [GET] …/rest/repositories

• [GET] …/rest/repositories/{repoName}

• [POST] …/rest/repositories

• [DELETE] …/rest/repositories/{repoName}

• [POST] …/rest/repositories/{repoName}/projects

• [GET] …/rest/repositories/{repoName}/projects

• [DELETE] …/rest/repositories/{repoN-

ame}/projects/{projectName}

• [POST] …/rest/repositories/{repoName}/projects/

{projectName}/maven/compile

• [POST] …/rest/repositories/{repoName}/projects/

{projectName}/maven/test

• [POST] …/rest/repositories/{repoName}/projects/

{projectName}/maven/install

• [POST] …/rest/repositories/{repoName}/projects/

{projectName}/maven/deploy

• [POST] …/rest/organizationalunits

• [GET] …/rest/organizationalunits/{orgUnitName}

• [POST] …/rest/organizationalunits/{orgUnitName}

• [DELETE] …/rest/organizationalunits/{orgUnit-

Name}

• [POST] …/rest/organizationalunits/{orgUnit-

Name}/repositories/{repoName}

• [DELETE] …/rest/organizationalunits/{orgUnit-

Name}/repositories/{repoName}

rest-deployment Only the following URLs are available with this role:

• [GET] …/rest/deployment/

Remote API

504

Role Description

• [GET] …/rest/deployment/processes

• [GET] …/rest/deployment/{deploymentId}

• [POST] …/rest/deployment/{deploymentId}/deploy

• [POST] …/rest/deployment/{deploymentId}/undeploy

• [POST] …/rest/deployment/{deploymentId}/activate

• [POST] …/rest/deployment/{deploymentId}/deacti-

vate

• [GET] …/rest/deployment/{deploymentId}/processes

rest-process In short, only URLs that start with one of the following are

available with this role:

.../rest/runtime/deployment/{deploymentId}/*

.../rest/history/*

Only the following URLs are available with this role:

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/{procDefId}

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/process/{procDefId}/start

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/{procDefId}/startform

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/instance/{procInstId}

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/process/instance/{procInstId}/abort

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/process/instance/{procInstId}/signal

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/instance/{procInstId}/variable/{var-

Name}

Remote API

505

Role Description

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/signal

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/workitem/{workItemId}

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/workitem/{workItemId}/complete

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/workitem/{workItemId}/abort

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/withvars/process/{procDefId}/start

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/withvars/process/instance/{procInstId}

• [POST] …/rest/runtime/deployment/{deploymen-

tId}/withvars/process/instance/{procInstId}/sig-

nal

• [GET] …/rest/history/instances

• [GET] …/rest/history/instance/{procInstId}

• [GET] …/rest/history/instance/{procInstId}/child

• [GET] …/rest/history/instance/{procInstId}/node

• [GET] …/rest/history/instance/{procInstId}/vari-

able

• [GET] …/rest/history/instance/{procInstId}/node/

{nodeId}

• [GET] …/rest/history/instance/{procInstId}/vari-

able/{varId}

• [GET] …/rest/history/process/{procDefId}

• [GET] …/rest/history/variable/{varId}

• [GET] …/rest/history/variable/{varId}/val-

ue/{value}

• [GET] …/rest/history/variable/{varId}/instances

Remote API

506

Role Description

• [GET] …/rest/history/variable/{varId}/val-

ue/{value}/instances

• [POST] …/rest/history/clear

rest-process-read-only In short, all GET URLs that start with one of the following are

available with this role:

.../rest/runtime/deployment/{deploymentId}/*

.../rest/history/*

Only the following URLs are available with this role:

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/{procDefId}

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/{procDefId}/startform

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/instance/{procInstId}

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/process/instance/{procInstId}/variable/{var-

Name}

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/workitem/{workItemId}

• [GET] …/rest/runtime/deployment/{deploymen-

tId}/withvars/process/instance/{procInstId}

• [GET] …/rest/history/instances

• [GET] …/rest/history/instance/{procInstId}

• [GET] …/rest/history/instance/{procInstId}/child

• [GET] …/rest/history/instance/{procInstId}/node

• [GET] …/rest/history/instance/{procInstId}/vari-

able

• [GET] …/rest/history/instance/{procInstId}/node/

{nodeId}

Remote API

507

Role Description

• [GET] …/rest/history/instance/{procInstId}/vari-

able/{varId}

• [GET] …/rest/history/process/{procDefId}

• [GET] …/rest/history/variable/{varId}

• [GET] …/rest/history/variable/{varId}/val-

ue/{value}

• [GET] …/rest/history/variable/{varId}/instances

• [GET] …/rest/history/variable/{varId}/val-

ue/{value}/instances

• [POST] …/rest/history/clear

rest-task In short, all URLs that start with the following are available

with this role:

.../rest/task/*

Only the following URLs are available with this role:

• [GET] …/rest/task/{taskId}

• [POST] …/rest/task/{taskId}/activate

• [POST] …/rest/task/{taskId}/claim

• [POST] …/rest/task/{taskId}/claimnextavailable

• [POST] …/rest/task/{taskId}/complete

• [POST] …/rest/task/{taskId}/delegate

• [POST] …/rest/task/{taskId}/exit

• [POST] …/rest/task/{taskId}/fail

• [POST] …/rest/task/{taskId}/forward

• [POST] …/rest/task/{taskId}/release

• [POST] …/rest/task/{taskId}/resume

• [POST] …/rest/task/{taskId}/skip

Remote API

508

Role Description

• [POST] …/rest/task/{taskId}/start

• [POST] …/rest/task/{taskId}/stop

• [POST] …/rest/task/{taskId}/suspend

• [POST] …/rest/task/{taskId}/nominate

• [GET] …/rest/task/{taskId}/showTaskForm

• [GET] …/rest/task/{taskId}/content

• [GET] …/rest/task/content/{contentId}

• [POST] …/rest/task/history/bam/clear

rest-task-read-only In short, all GET URLs that start with one of the following are

available with this role:

.../rest/task/*

Only the following URLs are available with this role:

• [GET] …/rest/task/{taskId}

• [GET] …/rest/task/{taskId}/showTaskForm

• [GET] …/rest/task/{taskId}/content

• [GET] …/rest/task/content/{contentId}

rest-query Only the following URLs are available with this role:

• [GET] …/rest/task/query (deprecated)

• [GET] …/rest/query/runtime/process

• [GET] …/rest/query/runtime/task

• [GET] …/rest/query/task

rest-client Only the following URLs are available with this role:

• [POST] …/rest/execute

Remote API

509

Role Description

This URL is used by the Java remote API to communicate

with the server. Use of this URL without the Java remote API

code is not recommended!

17.2.2. Runtime calls

This section lists REST calls that interface process instances.

The deploymentId component of the REST calls below must conform to the following regular

expression:

[\w\.-]+(:[\w\.-]+){2,2}(:[\w\.-]*){0,2}

For more information about the composition of the deployment id, see the Deployment Calls sec-

tion.

17.2.2.1. Process calls

[POST] /runtime/{deploymentId}/process/{processDefId}/start

• Starts a process.

• Returns a JaxbProcessInstanceResponse instance, that contains basic information about the

process instance.

• Notes:

• The processDefId component of the URL must conform to the following regex: [_a-zA-

Z0-9-:\.]+

• Parameters:

• This operation takes map query parameters (see below), which will be used as parameters

for the process instance.

• You can only pass basic types (as map query parameters) using this URL. If you want to pass

complex and/or custom classes, you should use the Java Remote API instead.

[GET] rest/runtime/{deploymentId}/process/{processDefId}/startform

• Checks that exists the process identified by processDefId on the given deployment and gener-

ates an URL to show the start form on a remote application.

• Returns a JaxbProcessInstanceFormResponse instance, that contains the URL to the start

process form.

• Notes:

Remote API

510

• The processDefId component of the URL must conform to the following regex: [_a-zA-

Z0-9-:\.]+

[GET] /runtime/{deploymentId}/process/instance/{procInstId}

• Does a (read only) retrieval of the process instance. This operation will fail (code 400) if the

process instance has been completed.

• Returns a JaxbProcessInstanceResponse instance.

• Notes:

• The procInstId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/process/instance/{procInstId+}/abort

• Aborts the process instance.

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded.

• Notes:

• The procInstId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/process/instance/{procInstId}/signal

• Signals the process instance.

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded.

• Notes:

• The procInstId component of the URL must conform to the following regex: [0-9]+

• Parameters: This operation takes a signal and a event query parameter.

• The signal parameter value is used as the name of the signal. This parameter is required.

• The event parameter value is used as the value of the event. This value may use the number

query parameter syntax described above.

[GET] /runtime/{deploymentId}/process/instance/{procInstId}/variable/{varName}

• Returns the value of a process variable in a process instance.

• Either the variable object instance itself is returned or, if the variable is a primitive, the variable

value wrapped in simple class which is returned.

• Notes:

Remote API

511

• The procInstId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/signal

• Signals the KieSession

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded.

• Notes:

• The procInstId component of the URL must conform to the following regex: [0-9]+

• Parameters: This operation takes a signal and a event query parameter.

• The signal parameter value is used as the name of the signal. This parameter is required.

• The event parameter value is used as the value of the event. This value may use the number

query parameter syntax described above.

[GET] /runtime/{deploymentId}/workitem/{workItemId}

• Gets a WorkItem instance

• Returns a JaxbWorkItem instance

• Notes:

• The workItemId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/workitem/{workItemId}/complete

• Completes a WorkItem

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded

• Notes:

• The workItemId component of the URL must conform to the following regex: [0-9]+

• Parameters:

• This operation takes map query parameters, which are used as input to signify the results

for completion of the work item.

• You can only pass basic types (as map query parameters) using this URL. If you want to pass

complex and/or custom classes, you should use the Java Remote API instead.

[POST] /runtime/{deploymentId}/workitem/{workItemId: [0-9-]+}/abort

• Aborts a WorkItem

Remote API

512

• Returns a JaxbGenericResponse indicating whether or not the operation has succeeded

• Notes:

• The workItemId component of the URL must conform to the following regex: [0-9]+

17.2.2.2. Process calls "with variables"

[POST] /runtime/{deploymentId}/withvars/process/{processDefId}/start

• Starts a process and retrieves the list of variables associated with the process instance

• Returns a JaxbProcessInstanceWithVariablesResponse that contains:

• Information about the process instance (with the same fields and behaviour as the

JaxbProcessInstanceResponse

• A key-value list of the variables available in the process instance.

• Notes:

• The processDefId component of the URL must conform to the following regex: [_a-zA-

Z0-9-:\.]+

[GET] /runtime/{deploymentId}/withvars/process/instance/{procInstId}

• Retrieves a process instances and the list of variables associated with the process instance

• Returns a JaxbProcessInstanceWithVariablesResponse (see the above REST call)

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

[POST] /runtime/{deploymentId}/withvars/process/instance/{procInstId}/signal

• Signals a process instance and retrieves the list of variables associated it

• Returns a JaxbProcessInstanceWithVariablesResponse (see above)

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

• Parameters:: This operation takes a signal and a event query parameter.

• The signal parameter value is used as the name of the signal. This parameter is required.

• The event parameter value is used as the value of the event. This value may use the number

query parameter syntax described above.

Remote API

513

17.2.2.3. History calls

[POST] /history/clear

• Cleans (deletes) all history logs

[GET] /history/instances

• Gets a list of ProcessInstanceLog instances

• Returns a JaxbHistoryLogList instance that contains a list of JaxbProcessInstanceLog in-

stances

• Notes:

• This operation responds to pagination parameters

[GET] /history/instance/{procInstId}

• Gets the ProcessInstanceLog instance associated with the specified process instance

• Returns a JaxbHistoryLogList instance that contains a JaxbProcessInstanceLog instance

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

• Parameters: This operation responds to pagination parameters

[GET] /history/instance/{procInstId}/child

• Gets a list of ProcessInstanceLog instances associated with any child/sub-processes associ-

ated with the specified process instance

• Returns a JaxbHistoryLogList instance that contains a list of JaxbProcessInstanceLog in-

stances

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

• Parameters: This operation responds to pagination parameters

[GET] /history/instance/{procInstId}/node

• Gets a list of NodeInstanceLog instances associated with the specified process instance

• Returns a JaxbHistoryLogList instance that contains a list of JaxbNodeInstanceLog in-

stances

Remote API

514

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

• Parameters: This operation responds to pagination parameters

[GET] /history/instance/{procInstId}/variable

• Gets a list of VariableInstanceLog instances associated with the specified process instance

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

• Parameters: This operation responds to pagination parameters

[GET] /history/instance/{procInstId}/node/{nodeId}

• Gets a list of NodeInstanceLog instances associated with the specified process instance that

have the given (node) id

• Returns a JaxbHistoryLogList instance that contains a list of JaxbNodeInstanceLog in-

stances

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

• The nodeId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

[GET] /history/instance/{procInstId}/variable/{varId}

• Gets a list of VariableInstanceLog instances associated with the specified process instance

that have the given (variable) id

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• Notes:

• The processInstId component of the URL must conform to the following regex: [0-9]+

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

Remote API

515

[GET] /history/process/{processDefId}

• Gets a list of ProcessInstanceLog instances associated with the specified process definition

• Returns a JaxbHistoryLogList instance that contains a list of JaxbProcessInstanceLog in-

stances

• Notes:

• The processDefId component of the URL must conform to the following regex: [_a-zA-

Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

17.2.2.4. History calls that search by variable

[GET] /history/variable/{varId}

• Gets a list of VariableInstanceLog instances associated with the specified variable id

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• Notes:

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

[GET] /history/variable/{varId}/value/{value}

• Gets a list of VariableInstanceLog instances associated with the specified variable id that

contain the value specified

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• Notes:

• Both the varId and value components of the URL must conform to the following regex: [a-

zA-Z0-9-:\.]+

• Parameters:: This operation responds to pagination parameters

[GET] /history/variable/{varId}/instances

• Gets a list of ProcessInstance instances that contain the variable specified by the given vari-

able id.

Remote API

516

• Returns a JaxbProcessInstanceListResponse instance that contains a list of

JaxbProcessInstanceResponse instances

• Notes:

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

[GET] /history/variable/{varId}/value/{value}/instances

• Gets a list of ProcessInstance instances that contain the variable specified by the given vari-

able id which contains the (variable) value specified

• Returns a JaxbProcessInstanceListResponse instance that contains a list of

JaxbProcessInstanceResponse instances

• Notes:

• Both the varId and value components of the URL must conform to the following regex: [a-

zA-Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

17.2.2.5. History calls that search by variable

[GET] /runtime/{deploymentId}/history/variable/{varId}

• Gets a list of VariableInstanceLog instances associated with the specified variable id

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• Notes:

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• Parameters:: This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/variable/{varId}/value/{value}

• Gets a list of VariableInstanceLog instances associated with the specified variable id that

contain the value specified

• Returns a JaxbHistoryLogList instance that contains a list of JaxbVariableInstanceLog

instances

• Notes:

Remote API

517

• Both the varId and value components of the URL must conform to the following regex: [a-

zA-Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/variable/{varId}/instances

• Gets a list of ProcessInstance instances that contain the variable specified by the given vari-

able id.

• Returns a JaxbProcessInstanceListResponse instance that contains a list of

JaxbProcessInstanceResponse instances

• Notes:

• The varId component of the URL must conform to the following regex: [a-zA-Z0-9-:\.]+

• Parameters: This operation responds to pagination parameters

[GET] /runtime/{deploymentId}/history/variable/{varId}/value/{value}/instances

• Gets a list of ProcessInstance instances that contain the variable specified by the given vari-

able id which contains the (variable) value specified

• Returns a JaxbProcessInstanceListResponse instance that contains a list of

JaxbProcessInstanceResponse instances

• Notes:

• Both the varId and value components of the URL must conform to the following regex: [a-

zA-Z0-9-:\.]+

• Parameters:: This operation responds to pagination parameters

17.2.3. Task calls

The following section describes the three different types of task calls: * Task REST operations

that mirror the TaskService interface, allowing the user to interact with the remote TaskService

instance * The Task query REST operation, that allows users to query for Task instances * Other

Task REST operations that retrieve information

Task operation authorizations. Task REST operations use the user information (used to au-

thorize and authenticate the HTTP call) to check whether or not the requested operations can

happen. This also applies to REST calls that retrieve information, such as the task query opera-

tion. REST calls that request information will only return information about tasks that the user is

allowed to see.

With regards to retrieving information, only users associated with a task may retrieve information

about the task. However, the authorizations of progress and other modifications of task information

Remote API

518

are more complex. See the Task Permissions section in the Task Service documentation for more

infomration.

Note

Given that many users have expressed the wish for a "super-task-user" that can

execute task REST operations on all tasks, regardless of the users associated with

the task, there are now plans to implement that feature. However, so far for the 6.x

releases, this feature is not available.

17.2.3.1. Task operation calls

All of the task operation calls described in this section use the user (id) used in the REST basic

authorization as input for the user parameter in the specific call.

Some of the operations take an optional lanaguage query parameter. If this parameter is not given

as a element of the URL itself, the default value of “en-UK” is used.

The taskId component of the REST calls below must conform to the following regex:

[0-9]+

[POST] /task/{taskId}/activate

• Activates a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/claim

• Claims a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/claimnextavailable

• Claims the next available task

• Returns a JaxbGenericResponse with the status of the operation

• Parameters: Takes an optional language query parameter.

[POST] /task/{taskId}/complete - Completes a task - Returns a JaxbGenericResponse with

the status of the operation - Parameters: Takes map query parameters, which are the "results"

input for the complete operation

[POST] /task/{taskId}/delegate

Remote API

519

• Delegates a task

• Returns a JaxbGenericResponse with the status of the operation

• Parameters: Requires a targetId query parameter, which identifies the user or group to which

the task is delegated

[POST] /task/{taskId}/exit

• Exits a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/fail

• Fails a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/forward

• Delegates a task

• Returns a JaxbGenericResponse with the status of the operation

• Parameters: Requires a targetId query parameter, which identifies the user or group to which

the task is forwarded

[POST] /task/{taskId}/nominate

• Nominates a task

• Returns a JaxbGenericResponse with the status of the operation

• Parameters: Requires at least one of either the user or group query parameter, which identify

the user(s) or group(s) that are nominated for the task

[POST] /task/{taskId}/release

• Releases a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/resume

• Resumes a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/skip

Remote API

520

• Skips a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/start

• Starts a task

• Returns a JaxbGenericResponse with the status of the operation

[POST] /task/{taskId}/stop - Stops a task - Returns a JaxbGenericResponse with the status

of the operation

[POST] /task/{taskId}/suspend

• Suspends a task

• Returns a JaxbGenericResponse with the status of the operation

17.2.3.2. Task query call

[GET] /task/query

• The /task/query operation queries all non-archived tasks based on the parameters given.

• This URL has been deprecated. Please see the /query/task operation.

==== Other Task calls

[GET] /task/{taskId}

• Gets the task info from a task identified by the given task id

• Returns: a JaxbTask with the content of the task

• Notes:

• The taskId component of the URL must conform to the following regex: [0-9]+

• Will return HTTP Status 404 (not found) if the task does not exist

[GET] /task/{taskId}/content

• Gets the task content from a task identified by the given task id

• Returns: a JaxbContent with the content of the task

• Notes:

• The taskId component of the URL must conform to the following regex: [0-9]+

Remote API

521

[GET] /task/content/{contentId}

• Gets the task content from a task identified by the given content id

• Returns a JaxbContent with the content of the task

• Notes:

• The contentId component of the URL must conform to the following regex: [0-9]+

[GET] /task/{taskId}/showTaskForm

• Checks that the task identified by taskId exists and generates an URL to show the task form

on a remote application.

• Returns a JaxbTaskFormResponse instance, that contains the URL to the task form.

[POST] /task/history/bam/clear

• Clears (deletes) all BAMTaskSummary instances in the database.

17.2.4. Deployment Calls

The calls described in this section allow users to manage deployments. Deployments are in fact

KieModule JARs which can be deployed or undeployed, either via the UI or via the REST calls

described below. Configuration options, such as the runtime strategy, should be specified when

deploying the deployment: the configuration of a deployment can not be changed after it has

already been deployed.

The above deploymentId regular expression describes an expression that contains the following

elements, separated from eachother by a : character:

• The group id

• The artifact id

• The version

• The (optional) kbase id

• The (optional) ksession id

In a more formal sense, the deploymentId component of the REST calls below must conform to

the following regex:

`[\w\.-]+(:[\w\.-]+){2,2}(:[\w\.-]*){0,2}`

This regular expression is explained as follows:

Remote API

522

• The [\w\.-] element, which occurs 3 times in the above regex, refers to a character set that

can contain the following character sets:

Table 17.9. [\w\.-] character sets

[A-

Z]

[0-9].

[a-

z]

_-

This [\w\.-] element occurs at least 3 times and at most 5 times, separated by a : character

each time.

Example 17.1. Accepted deploymentId's

• com.wonka:choco-maker:67.190

• These example `deploymentId’s contain the optional kbase and ksession id groups.

• com.wonka:choco-maker:67.190:oompaBase

• com.wonka:choco-maker:67.190:oompaLoompaBase:gloopSession

17.2.4.1. Asynchrous deployment calls

There are 2 operations that can be used to modify the status of a deployment:

• /deployments/{deploymentId}/deploy

• /deployments/{deploymentId}/undeploy

These POST deployment calls are both asynchronous, which means that the information returned

by the POST request does not reflect the eventual final status of the operation itself.

Important

As noted above, both the /deploy and /undeploy operations are asynchronous

REST operations. Successfull requests to these URLs will return the status 202

upon the request completion. RFC 2616 defines the 202 status as meaning the

following:

RFC 2616 [https://www.ietf.org/rfc/rfc2616.txt]: "the request has been accepted for

processing, but the processing has not been completed."

https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt

Remote API

523

This means the following:

1. While the request may have been accepted "successfully", the operation itself

(deploying or undeploying the deployment unit) may actually fail.

2. Furthermore, information about deployments, such as that retrieved by calling

the GET operations described below, are snapshots and the information (includ-

ing the status of the deployment unit) may have changed by the time the user

client receives the answer to the GET request.

17.2.5. Deployment call details

[GET] /deployment/

• Returns a list of all the available deployed instances in a JaxbDeploymentUnitList instance

[GET] /deployment/processes

• Returns a list of all the available deployed process definitions in a JaxbProcessDefinition-

List instance

[GET] /deployment/ {deploymentId}

• Returns a JaxbDeploymentUnit instance containing the information (including the configura-

tion) of the deployment unit.

• Notes:

• This operation will fail when the URL uses a deployementId that refers to a deployment unit

that does not exist or for which the deployment has not yet been completed.

• This operation may succeed for deployment units for which an undeploy operation request

has not yet completed.

[POST] /deployment/{deploymentId}/deploy

• Deploys the deployment unit referenced by the deploymentId

• Returns a JaxbDeploymentJobResult instance with the status of the request

• Parameters: Takes a strategy query parameter, which

• describes the runtime strategy used for the deployment.

• must have one of the following (case-_in_sensitive) values:

• SINGLETON

Remote API

524

• PER_REQUEST

• PER_PROCESS_INSTANCE

• The default runtime strategy used for a deployment is SINGLETON .

• Notes:

• The deploy operation is an asynchronous operation: the request can fail after being submitted.

The status of the deployment can be retrieved using the GET calls described above.

• It is possible to post a deployment descriptor (or a fragment of it) while submitting deploy

request. That allows to override other deployment descriptors in the hierarchy. To do so the

content type of the request must be set to application/xml and the request body should

be a a valid deployment descriptor content.

Example 17.2. Changing the audit logging mode from default JPA to JMS

submit

<deployment-descriptor xsi:schemaLocation="http://www.jboss.org/jbpm deploy

ment-descriptor.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <audit-mode>JMS</audit-mode>

</deployment-descriptor>

• Since deployment descriptors can be merged differently, it’s possibile to provide the merge

mode as part of deploy request by adding query parameter:

• mergemode where values should be one of the following

• KEEP_ALL

• OVERRIDE_ALL

• OVERRIDE_EMPTY

• MERGE_COLLECTIONS

[POST] /deployment/{deploymentId}/undeploy

• Undeploys the deployment unit referenced by the deploymentId

• Returns a JaxbDeploymentJobResult instance with the status of the request

• Notes:

• The undeploy operation is an asynchronous operation. The status of the deployment can be

retrieved using the GET calls described above.

Remote API

525

[POST] /deployment/{deploymentId}/activate

• Activates the deployment unit referenced by the deploymentId

• Returns a JaxbDeploymentJobResult instance with the status of the request

• Notes:

• The undeploy operation is an asynchronous operation. The status of the deployment can be

retrieved using the GET calls described above.

[POST] /deployment/{deploymentId}/deactivate

• Deactivates the deployment unit referenced by the deploymentId

• Returns a JaxbDeploymentJobResult instance with the status of the request

• Notes:

• The undeploy operation is an asynchronous operation. The status of the deployment can be

retrieved using the GET calls described above.

[GET] /deployment/{deploymentId}/processes

• Undeploys the deployment unit referenced by the deploymentId

• Returns a JaxbDeploymentJobResult instance with the status of the request

• Notes:

• The undeploy operation is an asynchronous operation. The status of the deployment can be

retrieved using the GET calls described above.

17.2.6. Execute calls

While there is a /runtime/{id}/execute and a task/execute method, both will take all types of

commands. This is possible because execute takes a JaxbCommandsRequest object, which con-

tains a list of (org.kie.api.command.)Command objects. The JaxbCommandsRequest has fields

to store the proper deploymentId and processInstanceId information.

Of course, if you send a request with a command that needs this information (deploymentId, for

example) and don’t fill the deploymentId in, the request will fail.

17.2.6.1. Execution call details

[POST] /execute

• Executes a Command

• Returns a JaxbCommandResponse implementation with the result of the operation

Remote API

526

17.2.6.2. Commands accepted

Table 17.10. Runtime commands

Abort-

WorkItem-

Com-

mand

Get-

ProcessIn-

stancesCom-

mand

GetId-

Com-

mand

Com-

plete-

WorkItem-

Com-

mand

Set-

ProcessIn-

stance-

Vari-

able-

sCom-

mand

Set-

Glob-

al-

Com-

mand

Get-

WorkItem-

Com-

mand

Sig-

nalEvent-

Com-

mand

 Start-

Cor-

re-

lat-

ed-

Process-

Com-

mand

DeleteCom-

mand

Abort-

ProcessIn-

stanceCom-

mand

Start-

Process-

Com-

mand

Fire-

All-

Rule-

sCom-

mand

Get-

ProcessId-

sCom-

mand

Get-

Vari-

ableCom-

mand

Inser-

tO-

b-

ject-

Com-

mand

Get-

ProcessIn-

stance-

By-

Cor-

Get-

Fact-

Count-

Com-

mand

Up-

date-

Com-

mand

Remote API

527

re-

la-

tion-

K-

ey-

Command

Table 17.11. Task commands

Ac-

ti-

vate-

TaskCom-

mand

Fail-

TaskCom-

mand

Get-

TasksOwned-

Com-

mand

Ad-

dTaskCom-

mand

For-

ward-

TaskCom-

mand

Nom-

i-

nate-

TaskCom-

mand

Can-

celDead-

lineCom-

mand

GetAt-

tach-

ment-

Com-

mand

ProcessSub-

TaskCom-

mand

Claim-

Nex-

tAvail-

able-

TaskCom-

mand

Get-

Con-

tent-

Com-

mand

Re-

lease-

TaskCom-

mand

Claim-

TaskCom-

mand

Get-

TaskAs-

signedAs-

Busi-

nes-

sAd-

min-

Com-

mand

Re-

sumeTaskCom-

mand

Com-

plete-

TaskCom-

mand

Get-

TaskAs-

signedAsPo-

ten-

Skip-

TaskCom-

mand

Remote API

528

tialOwn-

er-

Com-

mand

Com-

pos-

iteCom-

mand

Get-

TaskBy-

WorkItemId-

Com-

mand

Start-

TaskCom-

mand

Del-

e-

gate-

TaskCom-

mand

Get-

TaskCom-

mand

Stop-

TaskCom-

mand

Ex-

e-

cute-

TaskRule-

sCom-

mand

Get-

Tasks-

ByProcessIn-

stanceId-

Com-

mand

Sus-

pend-

TaskCom-

mand

Table 17.12. History/Audit commands

ClearHis-

to-

ry-

LogsCom-

mand

Find-

ProcessIn-

stanceCom-

mand

Find-

SubProcessIn-

stancesCom-

mand

Find-

Ac-

tive-

ProcessIn-

stancesCom-

mand

Find-

ProcessIn-

stancesCom-

mand

Find-

Vari-

ableIn-

stances-

By-

NameCom-

mand

Find-

NodeIn-

stancesCom-

mand

Find-

SubProcessIn-

stancesCom-

mand

Find-

Vari-

ableIn-

stancesCom-

mand

Remote API

529

17.2.6.3. Basic example

The following /rest/execute call can be used to start a process (with process id ‘evaluation’ in the

project with deployment id ‘org.jbpm:Evaluation:1.0’) and two parameters (parameter employee

equal to ‘krisv’ and reason equal to ‘Yearly performance evaluation’).

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<command-request>

 <deployment-id>org.jbpm:Evaluation:1.0</deployment-id>

 <ver>6.2.0.1</ver>

 <user>krisv</user>

 <start-process processId="evaluation">

 <parameter>

 <item key="reason">

 <value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Yearly performance evaluation</

value>

 </item>

 <item key="employee">

 <value xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">krisv</value>

 </item>

 </parameter>

 </start-process>

</command-request>

Note that the request should also contain the following HTTP headers:

• A Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] header

with the value of application/xml

• A Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] header

with basic authentication information, as specificed by RFC2616 (see link).

The response will contain information about the process instance that was just started:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

 <command-response>

 <deployment-id>org.jbpm:Evaluation:1.0</deployment-id>

 <ver>6.2.0.1</ver>

 <process-instance index="0">

 <process-id>evaluation</process-id>

 <id>15</id>

 <state>1</state>

 <parentProcessInstanceId>0</parentProcessInstanceId>

 <command-name>StartProcessCommand</command-name>

 </process-instance>

</command-response>

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8

Remote API

530

17.2.6.4. More Complex Example with a Custom Data Type

The /execute operation also supports sending user-defined class instances as parameters in the

command. This relies on JAXB for serialization and deserialization. To be able to deserialize the

custom class on the server side, a "Kie-Deployment-Id" header must also be set to the deployment

id of the project.

For example, when starting a process or completing a task, a user typically passes additional

parameters (process variable values or the result data for the completed task). These values are

then either primitives (Strings, ints, etc.) or user-defined classes that were created using the data

modeler in the workbench, added directly to the deployed project or part of a dependency to the

deployment (project).

The following request starts a process which contains a custom TestObject class (with two fields)

as a parameter.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<command-request>

 <deployment-id>demo:testproject:1.0</deployment-id>

 <ver>6.2.0.1</ver>

 <user>krisv</user>

 <start-process processId="testproject.testprocess">

 <parameter>

 <item key="testobject">

 <value xsi:type="testObject" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <field1>1</field1>

 <field2>2</field2>

 </value>

 </item>

 </parameter>

 </start-process>

</command-request>

Just as in the basic example above, both a Content-Type and Authorization header should

be set in the request.

The 3 headers that therefore need to be set in the requst are the following:

• A Content-Type [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17] header

with the value of application/xml

• A Authorization [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8] header

with basic authentication information, as specificed by RFC2616 (see link).

• A Kie-Deployment-Id [https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-re-

mote/kie-remote-jaxb/src/main/java/org/kie/services/client/

serialization/JaxbSerializationProvider.java#L73] header with the value of the deployment id

containing the class definitions of any parameters sent with the command .

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.8
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/JaxbSerializationProvider.java#L73
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/JaxbSerializationProvider.java#L73
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/JaxbSerializationProvider.java#L73
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/JaxbSerializationProvider.java#L73

Remote API

531

17.2.7. REST summary

The URL templates in the table below are relative to the one of the following URLs:

• http://server:port/business-central/rest

• http://server:port/kie-wb/rest

17.2.7.1. Runtime REST calls

[GET] /runtime/{deploymentId}/process/{procDefID}

• returns basic information about the process definition, including process variable information

[POST] /runtime/{deploymentId}/process/{procDefID}/start

• start a process instance based on the Process definition (accepts query map parameters)

[GET] /runtime/{deploymentId}/process/{procDefID}/startform

• returns a valid URL to the start process form to be shown on a client aplication.

[GET] /runtime/{deploymentId}/process/instance/{procInstanceID}

• return a process instance details

[POST] /runtime/{deploymentId}/process/instance/{procInstanceID}/abort

• abort the process instance

[POST] /runtime/{deploymentId}/process/instance/{procInstanceID}/signal

• send a signal event to process instance (accepts query map parameters)

[GET] /runtime/{deploymentId}/process/instance/{procInstanceID}/vari-

able/{varId}

• return a variable from a process instance

http://server:port/business-central/rest
http://server:port/kie-wb/rest

Remote API

532

[POST] /runtime/{deploymentId}/signal/

• send a signal event to deployment

[GET] /runtime/{deploymentId}/workitem/{workItemID}

• complete a work item (accepts query map parameters)

[POST] /runtime/{deploymentId}/workitem/{workItemID}/complete

• complete a work item (accepts query map parameters)

[POST] /runtime/{deploymentId}/workitem/{workItemID}/abort

• abort a work item

[POST] /runtime/{deploymentId}/withvars/process/{procDefinitionID}/start

• start a process instance and return the process instance with its variables

[GET] /runtime/{deploymentId}/withvars/process/instance/{procInstanceID}/

• return a process instance with its variables

[POST] /runtime/{deploymentId}/withvars/process/instance/{procInstanceID}/sig-

nal

• send a signal event to the process instance (accepts query map parameters)

The following query parameters are accepted:

— The signal parameter specifies the name of the signal to be sent — The event parameter

specifies the (optional) value of the signal to be sent

17.2.7.2. Task REST calls

[GET] /task/query

• return a TaskSummary list

Remote API

533

[GET] /task/content/{contentID}

• returns the content of a task

[GET] /task/{taskID}

• return the task

[POST] /task/{taskID}/activate

• activate the task

[POST] /task/{taskID}/claim

• claim the task

[POST] /task/{taskID}/claimnextavailable

• claim the next available task

[POST] /task/{taskID}/complete

• complete the task (accepts query map paramaters)

[POST] /task/{taskID}/delegate

• delegate the task

[POST] /task/{taskID}/exit

• exit the task

[POST] /task/{taskID}/fail

• fail the task

[POST] /task/{taskID}/forward

Remote API

534

• forward the task

[POST] /task/{taskID}/nominate

• nominate the task

[POST] /task/{taskID}/release

• release the task

[POST] /task/{taskID}/resume

• resume the task (after suspending)

[POST] /task/{taskID}/skip

• skip the task

[POST] /task/{taskID}/start

• start the task

[POST] /task/{taskID}/stop

• stop the task

[POST] /task/{taskID}/suspend

• suspend the task

[GET] /task/{taskID}/content

• returns the content of a task

[GET] /task/{taskID}/showTaskForm

• returns a valid URL to the task form to be shown on a client aplication.

Remote API

535

17.2.7.3. History REST calls

[POST] /history/clear/

• delete all process, node and history records

[GET] /history/instances

• return the list of all process instance history records

[GET] /history/instance/{procInstId}

• return a list of process instance history records for a process instance

[GET] /history/instance/{procInstId}/child

• return a list of process instance history records for the subprocesses of the process instance

[GET] /history/instance/{procInstId}/node

• return a list of node history records for a process instance

[GET] /history/instance/{procInstId}/node/{nodeId}

• return a list of node history records for a node in a process instance

[GET] /history/instance/{procInstId}/variable

• return a list of variable history records for a process instance

[GET] /history/instance/{procInstId}/variable/{variableId}

• return a list of variable history records for a variable in a process instance

[GET] /history/process/{procDefId}

Remote API

536

• return a list of process instance history records for process instances using a given process

definition

[GET] /history/variable/{varId}

• return a list of variable history records for a variable

[GET] /history/variable/{varId}/instances

• return a list of process instance history records for process instances that contain a variable

with the given variable id

[GET] /history/variable/{varId}/value/{value}

• return a list of variable history records for variable(s) with the given variable id and given value

[GET] /history/variable/{varId}/value/{value}/instances

• return a list of process instance history records for process instances with the specified variable

that contains the specified variable value

17.2.7.4. Deployment REST calls

[GET] /deployments

• return a list of (deployed) deployments

[GET] /deployment/{deploymentId}

• return the status and information about the deployment

[POST] /deployment/{deploymentId}/deploy

• submit a request to deploy a deployment

[POST] /deployment/{deploymentId}/undeploy

• submit a request to undeploy a deployment

Remote API

537

17.3. REST Query API

The REST Query API allows users of the jBPM console and the KIE workbench (as well as prod-

ucts based on these applications) to "richly" query tasks, variables and process instances.

17.3.1. Query URL layout

The rich query operations can be reached via the following URLs:

http://server.address:port/{application-id}/rest/query/

 task * [GET] rich query operation for task summaries

 runtime

 process * [GET] rich query operation for process

 instances and process variables

 task * [GET] rich query operation for task summaries

 and process variables

Both url’s take a number of different query parameters. See the next section for a description of

these.

The following is a summary of the query operations:

17.3.1.1. [POST] /query/runtime/process

• Queries the process instances and process variables

• Returns a JaxbQueryProcessInstanceResult containing the results of the query

• Takes the URL query parameters described in the Query parameters table below

17.3.1.2. [POST] /query/runtime/task

• Queries the tasks and process variables

• Returns a JaxbQueryTaskResult containing the results of the query

• Takes the URL query parameters described in the Query parameters table below

17.3.1.3. [POST] /query/task

• Queries all non-archived tasks based on the parameters given.

• Returns a JaxbTaskSummaryListResponse with a list of TaskSummary instances

• Parameters:

• Takes the following (case-'in' sensitive) query parameters listed below.

Remote API

538

• All parameters except for the union parameter may be repeated.

businessAdministrator

Returned tasks should have a business administrator identified by this parameter

potentialOwner

Returned tasks should have a potential owner identified by this parameter

processInstanceId

Returned tasks should be associated with the process instance identified by this para-

meter

status

Returned tasks should have a status identified by this parameter

taskId

Returned tasks should have the (task) id identified by this parameter

taskOwner

Returned tasks should have a task owner (initiator) identified by this parameter

workItemId

Returned tasks should be associated with the work item identified by this parameter

language

Specifies the language that the returned tasks should be associated with

union

This specifies whether the query should query the union or intersection of the parameters.

See below for an example and more info. This parameter may only be passed once

Example 17.3. /query/task usage

The following /query/task operation retrieves the task summaries of all tasks that have a work

item id of 3, 4, or 5. If you specify the same parameter multiple times, the query will select tasks

that match any of that parameter.

http://server:port/rest/task/query?workItemId=3&workItemId=4&workItemId=5

The next call will retrieve any task summaries for which the task id is 27 and for which the work item

id is 11. Specifying different parameters will result in a set of tasks that match both (all) parameters.

`http://server:port/rest/task/query?workItemId=11&taskId=27`

The next call will retrieve any task summaries for which the task id is 27 or the work item id is 11.

While these are different parameters, the union parameter is being used here so that the union

of the two queries (the work item id query and the task id query) is returned.

Remote API

539

http://server:port/rest/task/query?workItemId=11&taskId=27&union=true`

The next call will retrieve any task summaries for which the status is Created and the po-

tential owner of the task is Bob. Note that the letter case for the status parameter value is

case-'in’sensitve.

http://server:port/rest/task/query?status=creAted&potentialOwner=Bob`

The next call will return any task summaries for which the status is Created and the potential

owner of the task is bob. Note that the potential owner parameter is case-'sensitive'. bob is not

the same user id as Bob!

http://server:port/rest/task/query?status=created&potentialOwner=bob`

The next call will return the intersection of the set of task summaries for which the process instance

is 201, the potential owner is bob and for which the status is Created or Ready.

http://server:port/rest/task/query?

status=created&status=ready&potentialOwner=bob&processInstanceId=201

That means that the task summaries that have the following characteristics would be included:

• process instance id 201, potential owner bob, status Ready

• process instance id 201, potential owner bob, status Created

And that following task summaries will not be included:

• process instance id 183, potential owner bob, status Created

• process instance id 201, potential owner '`mary`, status Ready

• process instance id 201, potential owner bob, status `Complete`

17.3.2. Query Parameters

In the documentation below,

• "query parameters" are strings like processInstanceId, taskId and tid. The case (lowercase

or uppercase) of these parameters does not matter, except when the query parameter also

specifies the name of a user-defined variable.

• "parameters" are the values that are passed with some query parameters. These are values

like org.process.frombulator, 29 and harry.

When you submit a REST call to the query operation, your URL will look something like this:

Remote API

540

http://localhost:8080/business-central/rest/query/runtime/process/

processId=org.process.frombulator&piid=29

A query containing multiple different query parameters will search for the intersection of the given

parameters.

However, many of the query parameters described below can be entered multiple times: when

multiple values are given for the same query parameter, the query will then search for any results

that match one or more of the values entered.

Example 17.4. Repeated query parameters

The following process instance query:

processId=org.example.process&processInstanceId=27&processInstanceId=29

will return a result that

• only contains information about process instances with the "org.example.process" process de-

finition

• only contains information about process instances that have an id of 27 or 29

17.3.2.1. Range and Regular Expression parameters

Some query criteria can be given in ranges while for others, a simple regular expression language

can be used to describe the value.

Query parameters that

• can be given in ranges have an "X" in the min/max column in the table below.

• use regular expressions have an "X" in the regex column below.

17.3.2.2. Range query parameters

In order to pass the lower end or start of a range, add _min to end of the parameter name. In order

to pass the upper end or end of a range, add _max to end of the parameter name.

Range ends are inclusive.

Only passing one end of the range (the lower or upper end), results in querying on an open ended

range.

Example 17.5. Range parameters

A task query with the following parameters:

Remote API

541

processId=org.example.process&taskId_min=50&taskId_max=53

will return a result that

• only contains information about tasks associated with the "org.example.process" process def-

inition

• only contains information about tasks that have a task id between 50 and 53, inclusive.

While a task query with the following parameters:

processId=org.example.process&taskId_min=52

will return a result that

• only contains information about tasks associated with the "org.example.process" process def-

inition

• only contains information about tasks that have a task id that is larger than or equal to 52

17.3.2.3. Regular expression query parameters

In order to apply regular expressions to a query parameter, add “_re” to the end of the parameter

name.

The regular expression language contains 2 special characters:

• * means 0 or more characters

• . means 1 character

The slash character (\) is not interpreted.

Example 17.6. Regular expression parameters

The following process instance query

processId_re=org.example.*&processVersion=2.0

will return a result that

• only contains information about process instances associated with a process definition whose

name matches the regular expression "org.example.*". This includes:

• org.example.process

• org.example.process.definition.example.long.name

Remote API

542

• orgXexampleX

• only contains information about process instances that have a process (definition) version of 2.0

17.3.3. Parameter Table

The "task or process" column describes whether or not a query parameter can be used with the

task and/or the process instance query operations.

Table 17.13. Query parameters

pa-

ra-

me-

ter

short

form

de-

scrip-

tion

regexmin /

max

task

or

process

pro-

cessin-

stan-

ceid

pi-

id

Process

in-

stance

id

 XT,P

pro-

ces-

sid

pidProcess

id

X T,P

de-

ploy-

men-

tid

didDe-

ploy-

ment

id

X T,P

task-

id

tidTask

id

 XT

ini-

tia-

tor

initTask

ini-

tia-

tor/cre-

ator

X T

stake-

hold-

er

sthoTask

stake-

hold-

er

X T

po-

ten-

tialown-

er

poTask

po-

ten-

tial

own-

er

X T

Remote API

543

pa-

ra-

me-

ter

short

form

de-

scrip-

tion

regexmin /

max

task

or

process

taskown-

er

toTask

own-

er

X T

busi-

nes-

sad-

min

baTask

busi-

ness

ad-

min

X T

tasksta-

tus

tstTask

sta-

tus

 T

pro-

cessin-

stances-

ta-

tus

pistProcess

in-

stance

sta-

tus

 T,P

processver-

sion

pvProcess

ver-

sion

X T,P

start-

date

stdtProcess

in-

stance

start

date1

 XT,P

end-

date

edtProcess

in-

stance

end

date1

 XT,P

varidvidVari-

able

id

X T,P

var-

val-

ue

vvVari-

able

val-

ue

X T,P

Remote API

544

pa-

ra-

me-

ter

short

form

de-

scrip-

tion

regexmin /

max

task

or

process

varvarVari-

able

id

and

val-

ue
2

 T,P

var-

regex

vrVari-

able

id

and

val-

ue
3

X T,P

allallWhich

vari-

able

his-

to-

ry

logs
4

 T,P

[1] The date operations take strings with a specific date format as their values: yy-MM-

dd_HH:mm:ss.SSS. However, users can also submit only part of the date:

• Submitting only the date (yy-MM-dd) means that a time of 00:00:00 is used (the beginning of

the day).

• Submitting only the time (HH:mm:ss) means that the current date is used.

Table 17.14. Example date strings

Date string Actual meaning

15-05-29_13:40:12.288 May 29th, 2015, 13:40:12.288 (1:40:12.288

PM)

14-11-20 November 20th, 2014, 00:00:00.000

9:30:00 Today, 9:30:00 (AM)

For the format used, see the SimpleDateFormat documentation [http://docs.oracle.com/javase/6/

docs/api/java/text/SimpleDateFormat.html].

http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/6/docs/api/java/text/SimpleDateFormat.html

Remote API

545

[2] The var query parameter is used differently than other parameters. If you want to specify both

the variable id and value of a variable (as opposed to just the variable id), then you can do it by

using the var query parameter. The syntax is var_<variable-id>=<variable-value>

Example 17.7. var_X=Y example

The query parameter and parameter pair var_myVar=value3 queries for process instances with

variables4 that are called myVar and that have the value value3

[3] The varreggex (or shortened version vr) parameter works similarly to the var query parame-

ter. However, the value part of the query parameter can be a regular expression.

[4] By default, only the information from most recent (last) variable instance logs is retrieved.

However, users can also retrieve all variable instance logs (that match the given criteria) by using

this parameter.

17.3.4. Parameter examples

Table 17.15. Query parameters examples

pa-

ra-

me-

ter

short

form

ex-

am-

ple

pro-

cessin-

stan-

ceid

pi-

id

pi-

id=23

pro-

ces-

sid

pidprocessid=com.acme.example

de-

ploy-

men-

tid

diddid_re=com.willy.loompa.*

task-

id

tidtask-

id=4

ini-

tia-

tor

initinit_re=Davi*

stake-

hold-

er

sthostho=theBoss&stho=theBossesAssistant

po-

ten-

popotentialowner=sara

Remote API

546

pa-

ra-

me-

ter

short

form

ex-

am-

ple

tialown-

er

taskown-

er

totaskowner_re=*anderson

busi-

nes-

sad-

min

baba=admin

tasksta-

tus

tsttst=Reserved

pro-

cessin-

stances-

ta-

tus

pistpist=3&pist=4

processver-

sion

pvprocessVersion_re=4.2*

start-

date

stdtstdt_min=00:00:00

end-

date

edtedt_max=15-01-01

varidvidvarid=numCars

var-

val-

ue

vvvv=abracadabra

varvarvar_numCars=10

var-

regex

vrvr_nameCar=chitty*

allallall

17.3.5. Query Output Format

The process instance query returns a JaxbQueryProcessInstanceRe-

sult [https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/

src/main/java/org/kie/services/client/serialization/jaxb/impl/query/

JaxbQueryProcessInstanceResult.java] instance.

https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceResult.java

Remote API

547

The task query returns a JaxbQueryTaskResult [https://github.com/droolsjbpm/droolsjbpm-inte-

gration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/

serialization/jaxb/impl/query/JaxbQueryTaskResult.java] instance.

Results are structured as follows:

• a list of process instance info (JaxbQueryProcessInstanceInfo [https://github.com/drool-

sjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/

services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java]) objects

• or a list of task instance info (JaxbQueryTaskInfo [https://github.com/droolsjbpm/droolsjbpm-in-

tegration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/

serialization/jaxb/impl/query/JaxbQueryTaskInfo.java]) objects

A JaxbQueryProcessInstanceInfo [https://github.com/droolsjbpm/droolsjbpm-integra-

tion/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/

impl/query/JaxbQueryProcessInstanceInfo.java] object contains:

• a process instance object

• a list of 0 or more variable objects

A JaxbQueryTaskInfo [https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-re-

mote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/

JaxbQueryTaskInfo.java] info object contains:

• the process instance id

• a list of 0 or more task summary obejcts

• a list of 0 or more variable objects

17.4. JMS

The Java Message Service (JMS) is an API that allows Java Enterprise components to commu-

nicate with each other asynchronously and reliably.

Operations on the runtime engine and tasks can be done via the JMS API exposed by the jBPM

console and KIE workbench. However, it’s not possible to manage deployments or the knowledge

base via this JMS API.

Unlike the REST API, it is possible to send a batch of commands to the JMS API that will all be

processed in one request after which the responses to the commands will be collected and return

in one response message.

https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskResult.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryProcessInstanceInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java
https://github.com/droolsjbpm/droolsjbpm-integration/blob/6.2.x/kie-remote/kie-remote-jaxb/src/main/java/org/kie/services/client/serialization/jaxb/impl/query/JaxbQueryTaskInfo.java

Remote API

548

17.4.1. JMS Queue setup

When the Workbench is deployed on the JBoss AS or EAP server, it automatically creates 3

queues:

• jms/queue/KIE.SESSION

• jms/queue/KIE.TASK

• jms/queue/KIE.RESPONSE

The KIE.SESSION and KIE.TASK queues should be used to send request messages to the JMS

API. Command response messages will be then placed on the KIE.RESPONSE queues. Command

request messages that involve starting and managing business processes should be sent to the

KIE.SESSION and command request messages that involve managing human tasks, should be

sent to the KIE.TASK queue.

Although there are 2 different input queues, KIE.SESSION and KIE.TASK, this is only in order to

provide multiple input queues so as to optimize processing: command request messages will be

processed in the same manner regardless of which queue they’re sent to. However, in some cas-

es, users may send many more requests involving human tasks than requests involving business

processes, but then not want the processing of business process-related request messages to be

delayed by the human task messages. By sending the appropriate command request messages

to the appropriate queues, this problem can be avoided.

The term "command request message" used above refers to a JMS text message that contains a

serialized JaxbCommandsRequest object. At the moment, only XML serialization (as opposed to,

JSON or protobuf, for example) is supported.

17.4.2. Using the remote Java API

While it is possible to interact with a BPMS or KIE workbench server instance by sending and

processing JMS messages that you create yourself, it will always be easier to use the remote

Java API that’s supplied by the kie-services-client jar.

For more information about how to use the remote Java API to interact with the JMS API of a

server instance, see the <link linkend='remote.java.api.jms'>Remote Java API</link> section.

17.4.2.1. Serialization issues

The JMS API accepts TextMessage instances that contain serialized JaxbCommandsRequest ob-

jects. These JaxbCommandsRequest instances can be filled with multiple command objects. In this

way, it’s possible to send a batch of commands for processing to the JMS API.

When users wish to include their own classes with requests, there a number of requirements that

must be met for the user-defined classes. For more information about these requirements, see the

Sending and receiving user class instances section in the remote API additional documentation

section.

Remote API

549

17.4.3. Example JMS usage

The following is a rather long example that shows how to use the JMS API. The numbers ("call-

outs") along the side of the example refer to notes below that explain particular parts of the ex-

ample. It’s supplied for those advanced users that do not wish to use the jBPM Remote Java API.

The jBPM Remote Java API, described here, will otherwise take care of all of the logic shown

below.

package org.kie.remote.client.documentation.jms;

 import static org.kie.services.client.serialization.SerializationConstants.DEPLOYMENT_ID_PROPERTY_NAME;

 import static org.kie.services.client.serialization.SerializationConstants.SERIALIZATION_TYPE_PROPERTY_NAME;

 import static org.kie.services.shared.ServicesVersion.VERSION;

 import java.util.Collections;

 import java.util.List;

 import java.util.Set;

 import java.util.UUID;

 import javax.jms.Connection;

 import javax.jms.ConnectionFactory;

 import javax.jms.JMSException;

 import javax.jms.Message;

 import javax.jms.MessageConsumer;

 import javax.jms.MessageProducer;

 import javax.jms.Queue;

 import javax.jms.Session;

 import javax.jms.TextMessage;

 import javax.naming.InitialContext;

 import javax.naming.NamingException;

 import org.kie.api.command.Command;

 import org.kie.api.runtime.process.ProcessInstance;

 import org.kie.api.task.model.TaskSummary;

 import org.kie.remote.client.api.RemoteRuntimeEngineFactory;

 import org.kie.remote.client.api.exception.MissingRequiredInfoException;

 import org.kie.remote.client.api.exception.RemoteApiException;

 import org.kie.remote.client.api.exception.RemoteCommunicationException;

 import org.kie.remote.client.jaxb.ClientJaxbSerializationProvider;

 import org.kie.remote.client.jaxb.JaxbCommandsRequest;

 import org.kie.remote.client.jaxb.JaxbCommandsResponse;

 import org.kie.remote.jaxb.gen.AuditCommand;

 import org.kie.remote.jaxb.gen.GetTaskAssignedAsPotentialOwnerCommand;

 import org.kie.remote.jaxb.gen.StartProcessCommand;

 import org.kie.remote.jaxb.gen.TaskCommand;

 import org.kie.services.client.serialization.JaxbSerializationProvider;

 import org.kie.services.client.serialization.SerializationException;

 import org.kie.services.client.serialization.SerializationProvider;

 import org.kie.services.client.serialization.jaxb.impl.JaxbCommandResponse;

 import org.kie.services.client.serialization.jaxb.rest.JaxbExceptionResponse;

 import org.slf4j.Logger;

 import org.slf4j.LoggerFactory;

 public class SendJmsExample {

Remote API

550

 protected static final Logger logger = LoggerFactory.getLogger(SendJmsExample.class);

 public void sendCommandsViaJms(String user, String password, String connectionUser, String connectionPassword,

 String deploymentId, String processId, String hostName) {

 /**

 * JMS setup

 */

 // Get JNDI context from server

 InitialContext context = RemoteRuntimeEngineFactory.getRemoteJbossInitialContext(hostName, connectionUser, connectionPassword);

 // Create JMS connection

 ConnectionFactory connectionFactory;

 try {

 connectionFactory = (ConnectionFactory) context.lookup("jms/RemoteConnectionFactory");

 } catch(NamingException ne) {

 throw new RuntimeException("Unable to lookup JMS connection factory.", ne);

 }

 // Setup queues

 Queue sessionQueue, taskQueue, sendQueue, responseQueue;

 try {

 sendQueue = sessionQueue = (Queue) context.lookup("jms/queue/KIE.SESSION");

 taskQueue = (Queue) context.lookup("jms/queue/KIE.TASK");

 responseQueue = (Queue) context.lookup("jms/queue/KIE.RESPONSE");

 } catch(NamingException ne) {

 throw new RuntimeException("Unable to lookup send or response queue", ne);

 }

 /**

 * Command preparation

 */

 StartProcessCommand startProcCmd = new StartProcessCommand();

 startProcCmd.setProcessId(processId);

 /**

 * Send command via JMS and receive response

 */

 SerializationProvider serializationProvider = ClientJaxbSerializationProvider.newInstance();

 ProcessInstance procInst = (ProcessInstance) sendJmsCommand(startProcCmd,

 connectionUser, connectionPassword,

 user, password, deploymentId, null,

 connectionFactory, sendQueue, responseQueue,

 serializationProvider, Collections.EMPTY_SET, JaxbSerializationProvider.JMS_SERIALIZATION_TYPE,

 5 * 1000);

 /**

 * Command preparation

 */

 GetTaskAssignedAsPotentialOwnerCommand gtaapoCmd = new GetTaskAssignedAsPotentialOwnerCommand();

 gtaapoCmd.setUserId(user);

 // Send command request

 Long processInstanceId = null; // needed if you're doing an operation on a

 PER_PROCESS_INSTANCE deployment

 /**

 * Send command via JMS and receive response

 */

Remote API

551

 @SuppressWarnings("unchecked")

 List<TaskSummary> taskSumList = (List<TaskSummary>) sendJmsCommand(gtaapoCmd,

 connectionUser, connectionPassword,

 user, password, deploymentId, processInstanceId,

 connectionFactory, sendQueue, responseQueue,

 serializationProvider, Collections.EMPTY_SET, JaxbSerializationProvider.JMS_SERIALIZATION_TYPE,

 5 * 1000);

 long taskId = taskSumList.get(0).getId();

 }

 // @formatter:off

 public static Object sendJmsCommand(Command command,

 String connUser, String connPassword,

 String userName, String password, String deploymentId, Long processInstanceId,

 ConnectionFactory factory, Queue sendQueue, Queue responseQueue,

 SerializationProvider serializationProvider, Set<Class<?>> extraJaxbClasses, int serializationType,

 long timeoutInMillisecs) {

 // @formatter:on

 if(deploymentId == null && !(command instanceof TaskCommand || command instanceof AuditCommand)) {

 throw new MissingRequiredInfoException("A deployment id is required when sending commands

 involving the KieSession.");

 }

 JaxbCommandsRequest req;

 if(command instanceof AuditCommand) {

 req = new JaxbCommandsRequest(command);

 } else {

 req = new JaxbCommandsRequest(deploymentId, command);

 }

 req.setProcessInstanceId(processInstanceId);

 req.setUser(userName);

 req.setVersion(VERSION);

 Connection connection = null;

 Session session = null;

 JaxbCommandsResponse cmdResponse = null;

 String corrId = UUID.randomUUID().toString();

 String selector = "JMSCorrelationID = '" + corrId + "'";

 try {

 // setup

 MessageProducer producer;

 MessageConsumer consumer;

 try {

 if(password != null) {

 connection = factory.createConnection(connUser, connPassword);

 } else {

 connection = factory.createConnection();

 }

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 producer = session.createProducer(sendQueue);

 consumer = session.createConsumer(responseQueue, selector);

 connection.start();

 } catch(JMSException jmse) {

 throw new RemoteCommunicationException("Unable to setup a JMS connection.", jmse);

Remote API

552

 }

 // Create msg

 TextMessage textMsg;

 try {

 // serialize request

 String xmlStr = serializationProvider.serialize(req);

 textMsg = session.createTextMessage(xmlStr);

 // set properties

 // 1. corr id

 textMsg.setJMSCorrelationID(corrId);

 // 2. serialization info

 textMsg.setIntProperty(SERIALIZATION_TYPE_PROPERTY_NAME, serializationType);

 if(extraJaxbClasses != null && !extraJaxbClasses.isEmpty()) {

 if(deploymentId == null) {

 throw new MissingRequiredInfoException(

 "Deserialization of parameter classes requires a deployment id, which has not been

 configured.");

 }

 textMsg.setStringProperty(DEPLOYMENT_ID_PROPERTY_NAME, deploymentId);

 }

 // 3. user/pass for task operations

 boolean isTaskCommand = (command instanceof TaskCommand);

 if(isTaskCommand) {

 if(userName == null) {

 throw new RemoteCommunicationException(

 "A user name is required when sending task operation requests via JMS");

 }

 if(password == null) {

 throw new RemoteCommunicationException(

 "A password is required when sending task operation requests via JMS");

 }

 textMsg.setStringProperty("username", userName);

 textMsg.setStringProperty("password", password);

 }

 // 4. process instance id

 } catch(JMSException jmse) {

 throw new RemoteCommunicationException("Unable to create and fill a JMS message.", jmse);

 } catch(SerializationException se) {

 throw new RemoteCommunicationException("Unable to deserialze JMS message.", se.getCause());

 }

 // send

 try {

 producer.send(textMsg);

 } catch(JMSException jmse) {

 throw new RemoteCommunicationException("Unable to send a JMS message.", jmse);

 }

 // receive

 Message response;

 try {

 response = consumer.receive(timeoutInMillisecs);

 } catch(JMSException jmse) {

 throw new RemoteCommunicationException("Unable to receive or retrieve the JMS

 response.", jmse);

 }

Remote API

553

 if(response == null) {

 logger.warn("Response is empty");

 return null;

 }

 // extract response

 assert response != null: "Response is empty.";

 try {

 String xmlStr = ((TextMessage) response).getText();

 cmdResponse = (JaxbCommandsResponse) serializationProvider.deserialize(xmlStr);

 } catch(JMSException jmse) {

 throw new RemoteCommunicationException("Unable to extract

 " + JaxbCommandsResponse.class.getSimpleName()

 + " instance from JMS response.", jmse);

 } catch(SerializationException se) {

 throw new RemoteCommunicationException("Unable to extract

 " + JaxbCommandsResponse.class.getSimpleName()

 + " instance from JMS response.", se.getCause());

 }

 assert cmdResponse != null: "Jaxb Cmd Response was null!";

 } finally {

 if(connection != null) {

 try {

 connection.close();

 if(session != null) {

 session.close();

 }

 } catch(JMSException jmse) {

 logger.warn("Unable to close connection or session!", jmse);

 }

 }

 }

 String version = cmdResponse.getVersion();

 if(version == null) {

 version = "pre-6.0.3";

 }

 if(!version.equals(VERSION)) {

 logger.info("Response received from server version [{}] while client is version [{}]!

 This may cause problems.",

 version, VERSION);

 }

 List<JaxbCommandResponse<?>> responses = cmdResponse.getResponses();

 if(responses.size() > 0) {

 JaxbCommandResponse<?> response = responses.get(0);

 if(response instanceof JaxbExceptionResponse) {

 JaxbExceptionResponse exceptionResponse = (JaxbExceptionResponse) response;

 throw new RemoteApiException(exceptionResponse.getMessage());

 } else {

 return response.getResult();

 }

 } else {

 assert responses.size() == 0: "There should only be 1 response, not " + responses.size() + ",

 returned by a command!";

 return null;

 }

 }

Remote API

554

 }

These classes can all be found in the kie-api, kie-services-client and kie-ser-

vices-jaxb JARs. For this example, the only dependency needed is org.kie.remote:kie-

remote-client, which transitively depends on both the org.kie:kie-api and

org.kie.remote:kie-remote-jaxb artifacts.

The JaxbCommandsRequest instance is the "holder" object in which you can place

all of the commands you want to execute in a particular request. By using the

JaxbCommandsRequest.getCommands() method, you can retrieve the list of commands in

order to add more commands to the request. A deployment id is required for command re-

quest messages that deal with business processes. Command request messages that only

contain human task-related commands do not require a deployment id.

Note that the JMS message sent to the remote JMS API must be constructed as follows:

• It must be a JMS text message (javax.jms.TextMessage).

• It must contain a serialized instance of a JaxbCommandsRequest, added to the message

as a UTF string

• It must have a filled JMS Correlation ID property.

• It must have an int property with the name of "serialization" set to an acceptable value

(only 0 at the moment).

The same serialization mechanism used to serialize the request message will be used to

serialize the response message.

17.5. Additional Information

17.5.1. REST Serialization: JAXB or JSON

Except for the Execute calls, all other REST calls described below can use either JAXB or JSON.

All REST calls, unless otherwise specified, use JAXB serialization.

When using JSON, make sure to add the JSON media type ("application/json") to the ACCEPT

header of your REST call.

17.5.2. Sending and receiving user class instances

Sometimes, users may wish to pass instances of their own classes as parameters to commands

sent in a REST or Webservice request or JMS message. In order to do this, there are a number

of requirements.

• The user-defined class satisfy the following in order to be property serialized and deserialized:

• It should be possible to serialize and deserialize the user-defined class using JAXB. For

simple custom classes, this might be available out-of-the-box, but for more complex types,

Remote API

555

this might mean the classes need to be correctly annotated with JAXB annotations, including

the following:

• The user-defined class must be annotated with a

javax.xml.bind.annotation.XmlRootElement annotation with a non-empty name value

• All fields or getter/setter methods must be annotated with a

javax.xml.bind.annotation.XmlElement or

javax.xml.bind.annotation.XmlAttribute annotations.

• Furthermore, the following usage of JAXB annotations is recommended:

• Annotate the user-defined class with a javax.xml.bind.annotation.XmlAccessorType

annotation specifying that fields should be used,

(javax.xml.bind.annotation.XmlAccessType.FIELD). This also means that you should

annotate the fields (instead of the getter or setter methods) with @XmlElement or @XmlAt-

tribute annotations.

• Fields annotated with @XmlElement or @XmlAttribute annotations should also be anno-

tated with javax.xml.bind.annotation.XmlSchemaType annotations specifying the type

of the field, even if the fields contain primitive values.

• Use objects to store primitive values. For example, use the java.lang.Integer class for

storing an integer value, and not the int class. This way it will always be obvious if the field

is storing a value.

• The user-defined class definition must implement a no-arg constructor.

• Any fields in the user-defined class must either be object primitives (such as a Long or String)

or otherwise be objects that satisfy the same requiremends in this list (correct usage of JAXB

annotations and a no-arg constructor).

• The class definition must be included in the deployment jar (kjar) of the deployment that the

command (request) is sent to.

• The sender must pass the deployment id in the header of the request. This property is nec-

essary to able to load the proper classes from the deployment itself before deserializing the

message on the server side.

• For REST requests, this means that the "Kie-Deployment-Id" header property must be set.

• For JMS messages, the deploymentId string property on the JMS text message must be

set.

Remote API

556

Retrieving process variables

While submitting an instance of a user-defined class is possible via both the JMS

and REST API, retrieving an instance of the process variable is only possible via

the REST API.

17.5.3. Including the deployment id

When interacting with the Remote API, users may want to pass instances of their own classes

as parameters to certain operations. As mThis will only be possible if the KJar for a deployment

includes these classes.

REST calls that involve the TaskService (e.g. that start with /task..), often do not contain any

information about the associated deployment. In that case, an extra query parameter will have to

be added to the REST call so that the server can find the appropriate deployment with the class

(definition) and correctly deserialize the information passed with the call.

For these REST calls which do not contain the deployment id, you’ll need to add the following

parameter:

Table 17.16. Deployment id query parameter

Pa-

ra-

me-

ter

name

De-

scrip-

tion

de-

ploy-

men-

tId

Val-

ue

(must

match

the

regex

[a-

zA-

Z0-9-:

\.]+)

spec-

i-

fies

the

de-

ploy-

ment

Remote API

557

Pa-

ra-

me-

ter

name

De-

scrip-

tion

which

con-

tains

the

user-

de-

fined

class(es)

need-

ed

to

cor-

rect-

ly

de-

se-

ri-

alze

in-

for-

ma-

tion

passed

in

the

call

17.5.4. REST Pagination

Some of the REST calls below return lists of information. The results of these operations can be

paginated, which means that the lists can be split up and returned according to the parameters

sent by the user.

For example, if the REST call parameters indicate that page 2 with page size 10 should be returned

for the results, then results 10 to (and including) 19 will be returned.

The first page is always page 1 (as opposed to page "0").

Remote API

558

Table 17.17. Pagination query parameter syntax

Pa-

ra-

me-

ter

name

De-

scrip-

tion

pageThe

page

num-

ber

re-

quest-

ed.

The

de-

fault

val-

ue

is

1.

pSynonym

for

the

above

page

pa-

ra-

me-

ter.

pageSizeThe

num-

ber

of

el-

e-

ments

per

page

to

re-

turn.

The

de-

Remote API

559

Pa-

ra-

me-

ter

name

De-

scrip-

tion

fault

val-

ue

is

10.

sSynonym

for

the

above

pageSize

pa-

ra-

me-

ter.

If both a "long" pagination parameter and its synonym are used, then only the value from the

"long" variant is used. For example, if the page is given with a value of 11 and the p parameter

is given with a value of 37, then the value of the page parameter, 11 , will be used and the p

parameter will be ignored.

For the following operations, pagination is always used. See above for the default values used.

Table 17.18. REST operations using pagination

REST

call

URL

Short

De-

scrip-

tion

/

his-

to-

ry/in-

stance

Re-

turns

a

list

of

ProcessIn-

stanceL-

og

in-

stances

/

his-

Re-

turns

Remote API

560

REST

call

URL

Short

De-

scrip-

tion

to-

ry/in-

stance/{procIn-

stid}

a

list

of

ProcessIn-

stanceL-

og

in-

stances

/

his-

to-

ry/in-

stance/{procIn-

stId}/child

Re-

turns

a

list

of

ProcessIn-

stanceL-

og

in-

stances

/

his-

to-

ry/in-

stance/{procIn-

stId}/node

Re-

turns

a

list

of

NodeIn-

stanceL-

og

in-

stances

/

his-

to-

ry/in-

stance/{procIn-

stId}/node/

{nodeId}

Re-

turns

a

list

of

NodeIn-

stanceL-

og

in-

stances

Remote API

561

REST

call

URL

Short

De-

scrip-

tion

/

his-

to-

ry/in-

stance/{procIn-

stId}/vari-

able

Re-

turns

a

list

of

Vari-

ableIn-

stanceL-

og

in-

stances

/

his-

to-

ry/in-

stance/{procIn-

stId}/vari-

able/{varId}

Re-

turns

a

list

of

Vari-

ableIn-

stanceL-

og

in-

stances

/

his-

to-

ry/vari-

able/{vari-

ableId}

Re-

turns

a

list

of

Vari-

ableIn-

stanceL-

og

in-

stances

/

his-

to-

ry/vari-

able/{vari-

Re-

turns

a

list

of

ProcessIn-

Remote API

562

REST

call

URL

Short

De-

scrip-

tion

ableId}/in-

stances

stance

in-

stances

/

his-

to-

ry/vari-

able/{vari-

ableId}/val-

ue/{val-

ue}

Re-

turns

a

list

of

ProcessIn-

stance

in-

stances

/

his-

to-

ry/vari-

able/{vari-

ableId}/val-

ue/{val-

ue}/in-

stances

Re-

turns

a

list

of

ProcessIn-

stance

in-

stances

/

his-

to-

ry/process/

{procDe-

fId}

Re-

turns

a

list

of

ProcessIn-

stanceL-

og

in-

stances

/

task/

query

Re-

turns

a

list

of

TaskSum-

ma-

ryIm-

Remote API

563

REST

call

URL

Short

De-

scrip-

tion

pl

in-

stances

/

query/

run-

time/task

Re-

turns

a

Jaxb-

Query-

TaskRe-

sult

in-

stance

/

query/

run-

time/process

Re-

turns

a

Jaxb-

QueryProcessIn-

stanceRe-

sult

in-

stance

17.5.5. REST Map query parameters

If you’re triggering an operation with a REST API call that would normally (e.g. when interact-

ing the same operation on a local KieSession or TaskService instance) take an instance of a

java.util.Map as one of its parameters, you can submit key-value pairs to the operation to sim-

ulate this behaviour by passing a query parameter whose name starts with map_.

Example 17.8. Query parameter examples

If you pass the query parameter map_kEy=vAlue in a REST call, then the Map that’s passed to the

actual underlying KieSession or TaskService operation will contain this (String, String) key

value pair: "kEy" # "vAlue". You could pass this parameter like so:

http://localhost:8080/kie-wb/rest/runtime/myproject/process/

wonka.factory.loompa.hire/start?map_kEy=vAlue

Map query parameters also use the object query parameter syntax described below, so the fol-

lowing query parameter, map_total=5000 will be translated into a key-value pair in a map where

the key is the String "total" and the value is a Long with the value of 5000. For example:

Remote API

564

http://localhost:8080/kie-wb/rest/runtime/myproject/process/

wonka.factory.oompa.chocolate/start?map_total=5000`

The following operations take query map parameters:

• /runtime/{deploymentId}/process/{processDefId}/start

• /runtime/{deploymentId}/workitem/{processItemId}/complete

• /runtime/{deploymentId}/withvars/process/{processDefId}/start

• /task/{taskId}/complete

• /task/{taskId}/fail

17.5.6. REST Number query parameters

While REST calls obviously only take strings as query parameters, using the following notation

for query parameters will mean that the string is translated into a different type of object when the

value of the string is used in the actual operation:

Table 17.19. Number query parameter syntax

Regex

syn-

tax

Type

\d

+

Long

\d

+i

In-

te-

ger

\d

+l

Long

17.5.7. Runtime strategies

The remote API calls allow access to the underlying deployments, regardless of whether these

deployments use the Singleton, Per-Process-Instance or Per-Request strategies.

While there’s enough information in the URL in order to access deployments that use the Sin-

gleton , or Per-Request strategies, that’s not always the case with the Per-Process-Instance

runtimes because the remote API operation will need the process instance id in order to identify

the deployment.

Therefore, for REST calls for which the URL does not contain the process instance id, you’ll need

to add the following parameter:

Remote API

565

Table 17.20. Per-Process-Instance runtime query parameter

Pa-

ra-

me-

ter

name

De-

scrip-

tion

run-

time-

ProcIn-

stId

Val-

ue

(must

match

the

regex

[0-9]+)

spec-

i-

fies

the

process

in-

stance

id

that

iden-

ti-

fies

the

un-

der-

ly-

ing

Per-

Process-

In-

stance

de-

ploy-

ment

Will

have

no

ef-

fect

if

Remote API

566

Pa-

ra-

me-

ter

name

De-

scrip-

tion

the

un-

der-

ly-

ing

de-

ploy-

ment

us-

es

the

Sin-

gle-

ton

or

Per-

Re-

quest

strat-

e-

gy

Part IV. Eclipse
How to use the Eclipse-based tooling

568

Chapter 18. jBPM Eclipse Plugin

18.1. jBPM Eclipse Plugin

The jBPM Eclipse plugin provides developers (and very technical users) with an environment to

edit and test processes, and integrate it deeply with their applications. It provides the following

features (on top of the Eclipse IDE):

• Wizards for creation of

• a jBPM project

• a BPMN2 process

• jBPM Perspective (showing the most commonly used views in a predefined layout)

• Kie Navigator View for managing Kie Server installations and projects

18.1.1. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including the

Drools and jBPM Eclipse plugin (with a full jBPM runtime preconfigured) and the Eclipse BPMN2

Modeler.

Tip

Using the jBPM installer is definitely the recommended starting point for most

users.

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you

need to:

• Download Eclipse (Kepler recommended, but older versions like Indigo or Juno should also

still work)

• Start Eclipse

• Select "Install New Software ..." from the Help menu. Add the Drools and

jBPM update site http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/ [http://

downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/]. You should see the plugins as

shown below. Note that you can also download and unzip the Drools and jBPM update site to

your local file system and use that as local update site instead.

http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/
http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/
http://downloads.jboss.org/jbpm/release/6.0.1.Final/updatesite/

jBPM Eclipse Plugin

569

Figure 18.1.

Select the JBoss jBPM Core and JBoss Drools Core plugins and click "Next >". Click "Next

>" again after reviewing your selecting, accept the terms of the license agreement and click

"Finish" to download and install the plugins. If you get a warning about installing software that

contains unsigned content, click OK. After successful installation, Eclipse should ask you to

restart, click Yes.

• The plugin should now be installed. To check, check if you can for example see the new jBPM

Project wizard: under the "File" menu, select "New Project ..." and there you should be able to

see "New jBPM Project" under the jBPM category.

• Register a jBPM runtime to get started, see the section on jBPM runtimes in this chapter for

more information.

Note that, when doing a manual install, you still need to manually install the Eclipse BPMN 2.0

Modeler plugin as well. Check out the chapter on the Eclipse BPMN 2.0 Modeler on how to do that.

jBPM Eclipse Plugin

570

18.1.2. jBPM Project Wizard

The aim of the new project wizard is to set up an executable sample project to start using processes

immediately. This will set up a basic structure, the classpath, sample process and a test case to

get you started. To create a new jBPM project, in the "File" menu select "New" and then "Project ..."

and under the jBPM category, select "jBPM Project". A dialog as shown below should pop up.

Figure 18.2.

Fill in a name for your project and if necessary change the location where this project should be

located (by default Eclipse will generate it inside your Eclipse workspace folder) and click "Next >".

Now you can optionally include a sample process in your project to get started. You can select

to either use a simple "Hello World" process, a slightly more advanced process including human

tasks and persistence or simply an empty project. You can also select to include a JUnit test

class that you can use to test your process. These can serve as a starting point, and will give you

something executable almost immediately, which you can then modify to your needs.

jBPM Eclipse Plugin

571

Figure 18.3.

Finally, the last page in the wizard allows you select a jBPM runtime, as shown below. You can

either use the default runtime (as configured for you workspace, in your workspace preferences),

or you can select a specific runtime for this project. For more information about runtimes and how

to create them, see the section on jBPM runtimes in this chapter.

You can also select which version of jBPM you want to generate sample code for. By default it

will generate an example using the latest jBPM 6.x API, but you could also generate examples

using the old jBPM 5.x API. Note that you yourself are responsible for making sure that the code

you generate can be understood by the runtime (for example, if you create an example using

jBPM6 API but select a jBPM5 runtime, your sample will not compile). Also note that, if you want

to execute a jBPM5 example on jBPM6, you will need to have the knowledge-api JAR inside your

jBPM6 runtime, as this is responsible for the backwards compatibility of the jBPM5 API in jBPM6.

jBPM Eclipse Plugin

572

Figure 18.4.

When you selected the simple 'hello world' example, the result is shown below. Feel free to ex-

periment with the plug-in at this point.

jBPM Eclipse Plugin

573

Figure 18.5. New jBPM project artifacts

The newly created project contains an example process file (sample.bpmn) in the src/main/re-

sources directory and an example Java file (ProcessTest.java) that can be used to test the process

in a jBPM engine. You'll find this in the folder src/main/java, in the com.sample package. All the

other JARs that are necessary during execution are also added to the classpath in a custom

classpath container called jBPM Library.

You can also convert an existing Java project to a jBPM project by selecting the "Convert to jBPM

Project" action. Right-click the project you want to convert and under the "Configure" category

(at the bottom) select "Convert to jBPM Project". This will add the jBPM Library to your project's

classpath.

18.1.3. New BPMN2 Process Wizard

You can create a new process simply as an empty text file with extension ".bpmn", or use the

"New BPMN2 Process" wizard to do so. To create a new process, in the "File" menu select "New"

and then "Other ..." and under the jBPM category, select "BPMN2 Process" and click "Next >". In

the next dialog, you should select the folder where the process should be created (for example

the src/main/resources folder of your project) and a name for the process. Clicking "Finish" should

create your new process (by default it should only contain one start node) and open it so you can

start editing it.

18.1.4. jBPM Runtime

A jBPM runtime is a collection of JAR files that represent one specific release of the jBPM project

JARs. To create a runtime, download the binary distribution of the version of jBPM you want to

jBPM Eclipse Plugin

574

use and unzip on your local file system. You must then point the IDE to the release of your choice

by selecting the folder where these JARs are located. If you want to create a new runtime based

on the latest jBPM project JARs included in the plugin itself, you can also easily do that. You are

required to specify a default jBPM runtime for your Eclipse workspace, but each individual project

can override the default and select the appropriate runtime for that project specifically.

18.1.4.1. Defining a jBPM Runtime

To define one or more jBPM runtimes using the Eclipse preferences view you open up your Pref-

erences, by selecting the "Preferences" menu item in the menu "Window". A "Preferences" dia-

log should show all your settings. On the left side of this dialog, under the jBPM category, select

"Installed jBPM runtimes". The panel on the right should then show the currently defined jBPM

runtimes. For example, if you used the jBPM Installer, it should look like the figure below.

To define a new jBPM runtime, click on the "Add" button. A dialog such as the one shown below

should pop up, asking for the name of your runtime and the location on your file system where

it can be found.

jBPM Eclipse Plugin

575

In general, you have two options:

1. If you simply want to use the default JAR files as included in the jBPM Eclipse plugin, you can

create a new jBPM runtime automatically by clicking the "Create a new jBPM Runtime ..." but-

ton. A file browser will show up, asking you to select the folder on your file system where you

want this runtime to be created. The plugin will then automatically copy all required dependen-

cies to the specified folder. Make sure to select a unique name for the newly created runtime

and click "OK" to register this runtime.

Tip

Note that creating a jBPM runtime from the default JAR files as included in the

jBPM Eclipse plugin is only recommended to get you started the first time and

for very simple use cases. The runtime that is created this way only contains the

minimal set of JARs, and therefore doesn't support a significant set of features,

including for example persistence. Make sure to create a full runtime (using the

second approach) for real development.

2. If you want to use one specific release of the jBPM project, you should create a folder on

your file system that contains all the necessary jBPM libraries and dependencies (for example

by downloading the binary distribution and unzipping it on your local file system). Instead of

creating a new jBPM runtime as explained above, give your runtime a unique name and click

the "Browse ..." button to select the location of this folder containing all the required JARs. Click

"OK" to register this runtime.

After clicking the OK button, the runtime should show up in your table of installed jBPM runtimes,

as shown below. Click on the checkbox in front of one of the installed runtimes to make it the

jBPM Eclipse Plugin

576

default jBPM runtime. The default jBPM runtime will be used as the runtime of all your new jBPM

projects (in case you didn't select a project-specific runtime).

You can add as many jBPM runtimes as you need. Note that you will need to restart Eclipse if

you changed the default runtime and you want to make sure that all the projects that are using

the default runtime update their classpath accordingly.

18.1.4.2. Selecting a runtime for your jBPM project

Whenever you create a jBPM project (using the New jBPM Project wizard or by converting an

existing Java project to a jBPM project), the plugin will automatically add all the required JARs

to the classpath of your project.

When creating a new jBPM project, the plugin will automatically use the default Drools runtime for

that project, unless you specify a project-specific one. You can do this in the final step of the New

jBPM Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox

and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace

settings ..." link, the workspace preferences showing the currently installed jBPM runtimes will be

opened, so you can add new runtimes there.

jBPM Eclipse Plugin

577

You can change the runtime of a jBPM project at any time by opening the project properties and

selecting the jBPM category, as shown below. Mark the "Enable project specific settings" check-

box and select the appropriate runtime from the drop-down box. If you click the "Configure work-

space settings ..." link, the workspace preferences showing the currently installed jBPM runtimes

will be opened, so you can add new runtimes there. If you deselect the "Enable project specific

settings" checkbox, it will use the default runtime as defined in your global workspace preferences.

jBPM Eclipse Plugin

578

18.1.5. jBPM Maven Project Wizard

The aim of the new Maven project wizard is to set up an executable sample project to start using

processes immediately (but not as normal Java project with all jBPM dependencies added using

a jBPM library but by using Maven (and thus a pom.xml) to define your project's properties and

dependencies. This wizard will set up a Maven project using a pom.xml, and include a sample

process and Java class to execute it. To create a new jBPM Maven project, in the "File" menu

select "New" and then "Project ..." and under the jBPM category, select "jBPM Project (Maven)".

Give your project a name and click finish. The result should be as shown below.

jBPM Eclipse Plugin

579

Figure 18.6.

The pom.xml that is generated for your project contains the following:

<?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://

maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</

modelVersion> <groupId>com.sample</groupId> <artifactId>jbpm-example</artifactId>

 <version>1.0.0-SNAPSHOT</version> <name>jBPM :: Sample Maven Project</name> <description>A

 sample jBPM Maven project</description> <properties> <version.org.jbpm>6.0.0.Final</

version.org.jbpm> </properties> <repositories> <repository> <id>jboss-public-repository-

group</id> <name>JBoss Public Repository Group</name> <url>http://repository.jboss.org/

nexus/content/groups/public/</url> <releases> <enabled>true</enabled>

 <updatePolicy>never</updatePolicy> </releases> <snapshots> <enabled>true</enabled>

 <updatePolicy>daily</updatePolicy> </snapshots> </repository> </repositories>

 <dependencies> <dependency> <groupId>org.jbpm</groupId> <artifactId>jbpm-test</

artifactId> <version>${version.org.jbpm}</version> </dependency> </dependencies></

project>

><project xmlns="http://maven.apache.org/

POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/

xsd/

maven-4.0.0.xsd"> <modelVersion>4.0.0</

jBPM Eclipse Plugin

580

modelVersion> <groupId>com.sample</

groupId> <artifactId>jbpm-example</

artifactId> <version>1.0.0-SNAPSHOT</

version> <name>jBPM :: Sample Maven Project</

name> <description>A sample jBPM Maven project</

description>

<properties> <version.org.jbpm>6.0.0.Final</

version.org.jbpm> </

properties>

<repositories>

<repository> <id>jboss-public-repository-group</

id> <name>JBoss Public Repository Group</

name> <url>http://repository.jboss.org/nexus/content/groups/public/</

url>

<releases> <enabled>true</

enabled> <updatePolicy>never</

updatePolicy> </

releases>

<snapshots> <enabled>true</

enabled> <updatePolicy>daily</

updatePolicy> </

snapshots> </

repository> </

repositories>

<dependencies>

<dependency> <groupId>org.jbpm</

groupId> <artifactId>jbpm-test</

artifactId> <version>${version.org.jbpm}</

version> </

dependency> </

dependencies></

In the properties section, you can specify which version of jBPM you would like to use (by default

it uses 6.0.0.Final). It adds the JBoss Nexus Maven repository (where all the jBPM JARs and their

dependencies are located) to your project and configures the dependencies.

Note

By default, only the jbpm-test JAR is specified as a dependency, as this has tran-

sitive dependencies to almost all of the core dependencies you will need. You are

free to update the dependencies section however to include only the dependencies

you need.

The project also contains a sample process, under src/main/resources, in the com.sample pack-

age, and a kmodule.xml configuration file under the META-INF folder. The kmodule.xml defines

which resources (processes, rules, etc.) are to be loaded as part of your project. In this case, it is

defining a kbase called "kbase" that will load all the resources in the com.sample folder:

jBPM Eclipse Plugin

581

<kmodule xmlns="http://www.drools.org/xsd/kmodule"> <kbase name="kbase" packages="com.sample"/

></kmodule>

kmodule"> <kbase name="kbase"

packages="com.sample"/>

Finally, it also contains a Java class that can be used to execute the sample process. It will first cre-

ate a kbase called "kbase" (by inspecting the kmodule.xml file and thus loading the sample.bpmn

process) and then use a RuntimeManager to get access to a KieSession and TaskService. In this

case, it is used to start a process and then complete the tasks created by this process one by one.

18.1.6. Drools Eclipse plugin

The Drools Eclipse Plugin, which is bundled as part of the same Eclipse Update Site as the jBPM

Eclipse Plugin, provides similar features for creating and editing business rules, and execute them

using the Drools engine. This for example allows you to create and edit .drl files containing busi-

ness rules. You can combine your processes and rules inside one project and execute them to-

gether on the same KieSession.

18.1.7. Kie Navigator View

The Kie Navigator is a new view in the Eclipse Tooling as of version 6.3. The Kie Navigator View

is accessed from the Eclipse Window->Show View main menu:

jBPM Eclipse Plugin

582

Figure 18.7.

In order to use the Kie Navigator View, you must first define an Application Server in the WST

Servers View. So, initially the Kie Navigator View will look like this:

jBPM Eclipse Plugin

583

Figure 18.8.

Clicking on the link “Use the Servers View to create a new server…” will open the Servers View

where a new server definition can be created. Management of the server, including startup and

shutdown is done from here. Note that Drools/jBPM requires certain additional JVM and server

startup options, which must be added to the server startup configuration. Once a new server has

been defined, open the server configuration page (double click on the newly created server entry)

and the server Overview page is opened:

jBPM Eclipse Plugin

584

Figure 18.9.

Clicking the “Open launch configuration” link opens the following dialog:

jBPM Eclipse Plugin

585

Figure 18.10.

Here the user can enter the app server and JVM arguments to properly configure startup of the Kie

web service. See the Drools/jBPM documentation for more information about these arguments.

Alternatively, the app server and Kie web service application can be started from a command-line

using either the provided Ant demo scripts or any other custom startup script. Note that starting

from the Servers view may cause the app server to be shut down when exiting Eclipse. A server

can also be configured in Eclipse for external management (see the “Server Behavior” section in

the above screenshot.)

Once the server has been configured and started, the Kie Navigator View will recognize the server

and attempt to communicate with the Kie web service. The view now looks something like this:

jBPM Eclipse Plugin

586

Figure 18.11.

In this screenshot several nodes have been expanded to show all possible situations. At the root

of this view is the app server. The Kie Navigator View is designed to support multiple servers,

but each must obviously be configured a different hostname and/or HTTP port number. This, for

example, allows management of development, test and production servers.

Below the server level are Organizational Units and Repositories. Repositories that are not cur-

rently associated with an Organizational Unit appear directly under the Server root node. Below

the Organizational Unit level are the associated Repositories, and below the Repositories are

Projects contained in the Repository.

A Repository can either be available

()

or unavailable

()

in the Workspace; a Repository is only available if it has been “imported” (see Context Menus,

below) from the Kie web server.

Similarly, a Project can either be available

()

jBPM Eclipse Plugin

587

or unavailable

()

depending on whether it has been “imported”. When a Project has been imported, it behaves ex-

actly the same as if it were being viewed in the Eclipse Project Explorer or Navigator; that is, all

of the same menu actions available in the Project Explorer are also available in the Kie Navigator

View. Also, all of the icon decorators and labels on project folders are the same as in Project

Explorer.

18.1.7.1. Context Menus

This section describes the context menu actions available for each type of node in the Kie Nav-

igator tree.

18.1.7.1.1. Server

Figure 18.12.

• Refresh - causes a refresh of the entire viewer by making REST calls to the server to update

the tree hierarchy.

• Create Organization… - creates a new Organizational Unit with information collected from the

following dialog:

jBPM Eclipse Plugin

588

Figure 18.13.

• Properties - displays the Server Properties dialog (see the Property Pages section below.)

jBPM Eclipse Plugin

589

18.1.7.1.2. Organizational Unit

Figure 18.14.

• Add Repository... - adds a Repository that is not already associated with any other Organiza-

tional Unit to this Organization. A selection dialog containing a list of all unassociated Reposito-

ries will be displayed, from which you can select a Repository to add to the Organizational Unit.

• Create Repository... - creates a new Repository with information collected from the following

dialog:

jBPM Eclipse Plugin

590

Figure 18.15.

• Delete Organization... - deletes the selected Organizational Unit and dissociates any Reposi-

tories that were associated with this Organization. The Repositories are not deleted.

• Properties - displays the Organizational Unit Properties dialog (see the Property Pages section

below.)

jBPM Eclipse Plugin

591

18.1.7.1.3. Repository

Figure 18.16.

• Import Repository... - clones the Repository and makes it available in the Git Repository View.

This menu action is only available if the Repository has not already been cloned. All actions that

affect the Repository (pull, commit, push, etc.) can then be performed from the Git Repository

View.

• Create Project... - creates a new Project with information collected from the following dialog:

jBPM Eclipse Plugin

592

Figure 18.17.

If the “Import the Project” checkbox is checked, the Project will be created in the local Repository

and then created, and opened in the local workspace. If unchecked, the Project is only created

in the local Repository; it can then be “imported” at a later time. Note that the Project will become

“visible” in the Kie web console immediately, but the Project contents will only be available on

the server after Repository changes are committed and pushed upstream.

• Remove Repository... - removes the selected Repository from its containing Organizational

Unit. The user will be prompted to optionally delete the Repository from the server.

• Show in Git Repository View - opens the Git Repositories View and highlights the selected

Repository in that view if it is available.

• Properties - displays the Repository Properties dialog (see the Property Pages section below.)

18.1.7.1.4. Project

This context menu is only available if the Project has not yet been “Imported” that is, it has not

yet been created in the local workspace.

jBPM Eclipse Plugin

593

Figure 18.18.

• Import Project - creates a local workspace project that references the selected Project in the

Repository. This makes the project available for use. If a project with the same name already

exists in the workspace, the newly selected Project can not be imported.

• Delete Project... - deletes the selected Project and removes it from its containing Repository.

• Properties - displays the Project Properties dialog (see the Property Pages section below.)

Once a Project has been “Imported”, it becomes synchronized with the other Eclipse resource

viewers as well (e.g. Project Explorer, Java Package Explorer, Eclipse Navigator, etc.) and any

changes made in any of these viewers will also be reflected in the Kie Navigator View and vice-

versa. The screenshot below illustrates this effect:

jBPM Eclipse Plugin

594

Figure 18.19.

18.1.7.2. Property Pages

This section describes all of the property pages for each entry type in the Kie Navigator tree.

jBPM Eclipse Plugin

595

18.1.7.2.1. Server

Figure 18.20.

• Server Name:the server name as defined in the WST Servers Viewer. This can not be changed.

• Host Name:the name of the machine on which the app server is running. This is also managed

from the WST Servers Viewer.

• Username/Password:login credentials for the Kie web app. This is used to make REST calls

to the Kie web service.

• Trust connections to this Server:if a host is not known as a trusted site, the ssh protocol will

prompt the user to verify that this is a trusted site. Setting this checkbox disables the prompt.

The host can also be entered into the ssh configuration as a trusted site to avoid this problem.

• KIE Application Name:the name of the Kie web app; the Kie Navigator will try the following

application names by default to determine the app name:

• kie-wb

• kie-drools-wb

jBPM Eclipse Plugin

596

• kie-jbpm-wb

• business-central

• drools-console

• jbpm-console

• jboss-brms

However, since the user has the option of renaming the Kie web app during installation, Kie

Navigator may not be able to discover the actual name. This field is intended for the case where

the web app name has been user-defined.

• Use default Git Repository Path:when this checkbox is set, repositories will be cloned into

the directory configured by Git (see the Eclipse User Preferences for Git.) When unchecked,

the directory used in the following field will be used instead.

• Git Repository Path:the directory to use for cloning repositories from this server; this field is

only enabled if the “Use default Git Repository Path” checkbox is unset. Note that since it is

possible to have many servers (e.g. production, test, etc.) with a similar organizational structure,

the chances of repository name collisions are high. It is therefore suggested to use a different

repository directory for each server. By default, the server name is appended to the default Git

repository path, to give a unique directory name for each server.

18.1.7.2.2. Organizational Unit

Figure 18.21.

These fields correspond to the Organizational Unit definition in the Kie web app. Note that only

the Owner and Default Group ID can be changed.

jBPM Eclipse Plugin

597

18.1.7.2.3. Repository

Figure 18.22.

These fields correspond to the Repository definition in the Kie web app. The property page also

shows the remote and local Git repository locations. Note that only the description and login cre-

dentials can be changed.

jBPM Eclipse Plugin

598

18.1.7.2.4. Project

Figure 18.23.

These fields correspond to the Project definition in the Kie web app. Currently none of these fields

can be updated on the web server due to REST API limitations.

If a Project has been imported, this property page is shown in the context of the Eclipse project

properties, as shown here:

jBPM Eclipse Plugin

599

Figure 18.24.

18.2. Debugging

This section describes how to debug processes using the jBPM Eclipse plugin. This means that

the current state of your running processes can be inspected and visualized during the execution.

Note that we currently don't allow you to put breakpoints on the nodes within a process directly.

You can however put breakpoints inside any Java code you might have (i.e. your application code

that is invoking the engine or invoked by the engine, listeners, etc.) or inside rules (that could be

evaluated in the context of a process). At these breakpoints, you can then inspect the internal

state of all your process instances.

When debugging the application, you can use the following debug views to track the execution

of the process:

1. The process instances view, showing all running process instances (and their state). When

double-clicking a process instance, the process instance view visually shows the current state

of that process instance at that point in time.

2. The audit view, showing the audit log (note that you should probably use a threaded file logger

if you want to session to save the audit event to the file system on regular intervals, so the audit

view can be update to show the latest state).

jBPM Eclipse Plugin

600

3. The global data view, showing the globals.

4. Other views related to rule execution like the working memory view (showing the contents (data)

in the working memory related to rule execution), the agenda view (showing all activated rules),

etc.

18.2.1. The Process Instances View

The process instances view shows the process instances currently running in the selected kses-

sion. To be able to use the process instances view, first open the Process Instances view (Win-

dow - Show View - Other ... and under the Drools category select Process Instances and Process

Instance). Tip: it might be useful to drag the Process Instance view to the Outline View and slightly

enlarge it, as shown in the screenshot below, so you can see both the Process Instances and

Process Instance views at the same time.

Next, use a (regular) Java breakpoint to stop your application at a specific point (for example

right after starting a new process instance). In the Debug perspective, select the ksession you

would like to inspect, and the Process Instances view should show the process instances that

are currently active inside that ksession. For example, the screenshot below shows one running

process instance (with id "1"). When double-clicking a process instance, the process instance

viewer will graphically show the progress of that process instance. An example where the process

instance is waiting for a human actor to perform "Task 1" is shown below.

Note

The process instances view shows the process instances currently active inside

the selected ksession. Note that, when using persistence, process instances are

not kept in memory inside the ksession, as they are stored in the database as soon

as the command completes. Therefore, you will not be able to use the Process

Instances view when using persistence. For example, when executing a JUnit test

using the JbpmJUnitBaseTestCase, make sure to call "super(true, false);" in the

constructor to create a runtime manager that is not using persistence.

jBPM Eclipse Plugin

601

Tip

When you double-click a process instance in the process instances view and the

process instance view complains that it cannot find the process, this means that the

plugin wasn't able to find the process definition of the selected process instance in

the cache of parsed process definitions. To solve this, simply change the process

definition in question and save again (so it will be parsed) or rebuild the project that

contains the process definition in question.

18.2.2. The Audit View

The audit view can be used to show the all the events inside an audit log in a tree-based manner.

An audit log is an XML-based log file which contains a log of all the events that occurred while

executing a specific ksession. To create a logger, use KieServices to create a new logger and

attach it to a ksession. Be sure to close the logger after usage.

KieRuntimeLogger logger = KieServices.Factory.get().getLoggers()

 .newThreadedFileLogger(ksession, "mylogfile", 1000);

// do something with the ksession here

logger.close();

To be able to use the Audit View, first open it (Window - Show View - Other ... and under the

Drools category select Audit). To open up a log file in the audit view, open the selected log file in

the audit view (using the "Open Log" action in the top right corner), or simply drag and drop the

jBPM Eclipse Plugin

602

log file from the Package Explorer or Navigator into the audit view. A tree-based view is generated

based on the data inside the audit log. An event is shown as a subnode of another event if the

child event is caused by (a direct consequence of) the parent event. An example is shown below.

Tip

Note that the file-based logger will only save the events on close (or when a certain

threshold is reached). If you want to make sure the events are saved on a regular

interval (for example during debugging), make sure to use a threaded file logger,

so the audit view can be update to show the latest state. When creating a threaded

file logger, you can specify the interval after which events should be saved to the

file (in milliseconds).

18.3. Synchronizing with Workbench Repositories

From Eclipse, you can synchronize your local workspace with one or more repositories that are

managed inside the workbench application. This enables collaboration between developers using

Eclipse and users of the web-based workbench (business analysts or end users for example).

Synchronization between the workbench repositories and your local version of these projects is

done using Git (a popular distributed source code version control system).

When creating and executing processes inside Eclipse, you are creating them on your local file

system. You can however also import an existing repository from the Workbench, apply changes

and push these changes back into the Workbench repositories. We are using existing Git tools

for this. Note that this section will describe how to do this using the EGit tooling (Eclipse Tooling

for Git which comes by default with most versions of Eclipse), but feel free to use your preferred

Git tool instead.

Note

This section is not intended to explain what Git is, or how to use EGit, in detail. If

you don't have any experience with Git and/or EGit, it might be recommended to

read up on them first if necessary.

jBPM Eclipse Plugin

603

18.3.1. Importing a workbench repository

To import an existing repository from the workbench, you can use the EGit import wizard. In the

File menu, select "Import ..." and in the Git category, select "Projects from Git" and click "Next

>". This should open a new dialog where you should select the location of the repository you

would like to import. Since we are connecting to a repository that is managed by the workbench

application, select "URI" and click "Next >" once more.

Use the following URI to connect to your workbench repositories:

ssh://<hostname>:8001/<repository_name>

For example, if you are running the workbench application on your local host (for example by using

the jbpm-installer), and you want to import the jbpm-playground repo, use the following URI:

ssh://localhost:8001/jbpm-playground

Note that you can change the port that is used by the server to provide ssh access to the git

repository if necessary, using the system property org.uberfire.nio.git.ssh.port

Fill in the URI of the repository you would like to import, as for example shown below, and click

"Next >".

jBPM Eclipse Plugin

604

Figure 18.25.

You will be asked to select which branch you would like to import. Select the master branch and

click "Next >" again.

Finally, you need to specify where on your local file system you would like this repository to be

created. Fill in the directory (you can use the Browse button to select the folder in question, and if

necessary you can create a new folder there as well) and click "Next >". This will now download

the repository to the folder you just selected.

jBPM Eclipse Plugin

605

Figure 18.26.

You still need to import the repository you just downloaded as a project in your Eclipse workspace.

Select "Import as general project" and after clicking "Next >", give it a name and click "Finish".

After doing so, your workspace should now contain your repository, and you should be able to

browse, open and edit the various assets inside.

jBPM Eclipse Plugin

606

Figure 18.27.

18.3.2. Committing changes to the workbench

You can commit and push changes (you do locally) back to the workbench repositories. To commit

changes, right-click on your repository project and select "Team -> Commit ...". A new dialog pops

up, showing all the changes you have on your local file system. Select the files you want to commit

(if you double-click them, you can get an overview of the changes you did for that file), provide

an appropriate commit message and click "Commit".

jBPM Eclipse Plugin

607

Figure 18.28.

Once you've committed your change to your local git, you still need to push it to the workbench

repository. Right-click your project again, and select "Team -> Push to Upstream".

Note

You are only allowed to push changes upstream if your local version includes all

recent changes (otherwise you might be overriding someone else's changes). You

jBPM Eclipse Plugin

608

might be forced to update (and if necessary resolve conflicts) before you are al-

lowed to commit any changes.

18.3.3. Updating from to the workbench

To retrieve the latest changes from the workbench repository, right-click your repository project

and select "Team -> Fetch from Upstream". This will fetch all changes from the workbench repos-

itory, but not yet apply them to your local version. Now right-click your project again and select

"Team -> Merge ...". In the dialog that pops up next, you need to select "origin/master" branch

(under Remote Tracking) to indicate that you want to merge in all changes from the original repos-

itory in the workbench, and click "Merge".

jBPM Eclipse Plugin

609

Figure 18.29.

Note

It is possible that you have committed and/or conflicting changes in your local ver-

sion, you might have to resolve these conflicts and commit the merge results be-

fore you will be able to complete the merge successfully. It is recommended to

update regularly, before you start updating a file locally, to avoid merge conflicts

being detected when trying to commit changes.

jBPM Eclipse Plugin

610

18.3.4. Working on individual projects

When you import a repository, it will download all the projects that are inside that repository. It is

however useful to mount one specific project as a separate Java project in Eclipse. When you do

this, Eclipse will be able to interpret the information in the project pom.xml file (that you created in

the workbench), download and include any dependencies you specified, compile any Java classes

you have in your project (that you for example created with the data modeler), etc.

To do so, right-click on one of the projects in your repository project and select "Import ..." and

under the Maven category, select "Existing Maven Projects" (as shown below) and click Next.

jBPM Eclipse Plugin

611

Figure 18.30.

In the next page, you should see the pom.xml of the project you selected. Click Finish.

jBPM Eclipse Plugin

612

Figure 18.31.

If your project requires some of the jBPM libraries to correctly compile and/or execute any Java

classes in your project (for example if you have test classes in your project that start up a jBPM

engine and execute some tests for your project, or if you are using the data modeler, which will

add some annotations to the generated Java classes), you still need to add the jBPM libraries to

the classpath of your project. To do so, simply convert your project into a jBPM project, which will

add the jBPM library to your project's classpath. Right-click your project and select "Configure ->

jBPM Eclipse Plugin

613

Convert to jBPM Project". Your project should now have a jBPM Library added to its classpath (it

might be necessary to clean your project to pick up this change and recompile all Java classes).

Figure 18.32.

614

Chapter 19. Eclipse BPMN 2.0

Modeler

19.1. Overview

The Eclipse BPMN 2.0 Modeler allows you to specify business processes, choreographies, etc.

using the BPMN 2.0 XML syntax (including BPMNDI for the graphical information). The editor

itself is based on the Eclipse Graphiti framework and the Eclipse BPMN 2.0 EMF meta-model.

Features:

• It supports almost all BPMN 2.0 process constructs and attributes (including lanes and pools,

annotations and all the BPMN2 node types).

• Added additional support for the few custom attributes that jBPM introduces using a special

jBPM Target Runtime.

• Allows you to configure which elements and attributes you want use when modeling processes

(so we can limit the constructs for example to the subset currently supported by jBPM, which

is a profile supported by default, or even more if you like).

The BPMN2 Modeler project is being developed at eclipse.org, sponsored by Red Hat/JBoss.

Red Hat understands the benefits of developing software in the community, and therefore, the

Eclipse BPMN 2.0 Modeler was developed not just for the jBPM project only, but it can be used

in a much broader context and is fully spec compliant. jBPM-specific features are developed as

part of a separate jBPM Target Runtime. We welcome other organizations in contributing to this

modeler as well and (re)using the generic functionality and/or defining their own target runtime if

necessary. Not only is this a good thing for the community, but it also leaves the path open for the

jBPM suite to evolve as new features are requested by customers.

Many thanks go out to the people at Codehoop that did a great job in creating a first version of

this editor.

19.2. Installation

The jBPM installer is capable of downloading and installing an Eclipse installation, including the

Eclipse BPMN2 Modeler and the Drools and jBPM Eclipse plugin (with a full jBPM runtime pre-

configured).

Tip

Using the jBPM installer is definitely the recommended starting point for most

users.

Eclipse BPMN 2.0 Modeler

615

You can however also download and install the jBPM Eclipse Plugin manually. To do so, you

need Eclipse 3.6.2 (Helios) or newer. To install, startup Eclipse and install the Eclipse BPMN 2.0

Modeler from the following update site (from menu Help -> Install new software and then add the

update site in question by clicking the Add button, filling in a name and the correct URL as shown

below). It will automatically download all other dependencies as well (e.g. Graphiti etc.)

Eclipse 3.6 (Helios): http://download.eclipse.org/bpmn2-modeler/updates/helios

Eclipse 3.7 - 4.2.1 (Indigo - Juno): http://download.eclipse.org/bpmn2-modeler/updates/juno

Eclipse 4.3 (Kepler): http://download.eclipse.org/bpmn2-modeler/updates/kepler

The project is hosted at eclipse.org and open for anyone to contribute. The project home page

can he found here:

http://http://eclipse.org/bpmn2-modeler/

Sources are available here (using Eclipse Public License v1.0):

https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

A community forum for posting questions and exchanging ideas is also available here:

http://www.eclipse.org/forums/

A Bugzilla bug tracking system is available for reporting new bugs, or checking the status of

existing bugs, here:

https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler

19.3. Documentation

The Eclipse BPMN 2.0 Modeler documentation is available at:

http://eclipse.org/bpmn2-modeler/documentation.php

It contains various screencasts but also a full user guide, describing all its features in detail:

http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf

Here are some screenshots of the editor in action.

http://download.eclipse.org/bpmn2-modeler/updates/helios
http://download.eclipse.org/bpmn2-modeler/updates/juno
http://download.eclipse.org/bpmn2-modeler/updates/kepler
http://http://eclipse.org/bpmn2-modeler/
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
http://www.eclipse.org/forums/
https://bugs.eclipse.org/bugs/buglist.cgi?product=BPMN2Modeler
http://eclipse.org/bpmn2-modeler/documentation.php
http://eclipse.org/bpmn2-modeler/documentation/UserGuide-v1.0.pdf

Eclipse BPMN 2.0 Modeler

616

Figure 19.1.

Figure 19.2.

Eclipse BPMN 2.0 Modeler

617

Figure 19.3.

Part V. Integration
Integrating jBPM with other technologies, frameworks, etc.

619

Chapter 20. Integration

20.1. Maven

Apache Maven is used by jBPM for two main purposes:

• as deployment units that gets installed into runtime environment for execution

• as dependency management tool for building systems based on jBPM - embedding jBPM into

application

20.1.1. Maven artifacts as deployment units

Since version 6, jBPM provides simplified and complete deployment mechanism that is based

entirely on Apache Maven artifacts. These artifacts also known as kjars are simple JAR files that

include a descriptor for KIE system to produce KieBase and KieSession. Descriptor of the kjar is

represented as XML file named kmodule.xml and it can be:

• empty to apply all defaults

• custom configuration of KieBase and KieSession

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.drools.org/

xsd/kmodule">

</kmodule>

Empty kmodule.xml that provides all defaults for the kjar:

• single default KieBase that

• contains all assets from all packages

• event processing mode set to - cloud

• equality behaviour set to - identity

• declarative agenda is disabled

• scope set to - ApplicationScope - valid for CDI integrations only

• single default stateless KieSession that

• is bound to above (single, default) KieBase

Integration

620

• clock type is set to - real time

• scope set to - ApplicationScope - valid for CDI integrations only

• single default stateful KieSession that

• is bound to above (single, default) KieBase

• clock type is set to - real time

• scope set to - ApplicationScope - valid for CDI integrations only

All these and more can be configured manually via kmodule.xml when defaults are not enough.

The complete set of elements can be found in xsd schema [https://github.com/droolsjbpm/drool-

sjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd] of kmodule.xml.

<kmodule xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns="http://www.drools.org/xsd/kmodule">

 <kbase name="defaultKieBase" default="true" eventProcessingMode="cloud" equalsBehavior="identity" declarativeAgenda="disabled" scope="javax.enterprise.context.ApplicationScoped" packages="*">

 <ksession name="defaultKieSession" type="stateful" default="true" clockType="realtime" scope="javax.enterprise.context.ApplicationScoped">

 <workItemHandlers>

 <workItemHandler name="CustomTask" type="FQCN_OF_HANDLER" />

 </workItemHandlers>

 <listeners>

 <listener type="FQCN_OF_EVENT_LISTENER" />

 </listeners>

 </ksession>

 <ksession name="defaultStatelessKieSession" type="stateless" default="true" clockType="realtime" scope="javax.enterprise.context.ApplicationScoped"/

>

 </kbase>

</kmodule>

As illustrated in the listing above the kmodule.xml provides flexible way of instructing the runtime

engine on what should be configured and how. The example above does not present all available

options, but these are the most common when working with processes.

Note

Important to note is that when using RuntimeManager, KieSession instances are

created by the RuntimeManager instead of by KieContainer but kmodule.xml (or

model in general) is aways used as a base of the construction process. KieBase

although is always taken from KieContainer.

Kjars are represented same way as any other Maven artifact - by Group Artifact Version which

is then represented as ReleaseId in KIE API. This the the only thing required to deploy kjar into

runtime environment such as KIE Workbeanch.

https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd
https://github.com/droolsjbpm/droolsjbpm-knowledge/blob/6.0.x/kie-api/src/main/resources/org/kie/api/kmodule.xsd

Integration

621

20.1.2. Use Maven for dependency management

When building systems that embed jBPM as workflow engine the simplest way is to configure all

dependencies required by jBPM via Apache Maven. jBPM provides set of BOMs (Bill Of Material)

to simplify what artifacts needs to be declared. Common way to start with integration of custom

application and jBPM is to define dependency management:

 <properties>

 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

 <version.org.drools>6.0.0.Final</version.org.drools>

 <version.org.jbpm>6.0.0.Final</version.org.jbpm>

 <hibernate.version>4.2.0.Final</hibernate.version>

 <hibernate.core.version>4.2.0.Final</hibernate.core.version>

 <slf4j.version>1.6.4</slf4j.version>

 <jboss.javaee.version>1.0.0.Final</jboss.javaee.version>

 <logback.version>1.0.9</logback.version>

 <h2.version>1.3.161</h2.version>

 <btm.version>2.1.4</btm.version>

 <junit.version>4.8.1</junit.version>

 </properties>

 <dependencyManagement>

 <dependencies>

 <!-- define drools BOM -->

 <dependency>

 <groupId>org.drools</groupId>

 <artifactId>drools-bom</artifactId>

 <type>pom</type>

 <version>${version.org.drools}</version>

 <scope>import</scope>

 </dependency>

 <!-- define drools BOM -->

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-bom</artifactId>

 <type>pom</type>

 <version>${version.org.jbpm}</version>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

Above should be declared in top level pom.xml so all modules that need to use KIE (drools and

jBPM) API can access it.

Next, module(s) that would operate on KIE API should declare following dependencies:

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-flow</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-flow-builder</artifactId>

Integration

622

 </dependency>

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-bpmn2</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-persistence-jpa</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-human-task-core</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-runtime-manager</artifactId>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-api</artifactId>

 <version>${slf4j.version}</version>

 </dependency>

Above are the main runtime dependencies, regardless of where the application is deployed (ap-

plication server, servlet container, standalone app). A good practice is to test the workflow com-

ponents to ensure they work properly before actual deployment and thus following test depen-

dencies should be defined:

 <!-- test dependencies -->

 <dependency>

 <groupId>org.jbpm</groupId>

 <artifactId>jbpm-shared-services</artifactId>

 <classifier>btm</classifier>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>ch.qos.logback</groupId>

 <artifactId>logback-classic</artifactId>

 <version>${logback.version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>${junit.version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.hibernate</groupId>

 <artifactId>hibernate-entitymanager</artifactId>

 <version>${hibernate.version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.hibernate</groupId>

Integration

623

 <artifactId>hibernate-core</artifactId>

 <version>${hibernate.core.version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <version>${h2.version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.codehaus.btm</groupId>

 <artifactId>btm</artifactId>

 <version>${btm.version}</version>

 <scope>test</scope>

 </dependency>

Last but not least, define the JBoss Maven repository for artifacts resolution:

 <repositories>

 <repository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Repository Group</name>

 <url>http://repository.jboss.org/nexus/content/groups/public/</url>

 <releases>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <updatePolicy>daily</updatePolicy>

 </snapshots>

 </repository>

 </repositories>

That should allow to configure jBPM in your application and provide access to KIE API to operate

on processes, rules, events.

20.2. CDI

20.2.1. Overview

jBPM 6 comes with out of the box integration with CDI (Contexts and Dependency Injection).

Although most of the API can be used in CDI world there are some dedicated modules that are

designed especially for CDI containers. The most important one is jbpm-services-cdi that provides

cdi wrappers on top of jbpm services, these shall be used in most of the cases were CDI is available

for jBPM integration. It provides following set of services:

• DeploymentService

• ProcessService

Integration

624

• UserTaskService

• RuntimeDataService

• DefinitionService

These services are first class citizens for CDI world so they are available for injection in any other

CDI bean.

20.2.1.1. DeploymentService

Service responsible for deploying DeploymentUnits into runtime environment. By deploying

given deployment unit becomes ready for execution and has RuntimeManager created for

it.DeploymentService can next be used to retrieve:

• RuntimeManager instance for given deployment id

• DeployedUnit that represents complete deployment process for given deployment id

• list of all deployed units known to the deployment service

Deployment service stores the deployed units by default in memory and thus in case of a need

to restore all previously deployed units, component that uses deployment service needs to store

that information itself. Common places for such a store are database, file system, repository of

some sort, etc. Deployment service will fire CDI events on deployment and undeployment to allow

application components to react real time to these events to be able to store deployments or

remove them from the store when they are undeployed.

• DeploymentEvent with qualifier @Deploy will be fired on deployment

• DeploymentEvent with qualifier @Undeploy will be fired on undeployment

use CDI observer mechanism to get notification on above events. First to save deployments in

the store of your choice:

 public void saveDeployment(@Observes @Deploy DeploymentEvent event) {

 // store deployed unit info for further needs

 DeployedUnit deployedUnit = event.getDeployedUnit();

 }

next to remove it when it was undeployed

 public void removeDeployment(@Observes @Undeploy DeploymentEvent event) {

 // remove deployment with id event.getDeploymentId()

 }

Integration

625

Note

Deployment service comes with deployment synchronization mechanism that al-

lows to persist deployed units into data base (since version 6.2) that is by default

enabled. See jbpm services section for more details.

Due to the fact that there might be several implementation of DeploymentService use of qualifiers

is needed to instruct CDI container which one shall be injected. jBPM comes with two out of the

box:

• @Kjar - KmoduleDeploymentService that is tailored to work with KmoduleDeploymentUnits that

are small descriptor on top of a kjar - recommended to use in most of the cases

• @Vfs - VFSDeploymentDService that allows to deploy assets directly from VFS (Virtual File

System) that is provided by UberFire framework [http://droolsjbpm.github.io/uberfire/]. Due to

that fact VFSDeploymentService and VFSDeploymentUnit are not bundled with jbpm core mod-

ules but with jbpm-console-ng modules.

The general practice is that every implementation of DeploymentService should come with dedi-

cated implementation of DeploymentUnit as these two provided out of the box.

20.2.1.2. FormProviderService

FormProviderService provides access to form representations usually displayed on UI for both

process forms and user task forms. It is built on concept of isolated FormProviders that can provide

different capabilities and be backed by different technologies. FormProvider interface describes

contract for the implementations

public interface FormProvider {

 int getPriority();

 String render(String name, ProcessDesc process, Map<String, Object> renderContext);

 String render(String name, Task task, ProcessDesc process, Map<String, Object> renderContext);

}

Implementations of FormProvider interface should always define priority as this is the main dri-

ver for the FormProviderService to ask for the content of the form of a given provider. Form-

ProviderService will collect all available providers and iterate over them asking for the form content

(rendered) in their priority order. The lower the number the higher priority it gets during evaluation,

e.g. provider with priority 5 will be evaluated before provider with priority 10. FormProviderService

will iterate over available providers as long as one delivers the content. In the worse case sce-

nario, simple text based forms will be returned.

http://droolsjbpm.github.io/uberfire/
http://droolsjbpm.github.io/uberfire/

Integration

626

jBPM comes with following FormProviders out of the box:

• Fremarker based implementation to support jbpm version 5 process and task forms - priority 3

• Default forms provider, considered last resort if none of the other providers deliver content this

one will always provide simplest possible forms - lowest priority (1000)

• when form modeler is used there is additional FormProvider available to deliver forms modeled

in that tool - priority 2

20.2.1.3. RuntimeDataService

RuntimeDataService provides access to actual data that is availabe on runtime such as

• available processes to be executed - with various filters

• active process instances - with various filters

• process instance history

• process instance variables

• active and completed nodes of process instance

Default implementation of RuntimeDataService is observing deployment events and index all de-

ployed processes to expose them to the calling components. So whatever gets deployed Run-

timeDataService will be aware of that.

20.2.1.4. DefinitionService

Service that provides access to process details stored as part of BPMN2 XML.

Note

Before using any method that provides information, buildProcessDefinition must

be invoked to populate repository with process information taken from BPMN2 con-

tent.

BPMN2DataService provides access to following data:

• overall description of process for given process definition

• collection of all user tasks found in the process definition

Integration

627

• information about defined inputs for user task node

• information about defined outputs for user task node

• ids of reusable processes (call activity) defined within given process definition

• information about process variables defined within given process definition

• information about all organizational entities (users and groups) included in the process defini-

tion. Depending on the actual process definition the returned values for users and groups can

contain

• actual user or group name

• process variable that will be used to get actual user or group name on runtime e.g. #{manager}

20.2.2. Configuring CDI integration

To make use of jbpm-services-cdi in your system you'll need to provide some beans for the out

of the box services to satisfy all dependencies they have. There are several beans that depends

on actual scenario

• entity manager and entity manager factory

• user group callback for human tasks

• identity provider to pass authenticated user information to the services

When running in JEE environment like an JBoss Application Server following producer bean

should satisfy all requirements of the jbpm-services-cdi

public class EnvironmentProducer {

 @PersistenceUnit(unitName = "org.jbpm.domain")

 private EntityManagerFactory emf;

 @Inject

 @Selectable

 private UserGroupInfoProducer userGroupInfoProducer;

 @Inject

 @Kjar

 private DeploymentService deploymentService;

 @Produces

 public EntityManagerFactory getEntityManagerFactory() {

 return this.emf;

 }

 @Produces

 public org.kie.api.task.UserGroupCallback produceSelectedUserGroupCalback() {

 return userGroupInfoProducer.produceCallback();

Integration

628

 }

 @Produces

 public UserInfo produceUserInfo() {

 return userGroupInfoProducer.produceUserInfo();

 }

 @Produces

 @Named("Logs")

 public TaskLifeCycleEventListener produceTaskAuditListener() {

 return new JPATaskLifeCycleEventListener(true);

 }

 @Produces

 public DeploymentService getDeploymentService() {

 return this.deploymentService;

 }

 @Produces

 public IdentityProvider produceIdentityProvider {

 return new IdentityProvider() {

 // implement IdentityProvider

 };

 }

}

Then beans.xml for the application should enable proper alternative for user group callback (that

will be taken based on @Selectable qualifier)

<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XM

LSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://docs.jboss.org/cdi/

beans_1_0.xsd">

 <alternatives>

 <class>org.jbpm.kie.services.cdi.producer.JAASUserGroupInfoProducer</class>

 </alternatives>

</beans>

Note

org.jbpm.kie.services.cdi.producer.JAASUserGroupInfoProducer is just an exam-

ple here which usually is the good fit for JBoss Application Server to reuse securi-

ty settings on application server regardless of what it actually is (LDAP, DB, etc).

Check Human Task section for more alternatives for UserGroupCallback.

Optionally there can be several other producers provided to deliver:

• WorkItemHandlers

Integration

629

• Process, Agenda, WorkingMemory event listeners

These components can be provided by implementing following interfaces

/**

 * Allows to provide custom implementations to deliver WorkItem name and WorkItemHandler instance pairs

 * for the runtime.

 *

 * It will be invoked by RegisterableItemsFactory implementation (especially InjectableRegisterableItemsFactory

 * in CDI world) for every KieSession. Recommendation is to always produce new instances to avoid unexpected

 * results.

 *

 */

public interface WorkItemHandlerProducer {

 /**

 * Returns map of (key = work item name, value work item handler instance) of work items

 * to be registered on KieSession

 *

 * Parameters that might be given are as follows:

 *

 * ksession

 * taskService

 * runtimeManager

 *

 *

 * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

 * and provide valid instances for given owner

 * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

 * @return map of work item handler instances (recommendation is to always return new instances when this method is invoked)

 */

 Map<String, WorkItemHandler> getWorkItemHandlers(String identifier, Map<String, Object> params);

}

and

/**

 * Allows do define custom producers for know EventListeners. Intention of this is that there might be several

 * implementations that might provide different listener instance based on the context they are executed in.

 *

 * It will be invoked by RegisterableItemsFactory implementation (especially InjectableRegisterableItemsFactory

 * in CDI world) for every KieSession. Recommendation is to always produce new instances to avoid unexpected

 * results.

 *

 * @param <T> type of the event listener - ProcessEventListener, AgendaEventListener, WorkingMemoryEventListener

 */

public interface EventListenerProducer<T> {

 /**

 * Returns list of instances for given (T) type of listeners

 *

 * Parameters that might be given are as follows:

 *

 * ksession

 * taskService

Integration

630

 * runtimeManager

 *

 * @param identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out

 * and provide valid instances for given owner

 * @param params - owner might provide some parameters, usually KieSession, TaskService, RuntimeManager instances

 * @return list of listener instances (recommendation is to always return new instances when this method is invoked)

 */

 List<T> getEventListeners(String identifier, Map<String, Object> params);

}

Beans implementing these two interfaces will be collected on runtime and consulted when building

KieSession by RuntimeManager. See RuntimeManager section for more details on this.

A complete runnable example of application built with CDI can be found here [https://github.com/

jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf].

20.2.3. RuntimeManager as CDI bean

Note

Even though RuntimeManager can be directly injected, it's recommended to utilize

jbpm services when frameworks like CDI, ejb or Spring is used. jBPM services

bring in significant amount of features that encapsulate best practices when using

RuntimeManager.

RuntimeManager itself can be injected as CDI bean into any other CDI bean within the application.

It has then requirement to get RungimeEnvironment properly produces to allow RuntimeManager

to be correctly initialized. RuntimeManager comes with three predefined strategies and each of

them gets CDI qualifier so it can be referenced:

• @Singleton

• @PerRequest

• @PerProcessInstance

Producer that was defined in Configuration section should be now enhanced with producer meth-

ods to provide RuntimeEnvironment

public class EnvironmentProducer {

 //add same producers as for services

 @Produces

 @Singleton

 @PerRequest

 @PerProcessInstance

https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-cdi-jsf

Integration

631

 public RuntimeEnvironment produceEnvironment(EntityManagerFactory emf) {

 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()

 .newDefaultBuilder()

 .entityManagerFactory(emf)

 .userGroupCallback(getUserGroupCallback())

 .registerableItemsFactory(InjectableRegisterableItemsFactory.getFactory(beanManager, null))

 .addAsset(ResourceFactory.newClassPathResource("BPMN2-

ScriptTask.bpmn2"), ResourceType.BPMN2)

 .addAsset(ResourceFactory.newClassPathResource("BPMN2-

UserTask.bpmn2"), ResourceType.BPMN2)

 .get();

 return environment;

 }

}

In this example single producer method is capable of providing RuntimeEnvironment for all strate-

gies of RuntimeManager by specifying all qualifiers on the method level.

Once complete producer is available, RuntimeManager can be injected into application's CDi bean

public class ProcessEngine {

 @Inject

 @Singleton

 private RuntimeManager singletonManager;

 public void startProcess() {

 RuntimeEngine runtime = singletonManager.getRuntimeEngine(EmptyContext.get());

 KieSession ksession = runtime.getKieSession();

 ProcessInstance processInstance = ksession.startProcess("UserTask");

 singletonManager.disposeRuntimeEngine(runtime);

 }

}

That's all what needs to be configured to make use of CDI power with jBPM.

Note

An obvious limitation of injecting directly RuntimeManager via CDI is that there

might be only one RuntimeManager in the application. That in some case can be

desired and that's why there is such option. In general recommended approach

is to make use of DeploymentService whenever there is a need to have many

RuntimeManagers active within application.

As an alternative to DeploymentService, RuntimeManagerFactory can be injected and then Run-

timeManager instance can be created manually by the application. In such case EnvironmentPro-

Integration

632

ducer stays same as for DeploymentService and following is an example of simple ProcessEn-

gine bean

public class ProcessEngine {

 @Inject

 private RuntimeManagerFactory managerFactory;

 @Inject

 private EntityManagerFactory emf;

 @Inject

 private BeanManager beanManager;

 public void startProcess() {

 RuntimeEnvironment environment = RuntimeEnvironmentBuilder.Factory.get()

 .newDefaultBuilder()

 .entityManagerFactory(emf)

 .addAsset(ResourceFactory.newClassPathResource("BPMN2-

ScriptTask.bpmn2"), ResourceType.BPMN2)

 .addAsset(ResourceFactory.newClassPathResource("BPMN2-

UserTask.bpmn2"), ResourceType.BPMN2)

 .registerableItemsFactory(InjectableRegisterableItemsFactory.getFactory(beanManager, null))

 .get();

 RuntimeManager manager = managerFactory.newSingletonRuntimeManager(environment);

 RuntimeEngine runtime = manager.getRuntimeEngine(EmptyContext.get());

 KieSession ksession = runtime.getKieSession();

 ProcessInstance processInstance = ksession.startProcess("UserTask");

 manager.disposeRuntimeEngine(runtime);

 manager.close();

 }

}

20.3. Spring

jBPM can be configured in many ways with Spring though the two most frequenlty used approach-

es are:

• direct use of runtime manager API

• use of jbpm services

While both approaches are tested and valid, which one to chose is a matter of the system func-

tionaltiy. Before selecting one of the approache the most important question to ask is:

Will my system run multiple runtime managers at the same time?

If the asnwer to this question is no, then go ahead with direct Runtime Manager API as it will be

the simplest way to use jBPM within your application. But when answer is yes, then go ahead with

Integration

633

jbpm services as they encapsulate runtime manager API with best practices by providing dynamic

runtime environment for your BPM logic - also known as execution server.

20.3.1. Direct use of Runtime Manager API

This is the standard (and the simplest) way to get up and running with jBPM in your application.

You only configure it once and run as part of the application. With the RuntimeManager usage,

both process engine and task service will be managed in complete synchronization, meaning there

is no need from end user to deal with "plumbing" code to make these two work together.

To provide spring based way of setting up jBPM, few factory beans where added:

• org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean

• org.kie.spring.factorybeans.RuntimeManagerFactoryBean

• org.kie.spring.factorybeans.TaskServiceFactoryBean

FactoryBeans provide standard way to configure Spring application spring xml though there are

not custom spring xml tags equivalent for them.

20.3.1.1. RuntimeEnvironmentFactoryBean

Factory responsible for producing instances of RuntimeEnvironment that are consumed by Run-

timeManager upon creation. It allows to create following types of RuntimeEnvironment (that main-

ly means what is configured by default):

• DEFAULT - default (most common) configuration for RuntimeManager

• EMPTY - completely empty environment to be manually populated

• DEFAULT_IN_MEMORY - same as DEFAULT but without persistence of the runtime engine

• DEFAULT_KJAR - same as DEFAULT but knowledge asset are taken from KJAR identified by

releaseid or GAV

• DEFAULT_KJAR_CL - build directly from classpath that consists kmodule.xml descriptor

Mandatory properties depends on the selected type but knowledge information must be given for

all types. That means that one of the following must be provided:

• knowledgeBase

• assets

• releaseId

• groupId, artifactId, version

Integration

634

Next for DEFAULT, DEFAULT_KJAR, DEFAULT_KJAR_CL persistence needs to be configured:

• entity manager factory

• transaction manager

Transaction Manager must be Spring transaction manager as based on its presence entire per-

sistence and transaction support is configured. Optionally EntityManager can be provided to be

used instead of always creating new one from EntityManagerFactory - e.g. when using shared

entity manager from Spring. All other properties are optional and are meant to override the default

given by type of the environment selected.

20.3.1.2. RuntimeManagerFactoryBean

FactoryBean responsible for creation of RuntimeManager instances of given type based on pro-

vided runtimeEnvironment. Supported types:

• SINGLETON

• PER_REQUEST

• PER_PROCESS_INSTANCE

where default is SINGLETON when no type is specified. Every runtime manager must be uniquely

identified thus identifier is a mandatory property. All instances created by this factory are cached

to be able to properly dispose them using destroy method (close()).

20.3.1.3. TaskServiceFactoryBean

Creates instance of TaskService based on given properties. Following are mandatory properties

that must be provided:

• entity manager factory

• transaction manager

Transaction Manager must be Spring transaction manager as based on its presence entire per-

sistence and transaction support is configured. Optionally EntityManager can be provided to be

used instead of always creating new one from EntityManagerFactory - e.g. when using shared

entity manager from Spring. In addition to above there are optional properties that can be set on

task service instance:

• userGroupCallback - implementation of UserGroupCallback to be used, defaults to MVELUser-

GroupCallbackImpl

• userInfo - implementation of UserInfo to be used, defaults to DefaultUserInfo

Integration

635

• listener - list of TaskLifeCycleEventListener that will be notified upon various operations on tasks

This factory creates single instance of task service only as it's intended to be shared across all

other beans in the system.

20.3.1.4. Sample configuration of RuntimeManager with Spring

Following section aims at giving complete spring configuration for single runtime manager wihtin

spring application context.

1. Setup entity manager factory and transaction manager:

<bean id="jbpmEMF"

 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean">

 <property name="persistenceUnitName" value="org.jbpm.persistence.spring.jta"/>

</bean>

<bean id="btmConfig" factory-method="getConfiguration"

 class="bitronix.tm.TransactionManagerServices"></bean>

<bean id="BitronixTransactionManager" factory-method="getTransactionManager"

 class="bitronix.tm.TransactionManagerServices" depends-on="btmConfig" destroy-

method="shutdown" />

<bean id="jbpmTxManager" class="org.springframework.transaction.jta.JtaTransactionManager">

 <property name="transactionManager" ref="BitronixTransactionManager" />

 <property name="userTransaction" ref="BitronixTransactionManager" />

</bean>

with this we have ready persistence configuration that gives us:

• JTA transaction manager (backed by bitronix - for unit tests or servlet containers)

• entity manager factory for persistence unit named org.jbpm.persistence.spring.jta

2. Configure resource that we are going to use - business process

<bean id="process" factory-method="newClassPathResource"

 class="org.kie.internal.io.ResourceFactory">

 <constructor-arg>

 <value>jbpm/processes/sample.bpmn</value>

 </constructor-arg>

</bean>

this configures single process that will be available for execution - sample.bpmn that will be

taken from class path. This is the simplest way to get your processes included when trying

out jbpm.

Integration

636

3. Configure RuntimeEnvironment with our infrastructure (entity manager, transaction manager,

resources)

<bean id="runtimeEnvironment"

 class="org.kie.spring.factorybeans.RuntimeEnvironmentFactoryBean">

 <property name="type" value="DEFAULT"/>

 <property name="entityManagerFactory" ref="jbpmEMF"/>

 <property name="transactionManager" ref="jbpmTxManager"/>

 <property name="assets">

 <map>

 <entry key-ref="process"><util:constant static-

field="org.kie.api.io.ResourceType.BPMN2"/></entry>

 </map>

 </property>

</bean>

that gives us default runtime environment ready to be used to create instance of a Runtime-

Manager.

4. Create RuntimeManager with the environment we just setup

<bean id="runtimeManager" class="org.kie.spring.factorybeans.RuntimeManagerFactoryBean"

 destroy-method="close">

 <property name="identifier" value="spring-rm"/>

 <property name="runtimeEnvironment" ref="runtimeEnvironment"/>

</bean>

with just four steps you are ready to execute your processes with Spring and jBPM 6, utilizing

EntityManagerFactory and JTA transaction manager.

Complete spring configuration file can be found here [https://github.com/droolsjbpm/drool-

sjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml].

This is just one configuration setup that jBPM 6 supports - JTA transaction manager and Entity-

ManagerFactory, others are:

• JTA and SharedEntityManager

• Local Persistence Unit and EntityManagerFactory

• Local Persistence Unit and SharedEntityManager

For more details about difference configuration options look at the example configura-

tion files [https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/re-

sources/jbpm] and test cases [https://github.com/droolsjbpm/droolsjbpm-integration/tree/mas-

ter/kie-spring/src/test/java/org/kie/spring/jbpm].

https://github.com/droolsjbpm/droolsjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml
https://github.com/droolsjbpm/droolsjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml
https://github.com/droolsjbpm/droolsjbpm-integration/blob/master/kie-spring/src/test/resources/jbpm/jta-emf/jta-emf-spring.xml
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/resources/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/java/org/kie/spring/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/java/org/kie/spring/jbpm
https://github.com/droolsjbpm/droolsjbpm-integration/tree/master/kie-spring/src/test/java/org/kie/spring/jbpm

Integration

637

20.3.2. jBPM services with Spring

In case more dynamic nature is required in your Spring application then more appropriate could be

to build up so called execution server based on jbpm services. jBPM services has been designed in

a way to make them framework agnostic and in case framework specific addons are required they

will be brought by additional module. So the code logic of the services is embedded in jbpm-kie-

services. These are pure java services and by that can be easily consumed by Spring application.

Dynamic nature means that processes (And other assets like data model, rules, forms, etc) can

be added and removed without restarting application.

There is almost no code involved to completely configure jBPM services in spring besides single

interface that needs to be implemented - IdentityProvider that depends on your security configu-

ration. One built with Spring Security can be like following though it might not cover all features

one can have for Spring application.

import java.util.ArrayList;

import java.util.Collections;

import java.util.List;

import org.kie.internal.identity.IdentityProvider;

import org.springframework.security.core.Authentication;

import org.springframework.security.core.GrantedAuthority;

import org.springframework.security.core.context.SecurityContextHolder;

public class SpringSecurityIdentityProvider implements IdentityProvider {

 public String getName() {

 Authentication auth = SecurityContextHolder.getContext().getAuthentication();

 if (auth != null && auth.isAuthenticated()) {

 return auth.getName();

 }

 return "system";

 }

 public List<String> getRoles() {

 Authentication auth = SecurityContextHolder.getContext().getAuthentication();

 if (auth != null && auth.isAuthenticated()) {

 List<String> roles = new ArrayList<String>();

 for (GrantedAuthority ga : auth.getAuthorities()) {

 roles.add(ga.getAuthority());

 }

 return roles;

 }

 return Collections.emptyList();

 }

 public boolean hasRole(String role) {

 return false;

Integration

638

 }

}

20.3.2.1. Configure jBPM services in Spring application

As usual, first thing to start with is transaction configuration:

<context:annotation-config />

<tx:annotation-driven />

<tx:jta-transaction-manager />

<bean id="transactionManager"

 class="org.springframework.transaction.jta.JtaTransactionManager" />

Next configuration of JPA and persistence follows:

<bean id="entityManagerFactory"

 class="org.springframework.orm.jpa.LocalContainerEntityManagerFactoryBean" depends-

on="transactionManager">

 <property name="persistenceXmlLocation" value="classpath:/META-INF/jbpm-persistence.xml" />

</bean>

Configure security and user/group information providers

<util:properties id="roleProperties" location="classpath:/roles.properties" />

<bean id="userGroupCallback"

 class="org.jbpm.services.task.identity.JBossUserGroupCallbackImpl">

 <constructor-arg name="userGroups" ref="roleProperties"></constructor-arg>

</bean>

<bean id="identityProvider" class="org.jbpm.spring.SpringSecurityIdentityProvider"/>

Configure runtime manager factory that is Spring context aware and by that can interact with

spring container in correct way and supporting services (transactional command service and task

service)

<bean id="runtimeManagerFactory"

 class="org.kie.spring.manager.SpringRuntimeManagerFactoryImpl">

 <property name="transactionManager" ref="transactionManager"/>

 <property name="userGroupCallback" ref="userGroupCallback"/>

</bean>

Integration

639

<bean id="transactionCmdService"

 class="org.jbpm.shared.services.impl.TransactionalCommandService">

 <constructor-arg name="emf" ref="entityManagerFactory"></constructor-arg>

</bean>

<bean id="taskService" class="org.kie.spring.factorybeans.TaskServiceFactoryBean" destroy-

method="close">

 <property name="entityManagerFactory" ref="entityManagerFactory"/>

 <property name="transactionManager" ref="transactionManager"/>

 <property name="userGroupCallback" ref="userGroupCallback"/>

 <property name="listeners">

 <list>

 <bean class="org.jbpm.services.task.audit.JPATaskLifeCycleEventListener">

 <constructor-arg value="true"/>

 </bean>

 </list>

 </property>

</bean>

Configure jBPM services as spring beans

<!-- definition service -->

<bean id="definitionService" class="org.jbpm.kie.services.impl.bpmn2.BPMN2DataServiceImpl"/>

<!-- runtime data service -->

<bean id="runtimeDataService" class="org.jbpm.kie.services.impl.RuntimeDataServiceImpl">

 <property name="commandService" ref="transactionCmdService"/>

 <property name="identityProvider" ref="identityProvider"/>

 <property name="taskService" ref="taskService"/>

</bean>

<!-- -- deployment service -->

<bean id="deploymentService" class="org.jbpm.kie.services.impl.KModuleDeploymentService"

 depends-on="entityManagerFactory" init-method="onInit">

 <property name="bpmn2Service" ref="definitionService"/>

 <property name="emf" ref="entityManagerFactory"/>

 <property name="managerFactory" ref="runtimeManagerFactory"/>

 <property name="identityProvider" ref="identityProvider"/>

 <property name="runtimeDataService" ref="runtimeDataService"/>

</bean>

<!-- process service -->

<bean id="processService" class="org.jbpm.kie.services.impl.ProcessServiceImpl" depends-

on="deploymentService">

 <property name="dataService" ref="runtimeDataService"/>

 <property name="deploymentService" ref="deploymentService"/>

</bean>

<!-- user task service -->

<bean id="userTaskService" class="org.jbpm.kie.services.impl.UserTaskServiceImpl" depends-

on="deploymentService">

 <property name="dataService" ref="runtimeDataService"/>

 <property name="deploymentService" ref="deploymentService"/>

</bean>

Integration

640

<!-- register runtime data service as listener on deployment service so it can receive notification

 about deployed and undeployed units -->

<bean id="data" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean"

 depends-on="deploymentService">

 <property name="targetObject" ref="deploymentService"></property>

 <property name="targetMethod"><value>addListener</value></property>

 <property name="arguments">

 <list>

 <ref bean="runtimeDataService"/>

 </list>

 </property>

</bean>

And this is all is needed to build fully featured execution server with Spring and jBPM services. A

complete Spring web application with this setup can be found here [https://github.com/mswider-

ski/spring-jbpm-app].

20.4. Ejb

jBPM since version 6.2 provides out of the box integration layer with Enterprise Java Beans (EJB)

for both local and remote interaction.

Ejb services are brought by following modules:

• jbpm-services-ejb-api

API module that extends jbpm-services-api with EJB specific interfaces and objects

• jbpm-services-ejb-impl

EJB extension to core services

• jbpm-services-ejb-timer

jBPM Scheduler Service implementation backed by EJB Timer Service

• jbpm-services-ejb-client

EJB remote client implementation for remote interaction, provides JBoss AS support out of the

box

EJB layer is based on jbpm services and thus provides almost same capabilities as the core

module though there are some imiliations when it comes to remote interfaces. Main difference is

for the DeploymentService that has been limited for remote ejb service to following methods:

• deploy

• undeploy

• activate

https://github.com/mswiderski/spring-jbpm-app
https://github.com/mswiderski/spring-jbpm-app
https://github.com/mswiderski/spring-jbpm-app

Integration

641

• deactivate

• isDeployed

Main rationale behind is to avoid returning runtime objects such as RuntimeManager over EJB

remote as it won't bring any value because it will be "disconnected" state.

All other services do provide exact same set of functionality as core module.

20.4.1. Ejb services implementation

Ejb services as an extension of core services provide EJB based execution semantic and based

on various EJB specific features.

• DeploymentServiceEJBImpl

is implemented as ejb singleton with container managed concurrency and lock type set to write

• DefinitionServiceEJBImpl

is implemented as ejb singleton with container managed concurrency with overall lock type set

to read, except buildProcessDefinition method that has lock type set to write

• ProcessServiceEJBImpl

is implemented as stateless session bean

• RuntimeDataServiceEJBImpl

is implemented as ejb singleton with mojority of methods with lock type read, except following

that are with lock type write:

• onDeploy

• onUnDeploy

• onActivte

• onDeactivate

• UserTaskServiceEJBImpl

is implemented as stateless session bean

Transactions

Transaction is managed by EJB container thus there is no need to setup any sort of transaction

manager or user transaction within application code.

Identity provider

Integration

642

Identity provider by default is backed by EJBContext and will rely on caller principal information for

both name and roles. When inspecting IdentityProvider interface there are two methods related

to roles:

• getRoles

this method returns empty list due to the fact EJBContext does not provide options to fetch all

roles for given user

• hasRole

this method will delegate to context's isCallerInRole method

This means that ejb must be secured according to JEE security practices to authentiate and au-

thorize users so valid information will be available. In case no authentication/authorization is con-

figured for EJB services an anonymous user is always assumed.

In addition to that, EJB services acept CDI sytly injection for IdentityProvider in case an-

other (non ejb) security model is used. Simply create valid CDI bean that implements

org.kie.internal.identity.IdentityProvider and make it available for injection with application and

such implementation will take precedence over EJBContext based identity provider.

Deployment synchronization

Deployment synchronization is enabled by default and will attempt to synchronize any deploy-

ments every 3 seconds. It is implemented as ejb singleton with container managed concurrency

and lock type set to write. Under the covers it utilizes EJB TimerService to schedule the synchro-

nization jobs.

EJB Scheduler Service

jBPM uses scheduler service to deal with time based activities such as timer events, deadlines,

etc. When running in EJB environment and EJB Timer Service based scheduler will be used. It

will be automatically registered for all instances of RuntimeManager. When it comes to cluster

support application server specific configuration might be required.

UserGroupCallback and UserInfo selection

UserGroupCallback and UserInfo might differ for various applications and thus should be sort of

pluggable. With EJB we could not make it directly available for injections as they could not be

injected with common type so there is another mechanism that allows to select one of provided out

of the box implementation or to give a custom one. This mechanism is based on ssytem properties:

• org.jbpm.ht.callback

specify what implementation of user group callback will be selected

Integration

643

• mvel - default mostly used for testing

• ldap - ldap backed implementation - requires additional configuration via

jbpm.usergroup.callback.properties file

• db - data base backed implementation - requires additional configuration via

jbpm.usergroup.callback.properties file

• jaas - delegates to container to fetch information about user data

• props - simple property based callback - requires additional file that will keep all information

(users and groups)

• custom - custom implementation that requires to have additional system property set (FQCN

of the implementation) - org.jbpm.ht.custom.callback

• org.jbpm.ht.userinfo

specify what implementation of UserInfo shall be used, one of:

• ldap - backed by ldap - requires configuration via jbpm-user.info.properties file

• db - backed by data base - requires configuration via jbpm-user.info.properties file

• props - backed by simple property file

• custom - custom implementation that requires to have additional system property set (FQCN

of the implementation) - org.jbpm.ht.custom.userinfo

System properties can either be added to the startup configuration of the server (jvm) which is

recommended or be set programmatically before services will be used - for example with custom

@Startup bean that will configure it properly for selected callback and user info.

A example application that utilizes EJB services can be found here [https://github.com/jsvi-

tak/jbpm-6-examples/tree/master/rewards-basic].

20.4.2. Local interface

Local EJB services are brought via dedicated local interfaces that extends core services:

• org.jbpm.services.ejb.api.DefinitionServiceEJBLocal

• org.jbpm.services.ejb.api.DeploymentServiceEJBLocal

• org.jbpm.services.ejb.api.ProcessServiceEJBLocal

• org.jbpm.services.ejb.api.RuntimeDataServiceEJBLocal

• org.jbpm.services.ejb.api.UserTaskServiceEJBLocal

These interfaces should be used as injection points and shall be annotated with @EJB:

https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-basic
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-basic
https://github.com/jsvitak/jbpm-6-examples/tree/master/rewards-basic

Integration

644

@EJB

private DefinitionServiceEJBLocal bpmn2Service;

@EJB

private DeploymentServiceEJBLocal deploymentService;

@EJB

private ProcessServiceEJBLocal processService;

@EJB

private RuntimeDataServiceEJBLocal runtimeDataService;

Once injected operations can be invoked on them as with core modules, there are no restrictions

to their usage.

20.4.3. Remote interface

Remote EJB services are defined as dedicated remote interfaces that extends core services:

• org.jbpm.services.ejb.api.DefinitionServiceEJBRemote

• org.jbpm.services.ejb.api.DeploymentServiceEJBRemote

• org.jbpm.services.ejb.api.ProcessServiceEJBRemote

• org.jbpm.services.ejb.api.RuntimeDataServiceEJBRemote

• org.jbpm.services.ejb.api.UserTaskServiceEJBRemote

These can be used similar way as local interfaces except for handling custom types. Custom types

can be defined:

• globally

such types are available on application classpath - included in the enterprise application

• locally to the deployment unit

such types are declared as project (kjar) dependency and are resolved on deployment time

Globally available types do not require any special handling as they will be available for EJB

container when remote requests are handled - marshalling of incoming data. Though local custom

types won't be visible by default to EJB container as they are not on application classpath. Thus

special handling of such types is required.

EJB services provides easy yet rather powerful mechanism to resolve the issue - it comes with

two additional types:

• org.jbpm.services.ejb.remote.api.RemoteObject

Integration

645

Serializable wrapper class for single value parameters

• org.jbpm.services.ejb.remote.api.RemoteMap

Dedicated java.util.Map implementation to simplify remote invocation of service methods that

accept custom object input. This map is backed by an internal map that holds already serialized

content to avoid additional serialization on sending time. That removes the burden of ensuring

that container will know about all custom data model classes as part of global classpath.

This implementation does not support all methods that are usually not used when sending data.

It shall be considered only as a wrapper only and not actual and complete implementation of

a map.

These special objects will perform eager serialization to bytes using ObjectInputStream to remove

the need of serialization from the EJB client/container. Though it might be worse in case of per-

formance it does overcome much more complecated handling of class loaders on EJB container

side to allow use of custom types defined in the project.

Here is an example code needed to work with local types and remote EJB:

// start a process with custom types via remote EJBMap<String, Object> parameters = new

 RemoteMap();Person person = new org.jbpm.test.Person("john", 25, true);parameters.put("person",

 person);Long processInstanceId = processService.startProcess(deploymentUnit.getIdentifier(),

 "custom-data-project.work-on-custom-data", parameters);// fetch task data and

 complete task with custom types via remote EJBMap<String, Object> data =

 userTaskService.getTaskInputContentByTaskId(taskId); Person fromTaskPerson =

 data.get("_person");fromTaskPerson.setName("John Doe"); RemoteMap outcome = new

 RemoteMap();outcome.put("person_", fromTaskPerson); userTaskService.complete(taskId,

 "john", outcome);

 EJBMap<String, Object> parameters = new

 RemoteMap();Person person = new org.jbpm.test.Person("john", 25,

 true);parameters.put("person",

 person);Long processInstanceId = processService.startProcess(deploymentUnit.getIdentifier(),

 "custom-data-project.work-on-custom-data",

 parameters);// fetch task data and complete task with custom types via remote

 EJBMap<String, Object> data =

 userTaskService.getTaskInputContentByTaskId(taskId);

 Person fromTaskPerson =

 data.get("_person");fromTaskPerson.setName("John

 Doe");

 RemoteMap outcome = new

 RemoteMap();outcome.put("person_",

 fromTaskPerson);

 userTaskService.complete(taskId, "john",

Similar way RemoteObject can be used for example to send evnet to process instance:

Integration

646

// send event with custom type via remote EJB

Person person = new org.jbpm.test.Person("john", 25, true);

RemoteObject myObject = new RemoteObject(person);

processService.signalProcessInstance(processInstanceId, "MySignal", myObject);

These illustrates how to wrap custom data when interacting with remote EJB services. Next section

will introduce how to make a connection to a remote service vai client code.

20.4.3.1. Remote EJB client

Remote client support is provided by implemetation of ClientServiceFactory interface that is facede

for application server specific code:

/**

 * Generic service factory used for remote look ups that are usually container specific.

 *

 */

public interface ClientServiceFactory {

 /**

 * Returns unique name of given factory implementation

 * @return

 */

 String getName();

 /**

 * Returns remote view of given service interface from selected application

 * @param application application identifier on the container

 * @param serviceInterface remote service interface to be found

 * @return

 * @throws NamingException

 */

 <T> T getService(String application, Class<T> serviceInterface) throws NamingException;

}

Implementations can be dynamically registered using ServiceLoader mechanism and by default

there is only one available for JBoss AS/EAP/Wildfly. Each ClientServiceFactory must provide

name which will be used to register it within the client registry so it can be then easily looked up.

Here is a code used to get hold of default JBoss based remote client:

// get hold of valid client service factory

ClientServiceFactory factory = ServiceFactoryProvider.getProvider("JBoss");

// application is the name known to application server aka module name

String application = "sample-war-ejb-app";

// get given service out of the factory

Integration

647

DeploymentServiceEJBRemote deploymentService = factory.getService(application,

 DeploymentServiceEJBRemote.class);

With service available all know to its interface methods are ready to be used.

When working with JBoss AS and remote client you can add following maven dependency to bring

in all EJB client libraries:

<dependency>

 <groupId>org.jboss.as</groupId>

 <artifactId>jboss-as-ejb-client-bom</artifactId>

 <version>7.2.0.Final</version> <!-- use valid version for the server you run on -->

 <optional>true</optional>

 <type>pom</type>

</dependency>

20.5. OSGi

All core jBPM JARs (and core dependencies) are OSGi-enabled. That means that they contain

MANIFEST.MF files (in the META-INF directory) that describe their dependencies etc. These

manifest files are automatically generated by the build. You can plug these JARs directly into an

OSGi environment.

OSGi is a dynamic module system for declarative services. So what does that mean? Each JAR

in OSGi is called a bundle and has its own Classloader. Each bundle specifies the packages it

exports (makes publicly available) and which packages it imports (external dependencies). OSGi

will use this information to wire the classloaders of different bundles together; the key distinction is

you don't specify what bundle you depend on, or have a single monolithic classpath, instead you

specify your package import and version and OSGi attempts to satisfy this from available bundles.

It also supports side by side versioning, so you can have multiple versions of a bundle installed

and it'll wire up the correct one. Further to this Bundles can register services for other bundles to

use. These services need initialisation, which can cause ordering problems - how do you make

sure you don't consume a service before its registered? OSGi has a number of features to help

with service composition and ordering. The two main ones are the programmatic ServiceTracker

and the XML based Declarative Services. There are also other projects that help with this; Spring

DM, iPOJO, Gravity.

The following jBPM JARs are OSGi-enabled:

• jbpm-flow

• jbpm-flow-builder

• jbpm-bpmn2

Part VI. Advanced Topics
Some more advanced topics

649

Chapter 21. Domain-specific

Processes
21.1. Introduction

jBPM provides the ability to create and use domain-specific task nodes in your business process-

es. This simplifies development when you're creating business processes that contain tasks deal-

ing with other technical systems.

When using jBPM, we call these domain-specific task nodes "custom work items" or (custom)

"service nodes". There are two separate aspects to creating and using custom work items:

• Adding a node with a custom work item to a process definition using the Eclipse editor or jBPM

designer.

• Creating a custom work item handler that the jBPM engine will use when executing the custom

work item in a running process.

With regards to a BPMN2 process, custom work items are certain types of <task> nodes. In

most cases, custom work items are <task> nodes in a BPMN2 process definition, although they

can also be used with certain other task type nodes such as, among others, <serviceTask> or

<sendTask> nodes.

Tip

When creating custom work items, it's important to separate the data associated

with the work item, from how the work item should be handled. In other words,

separate the what from the how. That means that custom work items should be:

• declarative (what, not how)

• high-level (no code)

On the other hand, custom work item handlers, which are Java classes, should be:

• procedural (how, not what)

• low-level (because it's code!)

Work item handlers should almost never contain any data.

Users can thus easily define their own set of domain-specific service nodes and integrate them

with the process language. For example, the next figure shows an example of a healthcare-re-

lated BPMN2 process. The process includes domain-specific service nodes for measuring blood

pressure, prescribing medication, notifying care providers and following-up on the patient.

Domain-specific Processes

650

21.2. Overview

Before moving on to an example, this section explains what custom work items and custom work

item handlers are.

21.2.1. Work Item Definitions

In short, we use the term custom work item when we're describing a node in your process that

represents a domain-specific task and as such, contains extra properties and is handled by a

WorkItemHandler implementation.

Because it's a domain-specific task, that means that a custom work item is equivalent to a <task>

or <task>-type node in BPMN2. However, a WorkItem is also Java class instance that's used

when a WorkItemHandler instance is called to complete the task or work item.

Depending on the BPMN2 editor you're using, you can create a custom work item definition in

one of two ways:

• If you're using Designer, then this means creating a MVEL based definition and adding the

definition in Designer itself. A description of this can be found in the ??? section in the ???

chapter. Once this is done, a new service node will appear on the BPMN 2.0 palette.

• If you're using the Eclipse BPMN 2.0 modeler plugin (which can be found here [http://eclipse.org/

bpmn2-modeler/]), then you'll can modify the BPMN2 <task> or <task>-type element to work

with WorkItemHandler implementations. See the ??? section in the ??? chapter.

21.2.2. Work Item Handlers

A work item handler is a Java class used to execute (or abort) work items. That also means

that the class implements the org.kie.runtime.instance.WorkItemHandler interface. While

jBPM provides some custom WorkItemHandler instances (listed below), a Java developer with a

http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/
http://eclipse.org/bpmn2-modeler/

Domain-specific Processes

651

minimal knowledge of jBPM can easily create a new work item handler class with its own custom

business logic.

Among others, jBPM offers the following WorkItemHandler implementations:

• In the jbpm-bpmn2 module, org.jbpm.bpmn2.handler package:

• ReceiveTaskHandler (for use with BPMN element <receiveTask>)

• SendTaskHandler (for use with BPMN element <sendTask>)

• ServiceTaskHandler (for use with BPMN element <serviceTask>)

• In the jbpm-workitems module, in various packages under the org.jbpm.process.workitem

package:

• ArchiveWorkItemHandler

There are a many more WorkItemHandler implementations present in the jbpm-workitems mod-

ule. If you're looking for specific integration logic with Twitter, for example, we recommend you

take a look at the classes made available there.

In general, a WorkItemHandler's .executeWorkItem(...) and .abortWorkItem(...) methods

will do the following:

1. Extract information about the task being executed (or aborted) from the WorkItem instance

2. Execute the necessary business logic. This might be mean interacting with a web service,

database, or other technical component.

3. Inform the process engine that the work item has been completed (or aborted) by calling one

of the following two methods on the WorkItemManager instance passed to the method:

WorkItemManager.completeWorkItem(long workItemId, Map<String, Object> results)

WorkItemManager.abortWorkItem(long workItemId)

In order to make sure that your custom work item handler is used for a particular process instance,

it's necessary to register the work item handler before starting the process. This makes the engine

aware of your WorkItemHandler so that the engine can use it for the proper node. For example:

ksession.getWorkItemManager().registerWorkItemHandler("Notification",

 new NotificationWorkItemHandler());

The ksession variable above is a StatefulKnowledgeSession (and also a KieSession) in-

stance. The example code above comes from the example that we will go through in the next

session.

Work item handler life cycle management

Domain-specific Processes

652

Work item handler is registered on kie session and then can be used whenever process engine

encounters a node that should be handled by that handler. Depending on the implementation of

the handler (e.g. some handler might keep state or depend on some resources such as data base

connection) there might be a need to maintain life cycle of the handler. To ease the way of doing

that jBPM comes with two additional interfaces that handler might implement:

• org.kie.internal.runtime.Closeable - allows auto close of the handler whenever owner (work item

handler manager) of it is closed or disposed. This is useful in case a handler can be quickly

and frequently recreated so the engine will have it for the execution and when disposed it will

dispose as well all handlers of Closeable type.

• org.kie.internal.runtime.Cacheable - allows handlers to be cached and resused to avoid recre-

ation of the objects. There might be several reasons of doing so - expensive bootstrap of the

handler, dependency to external resources - socket connections, db connections, web service

client. While this brings powerful feature to the work item handler management it does put addi-

tional requirement on the implementation - needs to deal with exceptions internally and recover

from any failures. In case recovery cannot be performed it needs to remove itself from the cache.

Closeable interface is handled for all use cases, while Cacheable is available only when Runtime-

Manager is used. RuntimeManager provides caching capabilities via its CacheManager (available

via InternalRuntimeManager in case self removal is required).

Tip

You can use different work item handlers for the same process depending on the

system on which it runs: by registering different work item handlers on different

systems, you can customize how a custom work item is processed on a particular

system. You can also substitute mock WorkItemHandler instances when testing.

21.3. Example: Notifications

Let's start by showing you how to include a simple work item for sending notifications. A work item

is defined by a unique name and includes additional parameters that describe the work in more

detail. Work items can also return information after they have been executed, specified as results.

Our notification work item could be defined using a work definition with four parameters and no

results. For example:

• Name: "Notification"

• Parameters:

• From [String type]

• To [String type]

Domain-specific Processes

653

• Message [String type]

• Priority [String type]

21.3.1. The Notification Work Item Definition

21.3.1.1. Creating the work item definition

In our example we will create a MVEL work item definition that defines a "Notification" work item.

Using MVEL is the default way to This file will be placed in the project classpath in a directory

called META-INF. The work item configuration file for this example, MyWorkDefinitions.wid, will

look like this:

import org.drools.core.process.core.datatype.impl.type.StringDataType;

[

 // the Notification work item

 [

 "name" : "Notification",

 "parameters" : [

 "Message" : new StringDataType(),

 "From" : new StringDataType(),

 "To" : new StringDataType(),

 "Priority" : new StringDataType(),

],

 "displayName" : "Notification",

 "icon" : "icons/notification.gif"

]

]

The project directory structure could then look something like this:

project/src/main/resources/META-INF/MyWorkDefinitions.wid

We also want to add a specific icon to be used in the process editor with the work item. To add

this, you will need .gif or .png images with a pixel size of 16x16. We put them in a directory

outside of the META-INF directory, for example, here:

project/src/main/resources/icons/notification.gif

21.3.1.2. Registering the work definition

The jBPM Eclipse editor uses the configuration mechanisms supplied by Drools to register

work item definition files. That means adding a drools.workDefinitions property to the

drools.rulebase.conf file in the META-INF.

Domain-specific Processes

654

The drools.workDefinitions property represents a list of files containing work item definitions,

separated using spaces. If you want to exclude all other work item definitions and only use your

definition, you could use the following:

drools.workDefinitions = MyWorkDefinitions.wid

However, if you only want to add the newly created node definition to the existing palette nodes,

you can define the drools.workDefinitions property as follows:

drools.workDefinitions = MyWorkDefinitions.wid WorkDefinitions.conf

We recommended that you use the extension .wid for your own definitions of domain specif-

ic nodes. The .conf extension used with the default definition file, WorkDefinitions.conf, for

backward compatibility reasons.

21.3.1.3. Using your new work item in your processes

We've created our work item definition and configured it, so now we can start using it in our

processes. The process editor contains a separate section in the palette where the different ser-

vice nodes that have been defined for the project appear.

Domain-specific Processes

655

Using drag and drop, a notification node can be created inside your process. The properties can

be filled in using the properties view.

Besides any custom properties, the following three properties are available for all work items:

1. Parameter Mapping: Allows you to map the value of a variable in the process to a parameter

of the work item. This allows you to customize the work item based on the current state of

the actual process instance (for example, the priority of the notification could be dependent of

some process-specific information).

2. Result Mapping: Allows you to map a result (returned once a work item has been executed)

to a variable of the process. This allows you to use results in the remainder of the process.

Domain-specific Processes

656

3. Wait for completion: By default, the process waits until the requested work item has been

completed before continuing with the process. It is also possible to continue immediately after

the work item has been requested (and not waiting for the results) by setting wait for com-

pletion to false.

Here is an example that creates a domain specific node to execute Java, asking for the class and

method parameters. It includes a custom java.gif icon and consists of the following files and

resulting screenshot:

import org.drools.core.process.core.datatype.impl.type.StringDataType;

[

 // the Java Node work item located in:

 // project/src/main/resources/META-INF/JavaNodeDefinition.wid

 [

 "name" : "JavaNode",

 "parameters" : [

 "class" : new StringDataType(),

 "method" : new StringDataType(),

],

 "displayName" : "Java Node",

 "icon" : "icons/java.gif"

]

]

// located in: project/src/main/resources/META-INF/drools.rulebase.conf

drools.workDefinitions = JavaNodeDefinition.wid WorkDefinitions.conf

// icon for java.gif located in:

// project/src/main/resources/icons/java.gif

Domain-specific Processes

657

Domain-specific Processes

658

21.3.2. The NotificationWorkItemHandler

21.3.2.1. Creating a new work item handler

Once we've created our Notification work item definition (see the sections above), we can

then create a custom implementation of a work item handler that will contain the logic to send

the notification.

In order to execute our Notification work items, we first create a NotificationWorkItemHandler

that implements the WorkItemHandler interface:

package com.sample;

import org.kie.api.runtime.process.WorkItem;

import org.kie.api.runtime.process.WorkItemHandler;

import org.kie.api.runtime.process.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

 // extract parameters

 String from = (String) workItem.getParameter("From");

 String to = (String) workItem.getParameter("To");

 String message = (String) workItem.getParameter("Message");

 String priority = (String) workItem.getParameter("Priority");

 // send email

 EmailService service = ServiceRegistry.getInstance().ge tEmailService();

 service.sendEmail(from, to, "Notification", message);

 // notify manager that work item has been completed

 manager.completeWorkItem(workItem.getId(), null);

 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

 // Do nothing, notifications cannot be aborted

 }

}

The ServiceRegistry class is simply a made-up class that we're using for this example.

In your own WorkItemHandler implementations, the code containing your domain-specific

logic would go here.

Notifying the WorkItemManager instance when your a work item has been completed is cru-

cial. For many synchronous actions, like sending an email in this case, the WorkItemHandler

implementation will notify the WorkItemManager in the executeWorkItem(...) method.

This WorkItemHandler sends a notification as an email and then notifies the WorkItemManager

that the work item has been completed.

Domain-specific Processes

659

Note that not all work items can be completed directly. In cases where executing a work item takes

some time, execution can continue asynchronously and the work item manager can be notified

later.

In these situations, it might also be possible that a work item is aborted before it has been com-

pleted. The WorkItemHandler.abortWorkItem(...) method can be used to specify how to abort

such work items.

Tip

Remember, if the WorkItemManager is not notified about the completion, the

process engine will never be notified that your service node has completed.

21.3.2.2. Registering the work item handler

WorkItemHandler instances need to be registered with the WorkItemManager in order to be used.

In this case, we need to register an instance of our NotificationWorkItemHandler in order to

use it with our process containing a Notification work item. We can do that like this:

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

ksession.getWorkItemManager().registerWorkItemHandler(

 "Notification",

 new NotificationWorkItemHandler()

);

This is the drools name of the <task> (or other task type) node. See below for an example.

This is the instance of our custom work item handler instance!

If we were to look at the BPMN2 syntax for our process with the Notification process, we

would see something like the following example. Note the use of the tns:taskName attribute in the

<task> node. This is necessary for the WorkItemManager to be able to see which WorkItemHan-

dler instance should be used with which task or work item.

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"

 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

 xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"

...

 xmlns:tns="http://www.jboss.org/drools">

...

 <process isExecutable="true" id="myCustomProcess" name="Domain-Specific Process" >

Domain-specific Processes

660

...

 <task id="_5" name="Notification Task" tns:taskName="Notification" >

...

Tip

Different work item handlers could be used depending on the context. For example,

during testing or simulation, it might not be necessary to actually execute the work

items. In this case specialized dummy work item handlers could be used during

testing.

21.4. Service Repository

A lot of these domain-specific services are generic, and can be reused by a lot of different users.

Think for example about integration with Twitter, doing file system operations or sending email.

Once such a domain-specific service has been created, you might want to make it available to

other users so they can easily import and start using it.

A service repository allows you to import services by browsing the repository looking for services

you might need and importing these services into your workspace. These will then automatically

be added to your palette and you can start using them in your processes. You can also import

additional artefacts like for example an icon, any dependencies you might need, a default handler

that will be used to execute the service (although you're always free to override the default, for

example for testing), etc.

To browse the repository, open the wizard to import services, point it to the right location (this could

be to a directory in your file system but also a public or private URL) and select the services you

would like to import. For example, in Eclipse, right-click your project that contains your processes

and select "Configure ... -> Import jBPM services ...". This will open up a repository browser. In the

URL field, fill in the URL of your repository (see below for the URL of the public jBPM repository

that hosts some common service implementations out-of-the-box), or use the "..." button to browse

to a folder on your file system. Click the Get button to retrieve the contents of that repository.

Domain-specific Processes

661

Select the service you would like to import and then click the Import button. Note that the Eclipse

wizard allows you to define whether you would like to automatically configure the service (so it

shows up in the palette of your processes), whether you would also like to download any depen-

dencies that might be needed for executing the service and/or whether you would like to automat-

ically register the default handler, so make sure to mark the right checkboxes before importing

your service (if you are unsure what to do, leaving all check boxes marked is probably best).

After importing your service, (re)open your process diagram and the new service should show up

in your palette and you can start using it in your process. Note that most services also include

documentation on how to use them (e.g. what the different input and output parameters are) when

you select them browsing the service repository.

Click on the image below to see a screencast where we import the Twitter service in a new jBPM

project and create a simple process with it that sends an actual tweet. Note that you need the

necessary Twitter keys and secrets to be able to programmatically send tweets to your Twitter ac-

count. How to create these is explained here [http://docs.jboss.org/jbpm/v6.0/repository/Twitter/],

but once you have these, you can just drop them in your project using a simple configuration file.

http://docs.jboss.org/jbpm/v6.0/repository/Twitter/
http://docs.jboss.org/jbpm/v6.0/repository/Twitter/

Domain-specific Processes

662

Figure 21.1.
[http://people.redhat.com/kverlaen/twitter-repository.swf]

21.4.1. Public jBPM service repository

We are building a public service repository that contains predefined services that people can use

out-of-the-box if they want to:

http://docs.jboss.org/jbpm/v6.0/repository/

This repository contains some integrations for common services like Twitter integration or file

system operations that you can import. Simply point the import wizard to this URL to start browsing

the repository.

If you have an implementation of a common service that you would like to contribute to the com-

munity, do not hesitate to contact someone from the development team. We are always looking

for contributions to extend our repository.

21.4.2. Setting up your own service repository

You can set up your own service repository and add your own services by creating a configuration

file that contains the necessary information (this is an extended version of the normal work defin-

http://people.redhat.com/kverlaen/twitter-repository.swf
http://docs.jboss.org/jbpm/v6.0/repository/

Domain-specific Processes

663

ition configuration file as described earlier in this chapter) and putting the necessary files (like an

icon, dependencies, documentation, etc.) in the right folders.

The extended configuration file contains the normal properties (like name, parameters, results and

icon), with some additional ones. For example, the following extended configuration file describes

the Twitter integration service (as shown in the screencast above):

import org.drools.core.process.core.datatype.impl.type.StringDataType;

[

 [

 "name" : "Twitter",

 "description" : "Send a Twitter message",

 "parameters" : [

 "Message" : new StringDataType()

],

 "displayName" : "Twitter",

 "eclipse:customEditor" :

 "org.drools.eclipse.flow.common.editor.editpart.work.SampleCustomEditor",

 "icon" : "twitter.gif",

 "category" : "Communication",

 "defaultHandler" : "org.jbpm.process.workitem.twitter.TwitterHandler",

 "documentation" : "index.html",

 "dependencies" : [

 "file:./lib/jbpm-twitter.jar",

 "file:./lib/twitter4j-core-2.2.2.jar"

]

]

]

• The icon property should refer to a file with the given file name in the same folder as the ex-

tended configuration file (so it can be downloaded by the import wizard and used in the process

diagrams). Icons should be 16x16 GIF files.

• The category property defines the category this service should be placed under when browsing

the repository.

• The defaultHandler property defines the default handler implementation (i.e. the Java class that

implements the WorkItemHandler interface and can be used to execute the service). This can

automatically be registered as the handler for that service when importing the service from the

repository.

• The documentation property defines a documentation file that describes what the service does

and how it works. This property should refer to a HTML file with the given name in the same

folder as the extended configuration file (so it can be shown by the import wizard when browsing

the repository).

• The dependencies property defines additional dependencies that are necessary to execute this

service. This usually includes the handler implementation JAR, but could also include additional

external dependencies. These dependencies should also be located on the repository on the

Domain-specific Processes

664

given location (relative to the folder where the extended configuration file is located), so they

can be downloaded by the import wizard when importing the service.

The root of your repository should also contain an index.conf file that references all the folders

that should be processed when searching for services on the repository. Each of those folders

should then contain:

• An extended configuration file with the same name as the folder (e.g. Twitter.conf)

• The icon as references in the configuration file

• The documentation as references in the configuration file

• The dependencies as references in the configuration file (for example in a lib folder)

You can create your own hierarchical structure, because if one of those folders also contains

an index.conf file, that will be used to scan additional sub-folders. Note that the hierarchical

structure of the repository is not shown when browsing the repository using the import wizard, as

the category property in the configuration file is used for that.

665

Chapter 22. Exception Management
22.1. Overview

This chapter will describe how to deal with unexpected behavior in your business processes using

both BPMN2 and technical mechanisms.

The first section will explain Technical Exceptions: we'll go through an example that uses both

BPMN2 and WorkItemHandler implementations in order to isolate and handle exceptions caused

by a technical component. We will also explain how to modify the example to suit other use cases.

The second section will define and explain the types of (BPMN2) exceptions that can happen or

be used in a business process.

22.2. Introduction

What happens to a business process when something unexpected happens during the process?

Most of the time, when creating and designing a new process definition, the first step is to describe

the normative or desirable behaviour. However, a process definition that only describes all of the

normal tasks and their execution order is incomplete.

The next step is to think about what might go wrong when the business process is run. What

would happen if any of the human or technical actors in the process do not respond in unexpected

ways? Will any of the technical systems that the process interacts with return unexpected results

-- or not return any results at all?

Deviations from the normative or "happy" flow of a business process are called exceptions. In

some cases, exceptions might not be that unusual, such as trying to debit an empty bank account.

However, some processes might contain many complex situations involving exceptions, all of

which must be handled correctly.

Note

The rest of chapter assumes that you know how to create custom <task> nodes

and how to implement and register WorkItemHandler implementations. More infor-

mation about these topics can be found in the Domain-specific Processes chapter.

22.3.1. Technical Exceptions

Technical exceptions happen when a technical component of a business process acts in an un-

expected way. When using Java based systems, this often results in a literal Java Exception being

thrown by the system.

Technical components used in a process can fail in a way that can not be described using BPMN2.

In this case, it's important to handle these exceptions in expected ways.

Exception Management

666

The following types of code might throw exceptions:

• Any code that is present in the process definition itself

• Any code that is executed during a process and is not part of jBPM

• Any code that interacts with a technical component outside of the process engine

However, those are somewhat abstract definitions. We can narrow down the places at which an

exception might be thrown. Technical exceptions can occur at the following points:

1. Code present in <scriptTask> nodes or in the jbpm-specific <onEntry> and <onExit> ele-

ments

2. Code executed in WorkItemHandlers associated with <task> and task-type nodes

It is much easier to ensure correct exception handling for <task> and other task-type nodes that

use WorkItemHandler implementations, than for code executed directly in a <scriptTask>.

Exceptions thrown by <scriptTask> can cause the process to fail in an unrecoverable fashion.

While there are certain things that you can do to contain the damage, a process that has failed in

this way can not be restarted or otherwise recovered. This also applies for other nodes in a process

definition that contain script code in the node definition, such as the <onEntry> and <onExit>

elements.

When jBPM engine does throw an exception generated by the code in a <scriptTask> the ex-

ception thrown is a special Java exception called the WorkflowRuntimeException that contains

information about the process.

Warning

Again, exceptions generated by a <scriptTask> node (and other nodes containing

script code) will leave the process unrecoverable. In fact, often, the code that starts

the process itself will end up throwing the exception generated by the business

process, without returning a reference to the process instance.

For this reason, it's important to limit the scope of the code in these nodes to op-

erations dealing with process variables. Using a <scriptTask> to interact with a

different technical component, such as a database or web service has significant

risks because any exceptions thrown will corrupt or abort the process.

<task> nodes, <serviceTask> nodes and the rest of the task-type nodes are

explicitly meant for interacting with other systems -- not <scriptTask> nodes! Use

<task>-type nodes to interact with other technical components.

Exception Management

667

22.3.1.1. Handling exceptions in WorkItemHandler instances

WorkItemHandler classes are used when your process interacts with other technical systems.

For an introduction to them and how to use them in processes, please see the Domain-specific

Processes chapter.

While you can build exception handling into your own WorkItemhandler implementations, there

are also two “handler decorator” classes that you can use to wrap a WorkItemhandler implemen-

tation.

These two wrapper classes include logic that is executed when an exception is thrown during the

execution (or abortion) of a work item.

Table 22.1. Exception Handling WorkItemHandler wrapper classes

Decorator classes in the

org.jbpm.bpmn2.handler package

Description

SignallingTaskHandlerDecorator This class wraps an existing WorkItemHan-

dler implementation. When the .execute-

WorkItem(...) or .abortWorkItem(...)

methods of the original WorkItemHandler in-

stance throw an exception, the Signalling-

TaskHandlerDecorator will catch the ex-

ception and signal the process instance us-

ing a configurable event type. The exception

thrown will be passed as part of the event.

This functionality can be used to signal an

Event SubProcess defined in the process def-

inition.

LoggingTaskHandlerDecorator This class reacts to all exceptions thrown by

the .executeWorkItem(...) or .abort-

WorkItem(...) WorkItemHandler methods

by logging the errors. It also saves any excep-

tions thrown so to an internal list so that they

can be retrieved later for inspection or further

logging. Lastly, the content and format of the

message logged upon an exception are con-

figurable.

While the two classes described above should cover most cases involving exception handling, a

Java developer with some experience with jBPM should be able to create a WorkItemHandler

that executes custom code upon an exception.

If you do decide to write a custom WorkItemHandler that includes exception handling logic, keep

the following checklist in mind:

1. Are you catching all possible exceptions that you want to (and no more, or less)?

Exception Management

668

2. Are you making sure to either complete or abort the work item after an exception has been

caught? If not, are there mechanisms to retry the process later? Or are incomplete process

instances acceptable?

3. >

What other actions should be taken when an exception is caught? Do you want to simply log

the exception, or is it also important to interact with other technical systems? Do you want to

trigger a (BPMN2) subprocess that will handle the exception?

Important

When you use the WorkItemManager to signal that the work item has

been completed or aborted, make sure to do that after you've sent

any signals to the process instance. Depending on how you've de-

fined your process, calling WorkItemManager.completeWorkItem(...) or

WorkItemManager.abortWorkItem(...) will trigger the completion of the process

instance. This is because the these methods trigger the jBPM process engine to

continue the process flow.

In the next section, we'll describe an example that uses the SignallingTaskHandlerDecorator

to signal an event subprocess when a work item handler throws an exception.

22.3.2. Technical Exception Examples

22.3.2.1. Example: service task handlers

We'll go through one example in this section, and then look quickly at how you can change it to

get the behavior you want. The example involves an <error> event that's caught by an (Error)

Event SubProcess.

When an Error Event is thrown, the containing process will be interrupted. This means that after

the process flow attached to the error event has executed, the following will happen:

1. process execution will stop, and no other parts of the process will execute

2. the process instance will end up in an aborted state (instead of completed)

The example we'll go through contains an <error>, but at the end of the section, we'll show how

you can change the process to use a <signal> instead.

Tip

The code and BPMN2 process definition shown in the next

section are available in the jbpm-examples module. See the

org.jbpm.examples.exceptions.ExceptionHandlingErrorExample class for

the Java code. The BPMN2 process definition is available in the excep-

Exception Management

669

tions/ExceptionHandlingWithError.bpmn2 file in the src/main/resources di-

rectory of the jbpm-examples module.

22.3.2.1.1. BPMN2 configuration

Let's look at the BPMN2 process definition first. Besides the definition of the process, the BPMN2

elements defined before the actual process definition are also important. Here's an image of the

BPMN2 process that we'll be using in the example:

Figure 22.1.

The BPMN2 process fragment below is part of the process shown above, and contains some

notes on the different BPMN2 elements.

Note

If you're viewing this on a web browser, you may need to widen or narrow your

browser window in order to see the "callout" or note numbers on the right hand

side of the code.

 <itemDefinition id="_stringItem" structureRef="java.lang. String"/>

 <message id="_message" itemRef="_stringItem"/>

 <interface id="_serviceInterface"

 name="org.jbpm.examples.exceptions.service.ExceptionService">

 <operation id="_serviceOperation" name="throwException">

 <inMessageRef>_message</inMessageRef>

 </operation>

 </interface>

 <error id="_exception" errorCode="code" structureRef="_ex ceptionItem"/>

 <itemDefinition id="_exceptionItem" structureRef="org.kie .api.runtime.process.WorkItem"/>

 <message id="_exceptionMessage" itemRef="_exceptionItem"/ >

 <interface id="_handlingServiceInterface"

 name="org.jbpm.examples.exceptions.service.ExceptionService">

 <operation id="_handlingServiceOperation" name="handleException">

 <inMessageRef>_exceptionMessage</inMessageRef>

 </operation>

 </interface>

Exception Management

670

 <process id="ProcessWithExceptionHandlingError" name="Service Process" isExecutable="true"

 processType="Private">

 <!-- properties -->

 <property id="serviceInputItem" itemSubjectRef="_string Item"/>

 <property id="exceptionInputItem" itemSubjectRef="_exce ptionItem"/>

 <!-- main process -->

 <startEvent id="_1" name="Start" />

 <serviceTask id="_2" name="Throw Exception" implementation="Other"

 operationRef="_serviceOperation">

 <!-- rest of the serviceTask element and process definition... -->

 <subProcess id="_X" name="Exception Handler" triggeredByEvent="true" >

 <startEvent id="_X-1" name="subStart">

 <dataOutput id="_X-1_Output" name="event"/>

 <dataOutputAssociation>

 <sourceRef>_X-1_Output</sourceRef>

 <targetRef>exceptionInputItem</targetRef>

 </dataOutputAssociation>

 <errorEventDefinition id="_X-1_ED_1" errorRef="_exc eption" />

 </startEvent>

 <!-- rest of the subprocess definition... -->

 </subProcess>

 </process>

This <itemDefinition> element defines a data structure that we then use in the serviceIn-

putItem property in the process.

This <message> element (1rst reference) defines a message that has a String as its content

(as defined by the <itemDefintion> element on line above). The <interface> element

below it refers to it (2nd reference) in order to define what type of content the service (defined

by the <interface>) expects.

This <error> element (1rst reference) defines an error for use later in the process: an Event

SubProcess is defined that is triggered by this error (2nd reference). The content of the error

is defined by the <itemDefintion> element defined below the <error> element.

This <itemDefintion> element (1rst reference) defines an item that contains a WorkItem

instance. The <message> element (2nd reference) then defines a message that uses this item

definition to define its content. The <interface> element below that refers to the <message>

definition (3rd reference) in order to define the type of content that the service expects.

In the process itself, a <property> element (4th reference) is defined as having the con-

tent defined by the initial <itemDefintion>. This is helpful because it means that the Event

SubProcess can then store the error it receives in that property (5th reference).

Exception Management

671

Caution

When you're using a <serviceTask> to call a Java class, make sure to double

check the class name in your BPMN2 definition! A small typo there can cost you

time later when you're trying to figure out what went wrong.

22.3.2.1.2. SignallingTaskHandlerDecorator and WorkItemHandler configuration

Now that BPMN2 process definition is (hopefully) a little clearer, we can look at how to set up

jBPM to take advantage of the above BPMN2.

In the (BPMN2) process definition above, we define two different <serviceTask> activities. The

org.jbpm.bpmn2.handler.ServiceTaskHandler class is the default task handler class used for

<serviceTask> tasks. If you don't specify a WorkItemHandler implementation for a <servic-

eTask>, the ServiceTaskHandler class will be used.

In the code below, you'll see that we actually wrap or decorate the ServiceTaskHandler class with

a SignallingTaskHandlerDecorator instance. We do this in order to define the what happens

when the ServiceTaskHandler throws an exception.

In this case, the ServiceTaskHandler will throw an exception because it's configured to call

the ExceptionService.throwException method, which throws an exception. (See the _han-

dlingServiceInterface <interface> element in the BPMN2.)

In the code below, we also configure which (error) event is sent to the process instance by the Sig-

nallingTaskHandlerDecorator instance. The SignallingTaskHandlerDecorator does this

when an exception is thrown in a task. In this case, since we've defined an <error> with the error

code “code” in the BPMN2, we set the signal to Error-code.

Important

When signalling the jBPM process engine with an event of some sort, you should

keep in mind the rules for signalling process events.

• Error events can be signalled by sending an "Error-" + <the errorCode attribute

value> value to the session.

• Signal events can be signalled by sending the name of the signal to the session.

import java.util.HashMap;

import java.util.Map;

import org.jbpm.bpmn2.handler.ServiceTaskHandler;

import org.jbpm.bpmn2.handler.SignallingTaskHandlerDecorator;

Exception Management

672

import org.jbpm.examples.exceptions.service.ExceptionService;

import org.kie.api.KieBase;

import org.kie.api.io.ResourceType;

import org.kie.api.runtime.KieSession;

import org.kie.api.runtime.process.ProcessInstance;

import org.kie.internal.builder.KnowledgeBuilder;

import org.kie.internal.builder.KnowledgeBuilderFactory;

import org.kie.internal.io.ResourceFactory;

public class ExceptionHandlingErrorExample {

 public static final void main(String[] args) {

 runExample();

 }

 public static ProcessInstance runExample() {

 KieSession ksession = createKieSession();

 String eventType = "Error-code";

 SignallingTaskHandlerDecorator signallingTaskWrappe r

 = new SignallingTaskHandlerDecorator(ServiceTaskHandler.class, eventType);

 signallingTaskWrapper.setWorkItemExceptionParameter Name(ExceptionService.exceptionParameterName);

 ksession.getWorkItemManager().registerWorkItemHandler("Service

 Task", signallingTaskWrapper);

 Map<String, Object> params = new HashMap<String, Object>();

 params.put("serviceInputItem", "Input to Original Service");

 ProcessInstance processInstance = ksession.startProcess("ProcessWithExceptionHandlingError", params);

 return processInstance;

 }

 private static KieSession createKieSession() {

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource("exceptions/

ExceptionHandlingWithError.bpmn2"), ResourceType.BPMN2);

 KieBase kbase = kbuilder.newKnowledgeBase();

 return kbase.newKieSession();

 }

Here we define the name of the event that will be sent to the process instance if the wrapped

WorkItemHandler implementation throws an exception. The eventType string is used when

instantiating the SignallingTaskHandlerDecorator class.

Then we construct an instance of the SignallingTaskHandlerDecorator class. In this case,

we simply give it the class name of the WorkItemHandler implementation class to instantiate,

but another constructor is available that we can pass an instance of a WorkItemHandler

implementation to (necessary if the WorkItemHandler implementation does not have a no-

argument constructor).

When an exception is thrown by the wrapped WorkItemHandler, the SignallingTaskHan-

dlerDecorator saves it as a parameter in the WorkItem instance with a parameter name

that we configure the SignallingTaskHandlerDecorator to give it (see the code below for

the ExceptionService).

Exception Management

673

22.3.2.1.3. ExceptionService setup and configuration

In the BPMN2 process definition above, a service interface is defined that references the Excep-

tionService class:

<inter

face id="_handlingServiceInterface" name="org.jbpm.examples.exceptions.service.ExceptionService">

 <operation id="_handlingServiceOperation" name="handleException">

In order to fill in the blanks a little bit, the code for the ExceptionService class has been included

below. In general, you can specify any Java class with the default or an other no-argument con-

structor and have it executed during a <serviceTask>

public class ExceptionService {

 public static String exceptionParameterName = "my.exception.parameter.name";

 public void handleException(WorkItem workItem) {

 System.out.println("Handling exception caused by work item '" + workItem.getName() + "' (id:

 " + workItem.getId() + ")");

 Map<String, Object> params = workItem.getParameters();

 Throwable throwable = (Throwable) params.get(exceptionParameterName);

 throwable.printStackTrace();

 }

 public String throwException(String message) {

 throw new RuntimeException("Service failed with input: " + message);

 }

 public static void setExceptionParameterName(String exceptionParam) {

 exceptionParameterName = exceptionParam;

 }

}

22.3.2.1.4. Changing the example to use a <signal>

In the example above, the thrown Error Event interrupts the process: no other flows or activities

are executed once the Error Event has been thrown.

However, when a Signal Event is processed, the process will continue after the Signal Event

SubProcess (or whatever other activities that the Signal Event triggers) has been executed. Fur-

thermore, this implies that the the process will not end up in an aborted state, unlike a process

that throws an Error Event.

In the process above, we use the <error> element in order to be able to use an Error Event:

Exception Management

674

 <error id="_exception" errorCode="code" structureRef="_exceptionItem"/>

When we want to use a Signal Event instead, we remove that line and use a <signal> element:

 <signal id="exception-signal" structureRef="_exceptionItem"/>

However, we must also change all references to the "_exception" <error> so that they now refer

to the "exception-signal" <signal>.

That means that the <errorEventDefintion> element in the <startEvent>,

 <errorEventDefinition id="_X-1_ED_1" errorRef="_exception" />

must be changed to a <signalEventDefintion> which would like like this:

 <signalEventDefinition id="_X-1_ED_1" signalRef="exception-signal"/>

In short, we have to make the following changes to the <startEvent> in the Event SubProcess:

1. It will now contain a <signalEventDefintion> instead of a <errorEventDefintion>

2. The errorRef attribute in the <erroEventDefintion> is now a signalRef attribute in the

<signalEventDefintion>.

3. The id attribute in the signalRef is of course now the id of the <signal> element. Before it

was id of <error> element.

4. Lastly, when we signal the process in the Java code, we do not signal "Error-code" but simply

"exception-signal", the id of the <signal> element.

22.3.2.2. Example: logging exceptions thrown by bad <scriptTask>

nodes

In this section, we'll briefly describe what's possible when dealing with <scriptTask> nodes that

throw exceptions, and then quickly go through an example (also available in the jbpm-examples

module) that illustrates this.

22.3.2.2.1. Introduction

If you're reading this, then you probably already have a problem: you're either expecting to run into

this problem because there are scripts in your process definition that might throw an exception,

or you're already running a process instance with scripts that are causing a problem.

Exception Management

675

Unfortunately, if you're running into this problem, then there is not much you can do. The only

thing that you can do is retrieve more information about exactly what's causing the problem. Luck-

ily, when a <scriptTask> node causes an exception, the exception is then wrapped in a Work-

flowRuntimeException.

What type of information is available? The WorkflowRuntimeException instance will contain the

information outlined in the following table. All of the fields listed are available via the normal get*

methods.

Table 22.2. Information contained in WorkflowRuntimeException instances.

Field name Type Description

processInstanceId long The id of the ProcessIn-

stance instance in which

the exception occurred. This

ProcessInstance may not ex-

ist anymore or be available in

the database if using persis-

tence!

processId String The id of the process defin-

ition that was used to start

the process (i.e. "Excep-

tionScriptTask" in

ksession.startProcess("ExceptionScriptTask");

)

nodeId long The value of the (BPMN2) id

attribute of the node that threw

the exception.

nodeName String The value of the (BPMN2)

name attribute of the node that

threw the exception.

variables Map<String, Object> The map containing the vari-

ables in the process instance

(experimental).

message String The short message indicating

what went wrong.

cause Throwable The original exception that

was thrown.

Exception Management

676

22.3.2.2.2. Example: Exceptions thrown by a <scriptTask>.

The following code illustrates how to extract extra information from a process instance that throws

a WorkflowRuntimeException exception instance.

import org.jbpm.workflow.instance.WorkflowRuntimeException;

import org.kie.api.KieBase;

import org.kie.api.io.ResourceType;

import org.kie.api.runtime.KieSession;

import org.kie.api.runtime.process.ProcessInstance;

import org.kie.internal.builder.KnowledgeBuilder;

import org.kie.internal.builder.KnowledgeBuilderFactory;

import org.kie.internal.io.ResourceFactory;

public class ScriptTaskExceptionExample {

 public static final void main(String[] args) {

 runExample();

 }

 public static void runExample() {

 KieSession ksession = createKieSession();

 Map<String, Object> params = new HashMap<String, Object>();

 String varName = "var1";

 params.put(varName , "valueOne");

 try {

 ProcessInstance processInstance = ksession.startProcess("ExceptionScriptTask", params);

 } catch(WorkflowRuntimeException wfre) {

 String msg = "An exception happened in "

 + "process instance [" + wfre.getProcessInstanceId()

 + "] of process [" + wfre.getProcessId()

 + "] in node [id: " + wfre.getNodeId()

 + ", name: " + wfre.getNodeName()

 + "] and variable " + varName + " had the value [" + wfre.getVariables().get(varName)

 + "]";

 System.out.println(msg);

 }

 }

 private static KieSession createKieSession() {

 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

 kbuilder.add(ResourceFactory.newClassPathResource("exceptions/

ScriptTaskException.bpmn2"), ResourceType.BPMN2);

 KieBase kbase = kbuilder.newKnowledgeBase();

 return kbase.newKieSession();

 }

}

Exception Management

677

22.4.1. Business Exceptions

Business Exceptions are exceptions that are designed and managed in the BPMN2 specification

of a business process. In other words, Business Exceptions are exceptions which happen at the

process or workflow level, and are not related to the technical components.

Many of the elements in BPMN2 related to Business Exceptions are related to Compensation and

Business Transactions. Compensation, in particular, is complexer than many other parts of the

BPMN2 specification.

Full support for compensation and business transactions is expected with the release of jBPM 6.1

or 6.2. Once that has been implemented, this section will contain more information about using

those BPMN2 features with jBPM.

22.4.1.1. Business Exceptions elements in BPMN2

The following attempts to briefly describe Compensation and Business Transaction related ele-

ments in BPMN2. For more complete information about these elements and their uses, see the

BPMN2 specification, Bruce Silver's book BPMN Method and Style or any of the other available

books about the use of BPMN2.

Table 22.3. BPMN2 Exception Handling Elements

BPMN2 Element types Description

Errors Error Events can be used to signal when a

process has encountered an unexpected situ-

ation: signalling an error is often called throw-

ing an error.

Boundary Error Events in a different part of

the process can then be used to catch the er-

ror and initiate a sequence of activities to han-

dle the exception.

Errors themselves can be extended with extra

information that is passed from the throwing

to catching event. This is done with the use of

an Item Definition.

Compensation Exception handling activities associated with

the normal activities in a Business Transac-

tion are triggered by Compensation Events.

There are 3 types of compensation events: In-

termediate (a.k.a. Boundary) (catch) events,

Start (catch) events, and Intermediate or End

(throw) events.

Exception Management

678

BPMN2 Element types Description

Compensation Boundary (catch) events may

only be attached to activities (e.g. tasks) that

could cause an exception. These Boundary

events are then associated (not linked!) with

a Task that will be executed if the Boundary

event catches a (thrown) Compensation sig-

nal.

Start (catch) events are used when defining

an Compensation Event SubProcess, which

requires them in order to be able to catch a

(thrown) Compensation signal.

Compensation Intermediate and End events

are used in order to throw Compensation

Events. These events often follow decision

nodes that determine whether the workflow

executed up to that point has succeeded. If

not, the path including the Intermediate or

End Event is chosen in order to trigger Com-

pensatoin for the activities that did not suc-

ceed.

BPMN2 contains a number of constructs to model exceptions in business processes. There are

several advantages to doing exception handling at the business process level (as opposed to

handling it with code):

• Transparency

• Being able to quickly see what happens in exceptional situations means that the results and

performance of a process is more easily monitored and measured.

• It also increases how easily a process can be implemented as well as how maintainable a

process definition is.

• Business Logic Isolation

• Again, the idea behind using a business process is to isolate the business logic from the

technical code. This simplifies the complexity of the system and increases how quickly you

can create new business processes and change existing ones.

• Implementing exception handling at a technical level often takes more time because it's often

complexer and specific to a system.

Exception Management

679

22.4.1.2. Designing a workflow with Business Exceptions

Where are business exceptions likely to occur? There is academic research on this, but some

possible examples are:

• When an interaction with an external party or 3rd party system does not go as planned

• When you can not fully check the the input data in your process (like a client's address infor-

mation, for example)

• In general, if there are parts of your process that are particularly dependent on one of the

following, a business exception will be a good idea:

• Company policy or policy governing certain (in-house) procedures

• Laws governing the business process (such as age requirements, for example)

680

Chapter 23. Flexible Processes
Case management and its relation to BPM is a hot topic nowadays. There definitely seems to be

a growing need amongst end users for more flexible and adaptive business processes, without

ending up with overly complex solutions. Everyone seems to agree that using a process-centric

approach only in many cases leads to complex solutions that are hard to maintain. The "knowledge

workers" no longer want to be locked into rigid processes but wants to have the power and flexibility

to regain more control over the process themselves.

The term case management is often used in that context. Without trying to give a precise definition

of what it might or might not mean, as this has been a hot topic for discussion, it refers to the

basic idea that many applications in the real world cannot really be described completely from

start to finish (including all possible paths, deviations, exceptions, etc.). Case management takes

a different approach: instead of trying to model what should happen from start to finish, let's give

the end user the flexibility to decide what should happen at runtime. In its most extreme form for

example, case management doesn't even require any process definition at all. Whenever a new

case comes in, the end user can decide what to do next based on all the case data.

A typical example can be found in healthcare (clinical decision support to be more precise), where

care plans can be used to describe how patients should be treated in specific circumstances,

but people like general practitioners still need to have the flexibility to add additional steps and

deviate from the proposed plan, as each case is unique. And there are similar examples in claim

management, help desk support, etc.

So, should we just throw away our BPM system then? No! Even at its most extreme form (where

we don't model any process up front), you still need a lot of the other features a BPM system

(usually) provides: there still is a clear need for audit logs, monitoring, coordinating various ser-

vices, human interaction (e.g. using task forms), analysis, etc. And, more importantly, many cas-

es are somewhere in between, or might even evolve from case management to more structured

business process over time (when we for example try to extract common approaches from many

cases). If we can offer flexibility as part of our processes, can't we let the users decide how and

where they would like to apply it?

Let me give you two examples that show how you can add more and more flexibility to your

processes. The first example shows a care plan that shows the tasks that should be performed

when a patient has high blood pressure. While a large part of the process is still well-structured,

the general practitioner can decide himself which tasks should be performed as part of the sub-

process. And he also has the ability to add new tasks during that period, tasks that were not

defined as part of the process, or repeat tasks multiple times, etc. The process uses an ad-hoc

sub-process to model this kind of flexibility, possibly augmented with rules or event processing to

help in deciding which fragments to execute.

Flexible Processes

681

Figure 23.1. Healthcare: high blood pressure

The second example actually goes a lot further than that. In this example, an internet provider

could define how cases about internet connectivity problems will be handled by the internet

provider. There are a number of actions the case worker can select from, but those are simply

small process fragments. The case worker is responsible for selecting what to do next and can

even add new tasks dynamically. As you can see, there is not process from start to finish anymore,

but the user is responsible for selecting which process fragments to execute.

Figure 23.2. Telecom: process fragments

Flexible Processes

682

And in its most extreme form, we even allow you to create case instances without a process

definition, where what needs to be performed is selected purely at runtime. This however doesn't

mean you can't figure out anymore what 's actually happening. For example, meetings can be

very ad hoc and dynamic, but we usually want a log of what was actually discussed. The following

screenshot shows how our regular audit view can still be used in this case, and the end user

could then for example get a lot more info about what actually happened by looking at the data

associated with each of those steps. And maybe, over time, we can even automate part of that

by using a semi-structured process.

Figure 23.3. Audit log for dynamic case

683

Chapter 24. Concurrency and

asynchronous execution

24.1. Concurrency

In the following text, we will refer to two types of "multi-threading": logical and technical. Technical

multi-threading is what happens when multiple threads or processes are started on a computer,

for example by a Java or C program. Logical multi-threading is what we see in a BPM process after

the process reaches a parallel gateway, for example. From a functional standpoint, the original

process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include

a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM

process that includes logical multi-threading will only be executed in one technical thread. The

main reason for doing this is that multiple (technical) threads need to be be able to communicate

state information with each other if they are working on the same process. This requirement brings

with it a number of complications. While it might seem that multi-threading would bring perfor-

mance benefits with it, the extra logic needed to make sure the different threads work together

well means that this is not guaranteed. There is also the extra overhead incurred because we

need to avoid race conditions and deadlocks.

24.1.1. Engine execution

In general, the jBPM engine executes actions in serial. For example, when the engine encounters

a script task in a process, it will synchronously execute that script and wait for it to complete before

continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially trig-

ger each of the outgoing branches, one after the other. This is possible since execution is almost

always instantaneous, meaning that it is extremely fast and produces almost no overhead. As a

result, the user will usually not even notice this. Similarly, action scripts in a process are also syn-

chronously executed, and the engine will wait for them to finish before continuing the process. For

example, doing a Thread.sleep(...) as part of a script will not make the engine continue execution

elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the

engine will also invoke the handler of this service synchronously. The engine will wait for the com-

pleteWorkItem(...) method to return before continuing execution. It is important that your service

handler executes your service asynchronously if its execution is not instantaneous.

An example of this would be a service task that invokes an external service. Since the delay in

invoking this service remotely and waiting for the results might be too long, it might be a good idea

to invoke this service asynchronously. This means that the handler will only invoke the service and

will notify the engine later when the results are available. In the mean time, the process engine

then continues execution of the process.

Concurrency and asyn-

chronous execution

684

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we

don't want the engine to wait until a human actor has responded to the request. The human task

handler will only create a new task (on the task list of the assigned actor) when the human task

node is triggered. The engine will then be able to continue execution on the rest of the process (if

necessary) and the handler will notify the engine asynchronously when the user has completed

the task.

24.1.2. Multiple knowledge sessions and persistence

The simplest way to run multiple processes is to run them all using one knowledge session. How-

ever, there are cases in which it's necessary to run multiple processes in different knowledge

sessions, even in different (technical) threads. Both are supported by jBPM.

When we add persistence (using a database, for example) to a situation in which we have multiple

knowledge sessions (and processes), there is a guideline that users should be aware of. The

following paragraphs explain why this guideline is important to follow.

Tip

Please make sure to use a database that allows row-level locks as well as ta-

ble-level locks.

For example, a user could have a situation in which there are 2 (or more) threads running, each

with its own knowledge session instance. On each thread, jBPM processes are being started using

the local knowledge session instance.

In this use case, a race condition exists in which both thread A and thread B will have coincidentally

simultaneously finished a process. At this point, because persistence is being used, both thread

A and B will be committing changes to the database. If row-level locks are not possible, then the

following situation can occur:

• Thread A has a lock on the ProcessInstanceInfo table, having just committed a change to that

table.

• Thread A wants a lock on the SessionInfo table in order to commit a change there.

• Thread B has the opposite situation: it has a lock on the SessionInfo table, having just committed

a change there.

• Thread B wants a lock on the ProcessInstanceInfo table, even though Thread A already has

a lock on it.

This is a deadlock situation which the database and application will not be able to solve. However,

if row-level locks are possible (and enabled!!) in the database (and tables used), then this situation

will not occur.

Concurrency and asyn-

chronous execution

685

24.2. Asynchronous execution

24.2.1. Asynchronous handlers

How can we implement an asynchronous service handler? To start with, this depends on the

technology you're using. If you're only using Java, you could execute the actual service in a new

thread:

public class MyServiceTaskHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

 new Thread(new Runnable() {

 public void run() {

 // Do the heavy lifting here ...

 }

 }).start();

 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

 }

}

It's advisable to have your handler contact a service that executes the business operation, in-

stead of having it perform the actual work. If anything goes wrong with a business operation, it

doesn't affect your process. The loose coupling that this provides also gives you greater flexibility

in reusing services and developing them.

For example, you can have your human task handler simply invoke the human task service to

add a task there. To implement an asynchronous handler, you usually have to simply do an asyn-

chronous invocation of this service. This usually depends on the technology you use to do the

communication, but this might be as simple as asynchronously invoking a web service, or sending

a JMS message to the external service.

24.2.2. jbpm executor

In version 6, jBPM introduces new component called jbpm executor which provides quite ad-

vanced features for asynchronous execution. It delivers generic environment for background exe-

cution of commands. Commands are nothing more than business logic encapsulated within simple

interface. It does not have any process runtime related information, that means no need to com-

plete work items, or anything of that sort. It purely focuses on the business logic to be executed.

It receives data via CommandContext and returns results of the execution with ExecutionResults.

Before looking into details on jBPM support for asynchronous execution let's look at what are the

common requirements for such execution:

• allows asynchronous execution of given piece of business logic

Concurrency and asyn-

chronous execution

686

• allows to retry in case of resources are temporarily unavailable e.g. external system interaction

• allows to handle errors in case all retries have been attempted

• provides cancellation option

• provides history log of execution

When confronting these requirements with the "simple async handler" (executed as separate

thread) you can directly notice that all of these would need to be implemented all over again by

different systems. Due to that a common, generic component has been provided out of the box

to simplify and empower usage.

jBPM executor operates on commands, which are essential piece of code that is going to be

executed as background job.

/**

 * Executor's Command are dedicated to contain purely business logic that should be executed.

 * It should not have any reference to underlying process engine and should not be concerned

 * with any process runtime related logic such us completing work item, sending signals, etc.

 *

 * Information that are taken from process will be delivered as part of data instance of

 * <code>CommandContext</code>. Depending on the execution context that data can vary but

 * in most of the cases following will be given:

 *

 *

 * businessKey - usually unique identifier of the caller

 * callbacks - FQCN of the <code>CommandCollback</

code> that shall be used on command completion

 *

 * When executed as part of the process (work item handler) additional data can be expected:

 *

 * workItem - the actual work item that is being executed with all its parameters

 * processInstanceId - id of the process instance that triggered this work

 * deploymentId - if given process instance is part of an active deployment

 *

 * Important note about implementations is that it shall always be possible to be initialized with default constructor

 * as executor service is an async component so it will initialize the command on demand using reflection.

 * In case there is a heavy logic on initialization it should be placed in another service implementation that

 * can be looked up from within command.

 */

public interface Command {

 /**

 * Executed this command's logic.

 * @param ctx - contextual data given by the executor service

 * @return returns any results in case of successful execution

 * @throws Exception in case execution failed and shall be retried if possible

 */

 public ExecutionResults execute(CommandContext ctx) throws Exception;

}

Looking at the interface above, there is no specific integration with the jBPM runtime engine, it's

decoupled from it to put main focus on the actual logic that shall be executed as part of that

Concurrency and asyn-

chronous execution

687

command rather to worry about integration with process engine. This design promotes reuse of

already existing logic by simply wrapping it with Command implementation.

Input data is transferred from process engine to command via CommandContext. It acts purely

as data transfer object and puts single requirement on the data it holds - all objects must be

serializable.

/**

 * Data holder for any contextual data that shall be given to the command upon execution.

 * Important note that every object that is added to the data container must be serializable

 * meaning it must implement <code>java.io.Seriazliable</code>

 *

 */

public class CommandContext implements Serializable {

 private static final long serialVersionUID = -1440017934399413860L;

 private Map<String, Object> data;

 public CommandContext() {

 data = new HashMap<String, Object>();

 }

 public CommandContext(Map<String, Object> data) {

 this.data = data;

 }

 public void setData(Map<String, Object> data) {

 this.data = data;

 }

 public Map<String, Object> getData() {

 return data;

 }

 public Object getData(String key) {

 return data.get(key);

 }

 public void setData(String key, Object value) {

 data.put(key, value);

 }

 public Set<String> keySet() {

 return data.keySet();

 }

 @Override

 public String toString() {

 return "CommandContext{" + "data=" + data + '}';

 }

}

Next outcome is provided to process engine via ExecutionResults, which is very similar in nature

to the CommandContext and acts as data transfer object.

Concurrency and asyn-

chronous execution

688

/**

 * Data holder for command's result data. Whatever command produces should be placed in

 * this results so they can be later on referenced by name by the requester - e.g. process instance.

 *

 */

public class ExecutionResults implements Serializable {

 private static final long serialVersionUID = -1738336024526084091L;

 private Map<String, Object> data = new HashMap<String, Object>();

 public ExecutionResults() {

 }

 public void setData(Map<String, Object> data) {

 this.data = data;

 }

 public Map<String, Object> getData() {

 return data;

 }

 public Object getData(String key) {

 return data.get(key);

 }

 public void setData(String key, Object value) {

 data.put(key, value);

 }

 public Set<String> keySet() {

 return data.keySet();

 }

 @Override

 public String toString() {

 return "ExecutionResults{" + "data=" + data + '}';

 }

}

Executor covers all requirements listed above and provides user interface as part of jbpm console

and kie workbench (kie-wb) applications.

Figure 24.1.

Concurrency and asyn-

chronous execution

689

Above screenshot illustrates history view of executor's job queue. As can be seen on it there are

several options available:

• view details of the job

• cancel given job

• create new job

24.2.2.1. WorkItemHandler backed with jbpm executor

jBPM (again in version 6) provides an out of the box async work item handler that is backed by the

jbpm executor. So by default all features that executor delivers will be available for background

execution within process instance. AsyncWorkItemHandler can be configured in two ways:

• as generic handler that expects to get the command name as part of work item parameters

• as specific handler for given type of work item - for example web service

Option 1 is by default configured for jbpm console and kie-wb web applications and is registered

under async name in every ksession that is bootstrapped within the applications. So whenever

there is a need to execute some logic asynchronously following needs to be done at modeling

time (using jbpm web designer):

• specify async as TaskName property

• create data input called CommandClass

• assign fully qualified class name for the CommandClass data input

Next follow regular way to complete process modeling. Note that all data inputs will be transferred

to executor so they must be serializable.

Second option allows to register different instances of AsyncWorkItemHandler for different work

items. Since it's registered for dedicated work item most likely the command will be dedicated

to that work item as well. If so CommandClass can be specified on registration time instead of

requiring it to be set as work item parameters. To register such handlers for jbpm console or kie-

wb additional class is required to inform what shall be registered. A CDI bean that implements

WorkItemHandlerProducer interface needs to be provided and placed on the application classpath

so CDI container will be able to find it. Then at modeling time TaskName property needs to be

aligned with those used at registration time.

24.2.2.2. Configuration

jbpm executor is configurable to allow fine tuning of its environment. In general jbpm executor

runs as a thread pool that periodically checks for waiting jobs and executes them when needed.

Configuration of jbpm executor is done via system properties:

• org.kie.executor.disabled = true|false - allows to completely disable executor component

Concurrency and asyn-

chronous execution

690

• org.kie.executor.pool.size = Integer - allows to specify thread pool size where default it 1

• org.kie.executor.retry.count = Integer - allows to specify number of retries in case of errors while

running a job

• org.kie.executor.interval = Integer - allows to specify interval (in seconds) that executor will use

while checking for waiting jobs where default is 3 seconds

• org.kie.executor.timeunit = String - allows to specify timer unit used for calculating interval, value

must be a valid constant of java.util.concurrent.TimeUnit, by default it's SECONDS.

24.2.2.3. Reoccurring jobs

jbpm executor introduced (in verion 6.2) extension to jobs (aka commands) that allow single job

to be executed multiple times. That feature is brought to the executor via additional interface that

command should implement.

/**

 * Marks given executor command it is reoccurring and shall be rescheduled after completion

 of single instance.

 *

 */

public interface Reoccurring {

 /**

 * Returns next time to be scheduled. Date must be in future as jobs cannot be scheduled in past.

 * Returns null in case it should not be scheduled any more.

 * @return

 */

 Date getScheduleTime();

}

Reoccurring interface is very simple and enforces implementation to provide the next schedule

time that the command should be executed at. It must already be valid date that is not in the

past. In case no more invocation of given command should happen return value of this method

should be null.

An excellent example of such command is org.jbpm.executor.commands.LogCleanupCommand

that provides easy and convineint way to schedule periodic clean up of jBPM log tables on defined

time intervals. See this article [http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environ-

ment-healthy.html] to see it in action and how to configure and run it.

24.2.2.4. Run jobs on same server node on which it was scheduled

By default jbpm executor is cluster ready and by that will distribute jobs across all cluster members.

That might result in execution of given job on different cluster member than it was scheduled which

is not always desired. To override this mechanism job can set 'Owner' as part of their data when

being registered wher owner is the executor instance that is scheduling the job.

http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html
http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html
http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html

Concurrency and asyn-

chronous execution

691

 CommandContext ctx = new CommandContext();

 ctx.setData("some data", "data...");

 ctx.setData("Retries", 0);

 ctx.setData("Owner", ExecutorService.EXECUTOR_ID);

That will ensure that only the isntance that scheduled the job will be the one which will execute

it. Note that it might impact the time when the job is executed especially in cases where given

cluster member will be unavailable.

692

Chapter 25. Release Notes

25.1. jBPM 6.5

25.1.1. New and Noteworthy in jBPM 6.5.0

The following features were added to jBPM 6.5

25.1.1.1. Process instance migration

jbpm services module has been extended with admin capability to allow basic process instance

migration. Service primary targets migration of process instance:

• between deployments (kjars)

• between process definitions

Optionally it allows to perform node mapping of active node instances within process instance.

25.1.1.2. Kie Server client - fire and forget and async response han-

dling (JMS)

Kie Server client has been enhanced to support various response handlers for JMS based inte-

gration. By default it stays as in previous version (request reply interaction pattern) but allows to

select another one that might fit better for some uses cases:

• fire and forget - essentially means there won’t be any response

• asynchronous with callback - response to the message will be delivered asynchronously to

given callback

25.1.1.3. Task variables support in TaskLifeCycleEventListener

6.5 comes with enhancement for accessing task variables (both input and output) from within task

event listener. Once there is a need to get hold of task variables in the listener it’s enough to call:

@Overridepublic void beforeTaskStartedEvent(TaskEvent event) { Task task =

 event.getTask(); event.getTaskContext().loadTaskVariables(task); Map<String, Object>

 inputVariables = task.getTaskInputVariables(); Map<String, Object> outputVariables =

 task.getTaskOutputVariables();}

ridepublic void beforeTaskStartedEvent(TaskEvent event)

{ Task task =

Release Notes

693

event.getTask();

event.getTaskContext().loadTaskVariables(task); Map<String, Object> inputVariables =

task.getTaskInputVariables(); Map<String, Object> outputVariables =

task.getTaskOutputVariables();

25.1.2. New and Noteworthy in KIE Workbench 6.5.0

25.1.2.1. Guided Rule Editor : Support formulae in composite field

constraints

Composite field constraints now support use of formulae.

When adding constraints to a Pattern the "Multiple Field Constraint" selection ("All of (and)" and

"Any of (or)") supports use of formulae in addition to expressions.

Figure 25.1. Composite field constraint - Select formula

Release Notes

694

Figure 25.2. Composite field constraint - Formula editor

25.2. jBPM 6.4

25.2.1. New and Noteworthy in jBPM 6.4.0

The following features were added to jBPM 6.4

25.2.1.1. New jBPM Process & Task Dashboard

The jBPM Process Dashboard has been entirely rewritten in this version and now is based on a

native workbench perspective instead of a separated web application. The main goal is to deliver

a better user experience, thanks to a much more appealing as well as polished user interface.

Release Notes

695

Figure 25.3.

This dashboard version also provides the ability to navigate from the graphical indicators to any

of the related process or task instances. Now, end users can easily find out the instances that are

related to a given indicator and deep into their details as well.

Figure 25.4.

Release Notes

696

The resulting dashboard is more fluent, more interactive and with a better integration with the

jBPM runtime.

25.2.1.2. Task variables auditing

By default process variables are stored in audit tables (VariableInstanceLog) that allows simpli-

fied access to variable values without need to load individual process instances. Moreover that

provides option to search by process variables and process variable values e.g. to find process

instances that have given value for given variable.

This was missing for task variables as task variables were not stored in any audit tables. This has

been improved in version 6.4.0 and now task variables are stored in audit table (TaskVariableImpl)

by default. It does follow the same mechanism as for process variables - variable.toString() is the

value stored in table. With this services and query APIs have been enhanced to take advantage

of this support and to search for tasks by their variables.

25.2.1.3. Process and task variables indexation

By default process and task variables are indexed with simplest possible mechanism - that is

variable.toString() while for some object this can be sufficient, like simple types, for others it can

cause significant problems when performing queries. To solve the problem process and task vari-

ables are equipped with pluggable indexation. This is realized by two interfaces that shall be im-

plemented to provide custom indexation behavior.

• org.kie.internal.process.ProcessVariableIndexer

• org.kie.internal.task.api.TaskVariableIndexer

details about how to use the indexers can be found in Audit log section of the documentation

25.2.1.4. QueryService

QueryService that is an addition to jbpm services, brings in power of Dashbuilder DataSets (SQL

based) to jbpm services. This allows more tailored queries that can include both jBPM tables and

external tables such as external system data. With this users are in control of what data and how

data are going to be queried.

Dashbuilder DataSet introduce concept of building "data base views" for part of the data that can

later on be filtered to find relevant data for given invocation.

QueryService is available for all add-ons for services meanign pure java, CDI and EJB.

25.2.1.5. Pluggable Task deadlines notification listeners

One of task deadlines actions is notification which by default is implemented as email notification.

Although this type of notification does not always fit the requirement. To allow custom notification

Release Notes

697

to be used, jBPM 6.4 was enhanced to support pluggable notification listeners. Notification is

realized as broadcast, meaning all available listeners will be invoked, although each listener can

decide if it shall react to given notification or not. For instance email notification listener will only

send email if it's properly configured (with mail server etc) otherwise it will ignore the notification.

25.2.1.6. Ability to show bussiness data at task list.

The user can now create a specific filter that provides domain specific columns to be added to

a task list. When the user creates a custom filter for a specific task name the task variables are

enabled as columns.

The custom filter that activates the capability to display task variables as columns is set a filter

with the restriction Name="taskName".

Figure 25.5. Filter by task name creation

When the filter with the restriction over a specific task name is applied, the task associated vari-

ables appear as a selectable columns, to the task list.

Release Notes

698

Figure 25.6. task list with task name restriction applied

25.2.1.8. Process Documentation.

Users are able to view and share process documentation during business process modelling.

Process documentation is dynamically updated as users are working on their business process.

Users can print the documentation or view it as a png file.

Process Documentation includes the following sections:

• Process Overview (general info, process variables, globals, and imports)

• Process Element Details (totals, and specific element information)

• Process Image

Release Notes

699

Figure 25.7. Process Documentation - Element Details

25.2.2. New and Noteworthy in KIE Workbench 6.4.0

25.2.2.1. New look and feel

The general look and feel in the entire workbench has been updated to adopt PatternFly [https://

www.patternfly.org/]. The update brings a cleaner, lightweight and more consistent user experi-

ence throughout every screen. Allowing users focus on the data and the tasks by removing all un-

cessary visual elements. Interactions and behaviors remain mostly unchanged, limiting the scope

of this change to visual updates.

https://www.patternfly.org/
https://www.patternfly.org/
https://www.patternfly.org/

Release Notes

700

Figure 25.8. Workbench - New look and feel

25.2.2.2. Various UI improvements

In addition to the PatternFly update described above which targeted the general look and feel,

many individual components in the workbench have been improved to create a better user expe-

rience. This involved making sure the default size of modal popup windows is appropriate to fit the

corresponding content, adjusting the size of text fields as well as aligning labels, and improving

the resize behaviour of various components when used on smaller screens.

Release Notes

701

Figure 25.9. Workbench - Properly sized popup window

Release Notes

702

Figure 25.10. Workbench - Properly sized text fields and aligned labels

Figure 25.11. Workbench - Resized editor window with limited horizontal

space

25.2.2.3. New locales

Locales ru (Russian) and zh_TW (Chineses Traditional) have now been added.

Release Notes

703

The locales now supported are:

• Default English.

• es (Spanish)

• fr (French)

• de (German)

• ja (Japanese)

• pt_BR (Portuguese - Brazil)

• zh_CN (Chinese - Simplified)

• zh_TW (Chinese - Traditional)

• ru (Russian)

25.2.2.4. Authoring - Imports - Consistent terminology

The Workbench used to have a section in the Project Editor for "Import Suggestions" which was

really a way for Users to register classes provided by the Java Runtime environment to be available

to Rule authoring. Furthermore Editors had a "Config" tab which was where Users were expected

to import classes from other packages to that in which the rule resides.

Neither term was clear and both were inconsistent with each other and other aspects of the Work-

bench.

We have changed these terms to (hopefully) be clearer in their meaning and to be consistent with

the "Data Object" term used in relation to authoring Java classes within the Workbench.

Release Notes

704

Figure 25.12. Project Editor - External Data Objects

Figure 25.13. Project Editor - Defining External Data Objects

Release Notes

705

Figure 25.14. Asset Editors - Data Objects

The Data Object screen lists all Data Objects in the same package as the asset and allows other

Data Objects from other packages to be imported.

Figure 25.15. Asset Editors - Defining Data Objects available for authoring

25.2.2.5. Disable automatic build

When navigating Projects with the Project Explorer the workbench automatically builds the select-

ed project, displaying build messages in the Message Console. Whilst this is beneficial it can have

a detremental impact on performance of the workbench when authoring large projects. The auto-

Release Notes

706

matic build can now be disabled with the org.kie.build.disable-project-explorer System

Property. Set the value to true to disable. The default value is false.

25.2.2.6. Support for SCP style git Repository URLs

When cloning git Repositories it is now possible to use SCP style URLS, for example

git@github.com:user/repository.git. If your Operating System's public keystore is password

protected the passphrase can be provided with the org.uberfire.nio.git.ssh.passphrase

System Property.

25.2.2.7. Authoring - Duplicate GAV detection

When performing any of the following operations a check is now made against all Maven Reposi-

tories, resolved for the Project, for whether the Project's GroupId, ArtifactId and Version pre-exist.

If a clash is found the operation is prevented; although this can be overridden by Users with the

admin role.

Note

The feature can be disabled by setting the System Property

org.guvnor.project.gav.check.disabled to true.

Resolved repositories are those discovered in:-

• The Project's POM <repositories> section (or any parent POM).

• The Project's POM <distributionManagement> section.

• Maven's global settings.xml configuration file.

Affected operations:-

• Creation of new Managed Repositories.

• Saving a Project defintion with the Project Editor.

• Adding new Modules to a Managed Multi-Module Repository.

• Saving the pom.xml file.

• Build & installing a Project with the Project Editor.

• Build & deploying a Project with the Project Editor.

• Asset Management operations building, installing or deploying Projects.

Release Notes

707

• REST operations creating, installing or deploying Projects.

Users with the Admin role can override the list of Repositories checked using the "Repositories"

settings in the Project Editor.

Figure 25.16. Project Editor - Viewing resolved Repositories

Release Notes

708

Figure 25.17. Project Editor - The list of resolved Repositories

Figure 25.18. Duplicate GAV detected

25.2.2.8. New Execution Server Management User Interface

The KIE Execution Server Management UI has been completely redesigned to adjust to major

improvements introduced recently. Besides the fact that new UI has been built from scratch and

following best practices provided by PatternFly, the new interface expands previous features giv-

ing users more control of their servers.

Release Notes

709

Figure 25.19. KIE Execution Server - New user interface

25.2.2.9. User and group management

Provides the backend services and an intuitive and friendly user interface that allows the work-

bench administrators to manage the application's users and groups.

This interface provides to the workbench administrators the ability to perform realm related oper-

ations such as create users, create groups, assign groups or roles to a given user, etc.

It comes by default with built-in implementations for the administration of Wildfly, EAP and Tomcat

default realms, and it's designed to be extensible - any third party realm management system can

be easily integrated into the workbench.

Release Notes

710

25.3. jBPM 6.3

25.3.1. New and Noteworthy in jBPM 6.3.0

The following features were added to jBPM 6.3.

25.3.1.1. Process engine extensions

• JavaScript as script language

You can now use JavaScript as dialect in scripts (script task and on-entry and on-exit scripts)

and for constraints (for example on gateways). Same as with the Java and MVEL dialect, you

have direct access to variables, globals and to the kcontext variable (giving you access to the

ProcessContext).

For example, you can write something like:

kcontext.setVariable('surname', "tester");

var text = 'Hello ';

print(text + kcontext.getVariable('name') + '\n');

try {

 somethingInvalid;

} catch(err) {

 print(err + '\n');

}

• Async continuation

Async continuation simplifies usage of asynchronous processing of process activities. Simply

marking process activity as async will instruct the engine to complete current processing (in-

cluding committing transaction) before entering that activity. This in turn will allow more control

over what is executed in sequence and improve overall managebility of process execution. Here

[http://mswiderski.blogspot.com/2015/04/asynchronous-continuation-in-jbpm-63.html] you can

read an article describing this in details.

• Signal scopes

Version 6.3 comes with improved support for signaling process instances. Based on concepts

of singals defined in BPMN2 jBPM provides additional characteristic to them - the scope. Scope

defines how to propagate the signal:

• process instance scope - signals only elements within the same process instance, other

process isntances won't be affected

• default (ksession) scope - signals all elements that are waiting for given signal and are known

to running ksession

http://mswiderski.blogspot.com/2015/04/asynchronous-continuation-in-jbpm-63.html
http://mswiderski.blogspot.com/2015/04/asynchronous-continuation-in-jbpm-63.html

Release Notes

711

• project scope - signals all components within given project (that means managed by the same

instance of runtime manager)

• external scope - pluggable scope that allow to customize signal propagation - jBPM 6.3 comes

with JMS based implementation which is enabled in workbench (receiving part)

More about the improved signaling can be found in this article [http://

mswiderski.blogspot.com/2015/09/improved-signaling-in-jbpm-63.html].

• Improved search capabilities when using jbpm services (RuntimeDataService) that allows

• search by correlation key

• search by process variable name

• search by process variable name and value

• Throw async signals

If there are several process instances from different process definitions, all of them waiting the

same signal and only one of these process instances throws a RuntimeException all others not

related will not move forward as well, because they are executed sequentially in the same trans-

action. That creates heavy dependency between unrelated process instances. Asynchronous

throw event solves the problem by individually signaling each process instance in background.

25.3.1.2. Case management API

The core process engine has always contained the flexibility to model adaptive and flexible

processes. These kinds of features are typically also required in the context of case management.

To simplify picking up some of these more advanced features, we created a (wrapper) API that

exposes some of these features in a simple API. Note that this API simply relies on other existing

features / API and can easily be extended. The API and implementation is added as part of a new

jbpm-case-mgmt module.

• Process instance description

Each case can have a unique name, specific to that case.

• Case roles

A case can keep track of who is participating by using case roles. These roles can be defined

as part of the case definition (by giving them a name and (optionally) a cardinality). Case roles

could also be defined dynamically (at runtime). For active case instances, specific users can

be assigned to roles.

• Ad-hoc cases

One can start a new case without even having a case definition. Whatever happens inside this

case is completely determined at runtime.

http://mswiderski.blogspot.com/2015/09/improved-signaling-in-jbpm-63.html
http://mswiderski.blogspot.com/2015/09/improved-signaling-in-jbpm-63.html
http://mswiderski.blogspot.com/2015/09/improved-signaling-in-jbpm-63.html

Release Notes

712

• Case file

A case can contain any kind of data, from simple key-value pairs to custom data objects or

documents.

• Ad-hoc tasks

Using the ad-hoc constructs available in BPMN2, one can model optional process fragments,

where only at runtime it is decided which of these fragments should be executed (and how

many times). This could be driven by end users (selecting optional fragments for execution) or

automatically (for example by rules that trigger certain fragments under certain conditions, or

whenever triggered by external services).

• Dynamic tasks

It is possible to add new tasks dynamically, even if they weren't defined upfront (in the case

definition). This includes human tasks, service tasks and other processes.

• Milestones

You can define milestones as part of the case definition (or even dynamically) and keep track

of which milestones were reach for specific case instances.

25.3.1.3. Remote API

The remote REST API for accessing the workbench received the following extensions:

• Process instance image

Through the remote REST API you can now retrieve an image that represents the status of a

particular process instance, annotated on the process diagram. This will generate the same im-

age as you could already see in the workbench by looking at the process instance diagram, i.e.

active nodes will be marked with a red border and completed nodes have a gray background.

This is generated based on the SVG of the process diagram, which can automatically be gen-

erated by designer whenever saving a process.

Note
A new SVGImageProcessor has been used to add the necessary annotations

based on the audit log data. Note that this processor (in the jbpm-process-svg

module) could be extended to support more advanced visualizations.

This feature is unfortunately not active by default! In order to activate this feature, it is necessary

to follow the following steps:

1. Open the org.kie.workbench.KIEWebapp/profiles/jbpm.xml file in the kie-wb war.

2. Towards the top of this jbpm.xml file, you'll see the following xml element:

Release Notes

713

<storesvgonsave enabled="false"/>

Change the false value here to true.

3. (Re)Deploy the war

Furthermore, only process definitions that have been opened in the designer after this modifi-

cation will be available via the REST operations described below. However, providing process

images by default via REST (without having to turn on an option or open the process definition

in designer) is on the roadmap.

2 new REST operation URLs have been made available to provide the image:

• The following URL provides an image of the process definition:

{server}/jbpm-console/rest/runtime/{deploymentId}/process/{processDefId}/image

The deploymentId URL parameter corresponds to the deployment id, while the processDe-

fId parameter corresponds to the process (definition) id.

• The following URL provides an image of the process definition, with the active nodes marked

to correspond to the process instance URL parameter passed:

{server}/jbpm-console/rest/runtime/{deploymentId}/process/

{processDefId}/image/{procInstId}

The deploymentId URL parameter corresponds to the deployment id, the processDefId

parameter corresponds to the process (definition) id, and the procInstId URL parameter

corresponds to the process instance id.

25.3.1.4. OSGi

The remote clients - kie-remote-client for accessing the workbench embedded in the workbench

and kie-server-client for the separate (unified) execution server - are now also available as an

OSGi feature.

25.3.1.5. jBPM Designer Data I/O Editor

jBPM Designer includes a new dialog for editing data inputs and outputs on activities in Business

Processes. The dialog combines the functions of the dialogs in previous versions of jBPM Designer

for editing data inputs and outputs, and for defining assignments between data inputs/outputs and

process variables. The dialog allows the user to:

• create and edit data inputs and data outputs on activities

Release Notes

714

• define assignments from process variables or constants to data inputs, and from data outputs

to process variables

The dialog is accessed by editing the Assignments property for activities which have this property,

such as User Tasks, or by editing the DataInputAssociations or DataOutputAssociations property

for activities which have one of these properties. The dialog is also available by clicking on a new

button associated with those activities for which it is relevant:

Figure 25.20.

25.3.1.6. jBPM executor

jBPM executor has been significantly enhanced in version 6.3 where the biggest improvement

was to provide support for JMS based notification mechanism to improve performance for imme-

diate job execution. Instead of always relying on poll based mechanism, in case of immediate job

request the executor is notified via JMS. Though it still provides same set of capabilities:

• retry mechanism

• error handling

• search capabilities to look through job requests

Retry mechanism was static in prior versions, which means that the retry happened directly with

next execution cycle. That made it rather low in terms of usage as in case there was a tempo-

rary problem e.g. network issue, system not available. It has been improved as well and allows

configurable retry delay to be specified on each job individually. This delay can be given as time

expressions that will be calculated from current time stamp. Retry delay can be given as:

• single time expression - 5m or 2h

• comma separated list of time expressions that should be used for subsequent retries -

10s,10m,1h,1d

In case number of retry delays is smaller than number of retries it will use last available value from

the list of retry delays. Which for single value means it will always be the same value.

More information about executor enhancements can be found in these two articles:

Shift gears with jBPM executor [http://mswiderski.blogspot.com/2015/08/shift-gears-with-jbpm-

executor.html]and Asynchronous processing [http://mswiderski.blogspot.com/2015/08/asynchro-

nous-processing-with-jbpm-63.html]

http://mswiderski.blogspot.com/2015/08/shift-gears-with-jbpm-executor.html
http://mswiderski.blogspot.com/2015/08/shift-gears-with-jbpm-executor.html
http://mswiderski.blogspot.com/2015/08/shift-gears-with-jbpm-executor.html
http://mswiderski.blogspot.com/2015/08/asynchronous-processing-with-jbpm-63.html
http://mswiderski.blogspot.com/2015/08/asynchronous-processing-with-jbpm-63.html
http://mswiderski.blogspot.com/2015/08/asynchronous-processing-with-jbpm-63.html

Release Notes

715

25.3.1.7. Unified KIE Execution Server

jBPM 6.3 brings in fully featured Unified KIE Execution Server that is based on successful KIE

Execution Server that was released with 6.2 and covered rules use case. In 6.3 this execution

server has ben enhanced and now support for rules and process (including user tasks and asyn-

chronous jobs). It provides lightweight mechanism for executing your business assets. Number

of environments can be built with with it:

• single execution server (similar to workbench)

• execution server per kjar

• execution server per domain knowledge (set of kjars)

• and more...

It is prepared to run on almost any container where tested configuration include following:

• JBoss EAP 6.4

• Wildfly 8.1 and 8.2

• Tomcat 7 and 8

• WebSphere 8.5.5.x

• Weblogic 12c

To get started with KIE Execution Server look at this blog series [http://

mswiderski.blogspot.com/2015/09/unified-kie-execution-server-part-1.html] that provides KIE Ex-

ecution Server introduction.

25.3.1.8. Process and Task Lists UI Improvements

The process and task lists screens are now backed up by the Dashbuilder's DataSet APIs and

data providers. This enable these runtime screens to retrieve the data in a much more efficient

way and enable the users to apply more advanced filters.

The initial version for creating filters is provided with jBPM 6.3.0.Final and it will be extended and

polished in future versions.

http://mswiderski.blogspot.com/2015/09/unified-kie-execution-server-part-1.html
http://mswiderski.blogspot.com/2015/09/unified-kie-execution-server-part-1.html
http://mswiderski.blogspot.com/2015/09/unified-kie-execution-server-part-1.html

Release Notes

716

Figure 25.21.

A new button to restore the default filters if needed is provided.

New filters can be created using the + button. This enable users to have custom filters. There is

one filter per tab.

Figure 25.22.

Users can create as many custom filters as they want. These filters will be stored in the user

preferences.

Release Notes

717

Figure 25.23.

The process instance list now provides domain specific columns to be added in custom filters.

When the user creates a custom filter for a specific process definition the process variables are

enabled as columns, to the process instance list. This feature wil be added to the task list as well

in future versions.

Note
Only Process Variables with values will be listed in the column picker inside the

custom filter tab.

Release Notes

718

Figure 25.24.

25.3.1.9. Kie Navigator View for Eclipse

A new viewer has been added to the Eclipse Tooling. This Kie Navigator View is used to manage

Kie Server installations and projects.

Please read the chapter Kie Navigator View for more information about this new feature

25.3.2. New and Noteworthy in KIE Workbench 6.3.0

25.3.2.1. Real Time Validation and Verification for the Decision Ta-

bles

Decision tables used to have a Validation-button for validating the table. This is now removed and

the table is validated after each cell value change. The validation and verification checks include:

• Redundancy

• Subsumption

• Conflicts

• Missing Columns

These checks are explained in detail in the workbench documentation.

Release Notes

719

25.3.2.2. Improved DRL Editor

The DRL Editor has undergone a face lift; moving from a plain TextArea to using ACE Editor and

a custom DRL syntax highlighter.

Figure 25.25. ACE Editor

25.3.2.3. Asset locking

To avoid conflicts when editing assets, a new locking mechanism has been introduced that makes

sure that only one user at a time can edit an asset. When a user begins to edit an asset, a lock

will automatically be acquired. This is indicated by a lock symbol appearing on the asset title bar

as well as in the project explorer view. If a user starts editing an already locked asset a pop-up

notification will appear to inform the user that the asset can't currently be edited, as it is being

worked on by another user. As long as the editing user holds the lock, changes by other users

will be prevented. Locks will automatically be released when the editing user saves or closes the

asset, or logs out of the workbench. Every user further has the option to force a lock release in

the metadata tab, if required.

Release Notes

720

Figure 25.26. Editing an asset automatically acquires a lock

Figure 25.27. Locked assets cannot be edited by other users

25.3.2.4. Data Modeller Tool Windows

Drools and jBPM configurations, Persistence (see Generation of JPA enabled Data Models) and

Advanced configurations were moved into "Tool Windows". "Tool Windows" are a new concept

introduced in latest Uberfire version that enables the development of context aware screens. Each

Release Notes

721

"Tool Window" will contain a domain editor that will manage a set of related Data Object parame-

ters.

Figure 25.28. Drools and jBPM domain tool window

Figure 25.29. Persistence tool window

Release Notes

722

Figure 25.30. Advanced configurations tool window

25.3.2.5. Generation of JPA enabled Data Models

Data modeller was extended to support the generation of persistable Data Objects. The per-

sistable Data Objects are based on the JPA specification and all the underlying metadata are

automatically generated.

• "The New -> Data Object" Data Objects can be marked as persistable at creation time.

Release Notes

723

Figure 25.31. New Data Object

• The Persistence tool window contains the JPA Domain editors for both Data Object and Field.

Each editor will manage the by default generated JPA metadata

Figure 25.32. Data Object level JPA domain editor

Release Notes

724

Figure 25.33. Field level JPA domain editor

• Persistence configuration screen was added to the project editor.

Figure 25.34. Persistence configuration

Release Notes

725

25.3.2.6. Data Set Authoring

A new perspective for authoring data set definitions has been added. Data set definitions make

it possible to retrieve data from external systems like databases, CSV/Excel files or even use a

Java class to generate the data. Once the data is available it can be used, for instance, to create

charts and dashboards from the Perspective Editor just feeding the charts from any of the data

sets available.

Figure 25.35. Data Sets Authoring Perspective

25.4. jBPM 6.2

25.4.1. New and Noteworthy in jBPM 6.2.0

The following features were added to the jBPM core on top of 6.1.

25.4.1.1. jBPM services

jBPM services modules have been significantly refactored to provide clear separation between

the logic they bring and various frameworks that can be used to consume those services. With

version 6.2 following modules are available:

• jbpm-services-api - clear services api that shall be used by any client code that consumes

services

Release Notes

726

• jbpm-kie-services - core implementation of the services that do not have any framework specific

code (e.g. CDI)

• jbpm-services-cdi - CDI specific code on top of jbpm-kie-services

• jbpm-services-ejb-api - ejb related extensions to services api - mainly to provide remote capa-

blities for the interfaces

• jbpm-services-ejb-impl - ejb specific code on top of jbpm-kie-services

• jbpm-services-ejb-client - ejb client implementation to interact with services over remote ejb

invocation - currently JBoss specific implementation available

• jbpm-service-ejb-timer - ejb timer service backed by JEE timer service provided by container

jBPM services are intended to be base of execution server (regardless of what framework is

used to build it up completely) so should be considered as first choice when enbedding jbpm

in custom applications. With 6.2 capabilities it already provides support for most common frame-

works used - CDI, EJB, Spring (should simply rely on core implementation). See this article [http://

mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html] for details and ex-

ample.

25.4.1.2. Process engine extensions

1. Lazy initialization of runtime engine components by RuntimeManager to make runtime engine

creation lightweight

RuntimeEngine has been enhanced to lazy initialize its components (KieSession, TaskService,

AuditService) to improve overall performance of retriveing RuntimeEngine instances from Run-

timeManager.

2. Life cycle management for work item handlers and event listeners

Handler and listeners can implement additional interface to be managed by runtime engine,

see work item handler life cycle management for more details.

3. Deployments are now by default stored in data base (as deployment descriptors) to servive

server restarts

Prior to verion 6.2 deployments that were handled by DeploymentService implementation were

not persisted so they required to be handled separately - in case of kie-workbench they were

stored inside system.git repo. With version 6.2 deployment service will persist that information

directly into db which will make it easier in many cases including clustering as it will not require

VFS clustering (Zookeeper and Helix) setup.

4. Extension to deployment descriptor to specify classes (by FQCN) that should be added to JAXB

context for remote interfaces interaction

http://mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html
http://mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html
http://mswiderski.blogspot.com/2014/11/cross-framework-services-in-jbpm-62.html

Release Notes

727

Deployment descriptor accept new set of elements

<remoteable-classes> ... <remotable-class>org.jbpm.test.CustomClass</remotable-class>

 ...</remoteable-classes>

able-classes>

 ... <remotable-

class>org.jbpm.test.CustomClass</remotable-class>

 ...

5. Classpath scanning for classes to be included in JAXB context for remote interfaces interaction

Classes annotated with javax.xml.bind.annotation.XmlRootElement and

org.kie.api.remote.Remotable will be automatically added to JAXB context of given deployment

as soon as they are defined as project dependency. At the same time all classes included in

project itself are also added to deployment's JAXB context.

6. jbpm executor has been enhanced to provide support for:

• requeue failed jobs so they can be executed once the error that caused them to is resolved.

• reoccuring jobs that allows single definition to be repeatedly invoked based on

time intervals, e.g. daily jobs to clean up history log tables. See this article

[http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html] for de-

tails and example.

7. CRON support for intermediate and boundary timer events

8. Enhanced support for multi instance activities to support completion condition as MVEL ex-

pression

25.4.1.3. OSGi

While a number of core jars were OSGi-ready (in v5 already), a significant number of additional

jars were now added to this list, including for example the human task service, the runtime man-

agers, full persistence, etc. As a result, full core engine functionality is now available on top of

OSGi. Specific extensions and tests showing it in action are available for Apache Karaf and Aries

Blueprint (in the droolsjbpm-integration repository).

25.4.1.4. Camel handler

A new out-of-the-box service task has been implemented for using Apache Camel to connect a

process to the outside world using some of the numerous Camel endpoint URIs. The service task

allows you to for example specify how to pass data to an FTP endpoint by configuring properties

such as hostname, port, username, payload, etc. for some common endpoints like (S)FTP, File,

JMS, XSLT, etc. but you can use virtually any of the available endpoints by defining the URI

yourself (http://camel.apache.org/uris.html).

http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html
http://mswiderski.blogspot.com/2014/12/keep-your-jbpm-environment-healthy.html

Release Notes

728

25.4.1.5. Form Modeler improvements

Support for JavaScript code:

• Added field property on simple fields to allow the user to add JavaScript code on the onchange

event. This will allow the user to add richer functionallities on the forms.

• Simplified the autogenerated field id's in order to allow the user to access the inputs directly

via JavaScript.

New field types:

• Added configurable ComboBox and RadioGroup fields. This new fields types allow the user

to add ComboBoxes and Radio Button groups selecting their data source from the list of the

Sources registered on the application.

• Added support to simple types Lists (java.util.List<String>, java.util.List<Integer>,

java.util.List<Long>...). This fields allow the user to upload multiple basic values (strings, num-

bers, dates and booleans) storing them on java.util.List

25.4.2. New and Noteworthy in KIE Workbench 6.2.0

25.4.2.1. Download Repository or Part of the Repository as a ZIP

This feature makes it possible to download a repository or a folder from the repository as a ZIP file.

Figure 25.36. Download current repository or project

Release Notes

729

Figure 25.37. Download a folder

25.4.2.2. Project Editor permissions

The ability to configure role-based permissions for the Project Editor have been added.

Permissions can be configured using the WEB-INF/classes/workbench-policy.properties

file.

The following permissions are supported:

• Save button

feature.wb_project_authoring_save

• Delete button

feature.wb_project_authoring_delete

• Copy button

feature.wb_project_authoring_copy

• Rename button

feature.wb_project_authoring_rename

Release Notes

730

• Build & Deploy button

feature.wb_project_authoring_buildAndDeploy

25.4.2.3. Unify validation style in Guided Decision Table Wizard.

All of our new screens use GWT-Bootstrap widgets and alert users to input errors in a consistent

way.

One of the most noticable differences was the Guided Decision Table Wizard that alerted errors

in a way inconsistent with our use of GWT-Bootstrap.

This Wizard has been updated to use the new look and feel.

Figure 25.38. New Guided Decision Table Wizard validation

25.4.2.4. Improved Wizards

During the re-work of the Guided Decision Table's Wizard to make it's validation consistent with

other areas of the application we took the opportunity to move the Wizard Framework to GWT-

Bootstrap too.

The resulting appearance is much more pleasing. We hope to migrate more legacy editors to

GWT-Bootstrap as time and priorities permit.

Release Notes

731

Figure 25.39. New Wizard Framework

25.4.2.5. Consistent behaviour of XLS, Guided Decision Tables and

Guided Templates

Consistency is a good thing for everybody. Users can expect different authoring metaphores to

produce the same rule behaviour (and developers know when something is a bug!).

There were a few inconsistencies in the way XLS Decision Tables, Guidied Decision Tables and

Guided Rule Templates generated the underlying rules for empty cells. These have been elimi-

nated making their operation consistent.

• If all constraints have null values (empty cells) the Pattern is not created.

Should you need the Pattern but no constraints; you will need to include the constraint this !

= null.

This operation is consistent with how XLS and Guided Decision Tables have always worked.

• You can define a constraint on a String field for an empty String or white-space by delimiting it

with double-quotation marks. The enclosing quotation-marks are removed from the value when

generating the rules.

Release Notes

732

The use of quotation marks for other String values is not required and they can be omitted.

Their use is however essential to differentiate a constraint for an empty String from an empty

cell - in which case the constraint is omitted.

25.4.2.6. Improved Metadata Tab

The Metadata tab provided in previous versions was redesigned to provide a better asset version-

ing information browsing and recovery. Now every workbench editor will provide an "Overview

tab" that will enable the user to manage the following information.

Figure 25.40. Improved Metadata Tab

• Versions history

The versions history shows a tabular view of the asset versions and provides a "Select" button

that will enable the user to load a previously created version.

Release Notes

733

Figure 25.41. Versions history

• Metadata

The metadata section gets access to additional file attributes.

Release Notes

734

Figure 25.42. Metadata section

• Comments area

The redesigned comments area enables much clearer discussions on a file.

• Version selection dropdown

The "Version selector dropdown" located at the menu bar provides the ability to load and restore

previous versions from the "Editor tab", without having to open the "Overview tab" to load the

"Version history".

Release Notes

735

Figure 25.43. Version selection dropdown

25.4.2.7. Improved Data Objects Editor

The Java editor was unified to the standard workbench editors functioning. It means that and now

every data object is edited on his own editor window.

Release Notes

736

Figure 25.44. Improved Data Object Editor

• "New -> Data Object" option was added to create the data objects.

• Overview tab was added for every file to manage the file metadata and have access to the file

versions history.

• Editable "Source Tab" tab was added. Now the Java code can be modified by administrators

using the workbench.

• "Editor" - "Source Tab" round trip is provided. This will let administrators to do manual changes

on the generated Java code and go back to the editor tab to continue working.

• Class usages detection. Whenever a Data Object is about to be deleted or renamed, the project

will be scanned for the class usages. If usages are found (e.g. in drl files, decision tables, etc.)

the user will receive an alert. This will prevent the user from breaking the project build.

Release Notes

737

Figure 25.45. Usages detection

25.4.2.8. Execution Server Management UI

A new perspective called Management has been added under Servers top level menu. This per-

spective provides users the ability to manage multiple execution servers with multiple containers.

Available features includes connect to already deployed execution servers; create new, start, stop,

delete or upgrade containers.

Release Notes

738

Figure 25.46. Management perspective

Note

Current version of Execution Server just supports rule based execution.

25.4.2.9. Social Activities

A brand new feature called Social Activities has been added under a new top level menu item

group called Activity.

This new feature is divided in two different perspectives: Timeline Perspective and People Per-

spective.

The Timeline Perspective shows on left side the recent assets created or edited by the logged

user. In the main window there is the "Latest Changes" screen, showing all the recent updated

assets and an option to filter the recent updates by repository.

Release Notes

739

Figure 25.47. Timeline Perspective

The People Perspective is the home page of an user. Showing his infos (including a gravatar

picture from user e-mail), user connections (people that user follow) and user recent activities.

There is also a way to edit an user info. The search suggestion can be used to navigate to a user

profile, follow him and see his updates on your timeline.

Figure 25.48. People Perspective

Release Notes

740

Figure 25.49. Edit User Info

25.4.2.10. Contributors Dashboard

A brand new perspective called Contributors has been added under a new top level menu item

group called Activity. The perspective itself is a dashboard which shows several indicators about

the contributions made to the managed organizations / repositories within the workbench. Every

time a organization/repository is added/removed from the workbench the dashboard itself is up-

dated accordingly.

This new perspective allows for the monitoring of the underlying activity on the managed repos-

itories.

Release Notes

741

Figure 25.50. Contributors perspective

25.4.2.11. Package selector

The location of new assets whilst authoring was driven by the context of the Project Explorer.

This has been replaced with a Package Selector in the New Resource Popup.

The location defaults to the Project Explorer context but different packages can now be more

easily chosen.

Release Notes

742

Figure 25.51. Package selector

25.4.2.12. Improved visual consistency

All Popups have been refactored to use GWT-Bootstrap widgets.

Whilst a simple change it brings greater visual consistency to the application as a whole.

Release Notes

743

Figure 25.52. Example Guided Decision Table Editor popup

Release Notes

744

Figure 25.53. Example Guided Rule Editor popup

25.4.2.13. Guided Decision Tree Editor

A new editor has been added to support modelling of simple decision trees.

See the applicable section within the User Guide for more information about usage.

Figure 25.54. Example Guided Decision Tree

Release Notes

745

25.4.2.14. Create Repository Wizard

A wizard has been created to guide the repository creation process. Now the user can decide

at repository creation time if it should be a managed or unmanaged repository and configure all

related parameters.

Figure 25.55. Create Repository Wizard 1/2

Release Notes

746

Figure 25.56. Create Repository Wizard 2/2

25.4.2.15. Repository Structure Screen

The new Repository Structure Screen will let users to manage the projects for a given repository,

as well as other operations related to managed repositories like: branch creation, assets promotion

and project release.

Release Notes

747

Figure 25.57. Repository Structure Screen for a Managed Repository

Release Notes

748

Figure 25.58. Repository Structure Screen for an Unmanaged Repository

25.5. jBPM 6.1

25.5.1. New and Noteworthy in jBPM 6.1.0

jBPM 6.1 comes with a ton of smaller improvements and bug fixes (done over the last few months

on top of 6.0.1.Final), and also includes some important new features, adding to the foundation

delivered as part of jBPM 6.0.

25.5.1.1. Embedding forms in external applications

Now you can embed and run process/task forms that live inside the Kie-Workbench just adding a

JavaScript library to your webapps. Look at the Using forms on client applications section to see

the full functionality and usage examples.

25.5.1.2. Attaching documents to forms

Added new file type to manage upload documents on forms and store them on process variables.

Using the Pluggable Variable Persistence you'll be able to create your own Marshalling Strategy

and store the document contents on different systems (Database, Alfresco, Google Docs...) or

use the default implementation and store them in your File System.

Release Notes

749

25.5.1.3. Web Service (SOAP) interface for remote API

The execution server, that is part of the jbpm-console web tooling, now also comes with a Web

Service interface (in addition to the existing REST, JMS and Java client interfaces).

25.5.1.4. Deployment descriptors

Deployment descriptors have been added as an optional, yet powerful way of configuring deploy-

ment units - kjars. Deployment descriptors allow to configure (among others)

• persistence unit names

• work item handlers

• event listeners (process, agenda, task)

• roles (for authorizarion - see section 1.5)

Deployment descriptors can be configured on various levels for enhanced flexibility to allow simple

override functionality. Detailed definition of deployment descriptor can be found in section 14.1.1.

Deployment descriptors

25.5.1.5. Role-based authorization at runtime for process definitions

and process instances

The process definition and process instance view in the jbpm console now also take the role-

based access control restrictions into account that can be defined on the project the process is

defined in. You can limit the visibility of a project (or repository as a whole) by associating some

roles with it that are required to be able to see the project (or repository). This can be done when

creating the repository, or bu using the command line interface to connect to the execution server.

The deployment descriptor (see previous section) also allows you to further customize these roles

at deployment time. At runtime, the views will check if the current logged in user has one of the

necessary roles to be able to see that process. If not, the user will not see this process or process

instance in the process definition or process instance list respectively.

25.5.1.6. jBPM installer updates

The installer is updated to support:

• Wildfly 8.1 as application server

• Eclipse BPMN2 Modeler 1.0.2

• Eclipse Kepler SR2

25.5.1.7. jBPM Spring integration

Spring integration has been improved to allow complete configuration of jBPM runtime using

Spring XML. That essentially means there are number of factory beans provided as part of drool-

Release Notes

750

sjbpm-integration module that significanlty simplifies configuration of jBPM. Moreover it allows

various configuration options such as:

• reply on JTA and entity manager factory

• rely on JTA and shared entity manager

• rely on local transactions and entity manager factory

• rely on local transactions and shared entity manager

Details about spring configuration can be found in this article [http://

mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html].

25.5.1.8. Other

Smaller enhancements also include:

• Task service (query) improvements, significantly speeding up queries when you have a large

numbers of tasks in the database.

• Various improvements to the asynchronous job executor so it can handle larger loads more

easily and can be configured (number of parallel threads executing the jobs, retries, etc.).

• Ability to configure task administrator groups in a UserTask (similar to how you already could

configure individual task administrators).

• Removed limitation on custom implementations of work item handler, event listeners that had

to be placed on global classpath - usually in jbpm-console.war/WEB-INF/lib. With that custom

classes can be added as maven dependencies into the project and will be registered on under-

lying components (ksession).

25.5.2. New and Noteworthy in KIE Workbench 6.1.0

25.5.2.1. Data Modeler - round trip and source code preservation

Full round trip between Data modeler and Java source code is now supported. No matter where

the Java code was generated (e.g. Eclipse, Data modeller), data modeler will only update the

necessary code blocks to maintain the model updated.

25.5.2.2. Data Modeler - improved annotations

New annotations @TypeSafe, @ClassReactive, @PropertyReactive, @Timestamp, @Duration

and @Expires were added in order enrich current Drools annotations manged by the data modeler.

25.5.2.3. Standardization of the display of tabular data

We have standardized the display of tabular data with a new table widget.

http://mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html
http://mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html
http://mswiderski.blogspot.com/2014/01/jbpm-6-with-spring.html

Release Notes

751

The new table supports the following features:

• Selection of visible columns

• Resizable columns

• Moveable columns

Figure 25.59. New table

The table is used in the following scenarios:

• Inbox (Incoming changes)

• Inbox (Recently edited)

• Inbox (Recently opened)

• Project Problems summary

• Artifact Repository browser

• Project Editor Dependency grid

• Project Editor KSession grid

• Project Editor Work Item Handlers Configuration grid

• Project Editor Listeners Configuration grid

Release Notes

752

• Search Results grid

25.5.2.4. Generation of modify(x) {...} blocks

The Guided Rule Editor, Guided Template Editor and Guided Decision Table Editor have been

changed to generate modify(x){...}

Historically these editors supported the older update(x) syntax and hence rules created within

the Workbench would not respond correctly to @PropertyReactive and associated annotations

within a model. This has now been rectified with the use of modify(x){...} blocks.

25.6. jBPM 6.0

25.6.1. New and Noteworthy in KIE API 6.0.0

25.6.1.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues

to grow. KIE is also used for the generic parts of unified API; such as building, deploying and

loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

Figure 25.60. KIE Anatomy

Release Notes

753

25.6.1.2. Maven aligned projects and modules and Maven Deploy-

ment

One of the biggest complaints during the 5.x series was the lack of defined methodology for de-

ployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A

big focus for 6.0 was streamlining the build, deploy and loading (utilization) aspects of the sys-

tem. Building and deploying activities are now aligned with Maven and Maven repositories. The

utilization for loading rules and processess is now convention and configuration oriented, instead

of programmatic, with sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2_REPO or remote Maven reposito-

ries. Maven is then used to declare and build the classpath of dependencies, for KIE to access.

25.6.1.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults

are used to reduce the amount of configuration needed.

Example 25.1. Declare KieBases and KieSessions

<kmodule xmlns="http://www.drools.org/xsd/kmodule">

 <kbase name="kbase1" packages="org.mypackages">

 <ksession name="ksession1"/>

 </kbase>

</kmodule>

Example 25.2. Utilize the KieSession

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.getKieClasspathContainer();

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

25.6.1.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This

means that the second KieBase, in addition to all the rules, function and processes directly defined

into it, will also contain the ones created in the included KieBase. This inclusion can be done

declaratively in the kmodule.xml file

Example 25.3. Including a KieBase into another declaratively

<kmodule xmlns="http://www.drools.org/xsd/kmodule">

Release Notes

754

 <kbase name="kbase2" includes="kbase1">

 <ksession name="ksession2"/>

 </kbase>

</kmodule>

or programmatically using the KieModuleModel.

Example 25.4. Including a KieBase into another programmatically

KieModuleModel kmodule = KieServices.Factory.get().newKieModuleModel();

KieBaseModel kieBaseModel1 = kmodule.newKieBaseModel("KBase2").addInclude("KBase1");

25.6.1.5. KieModules, KieContainer and KIE-CI

Any Maven produced JAR with a 'kmodule.xml' in it is considered a KieModule. This can be loaded

from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency

is on the classpath it embeds Maven and all resolving is done automatically using Maven and can

access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,

via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies

for the artifact being loaded. Maven LATEST, SNAPSHOT, RELEASE and version ranges are

supported.

Example 25.5. Utilize and Run - Java

KieServices ks = KieServices.Factory.get();

KieContainer kContainer = ks.newKieContainer(

 ks.newReleaseId("org.mygroup", "myartefact", "1.0"));

KieSession kSession = kContainer.newKieSession("ksession1");

kSession.insert(new Message("Dave", "Hello, HAL. Do you read me, HAL?"));

kSession.fireAllRules();

KieContainers can be dynamically updated to a specific version, and resolved through Maven

if KIE-CI is on the classpath. For stateful KieSessions the existing sessions are incrementally

updated.

Example 25.6. Dynamically Update - Java

KieContainer kContainer.updateToVersion(

 ks.newReleaseId("org.mygroup", "myartefact", "1.1"));

Release Notes

755

25.6.1.6. KieScanner

The KieScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5.

It continuously monitors your Maven repository to check if a new release of a Kie project has

been installed and if so, deploys it in the KieContainer wrapping that project. The use of the

KieScanner requires kie-ci.jar to be on the classpath.

A KieScanner can be registered on a KieContainer as in the following example.

Example 25.7. Registering and starting a KieScanner on a KieContainer

KieServices kieServices = KieServices.Factory.get();

ReleaseId releaseId = kieServices.newReleaseId("org.acme", "myartifact", "1.0-SNAPSHOT");

KieContainer kContainer = kieServices.newKieContainer(releaseId);

KieScanner kScanner = kieServices.newKieScanner(kContainer);

// Start the KieScanner polling the Maven repository every 10 seconds

kScanner.start(10000L);

In this example the KieScanner is configured to run with a fixed time interval, but it is also pos-

sible to run it on demand by invoking the scanNow() method on it. If the KieScanner finds, in

the Maven repository, an updated version of the Kie project used by that KieContainer it auto-

matically downloads the new version and triggers an incremental build of the new project. From

this moment all the new KieBases and KieSessions created from that KieContainer will use the

new project version.

25.6.1.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance prob-

lems and bugs. Traditional hierarchical classloaders are now used. The root classloader is at the

KieContext level, with one child ClassLoader per namespace. This makes it cleaner to add and

remove rules, but there can now be no referencing between namespaces in DRL files; i.e. func-

tions can only be used by the namespaces that declared them. The recommendation is to use

static Java methods in your project, which is visible to all namespaces; but those cannot (like other

classes on the root KieContainer ClassLoader) be dynamically updated.

25.6.1.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through Maven de-

pendency "knowledge-api-legacy5-adapter". Because the nature of deployment has significantly

changed in 6.0, it was not possible to provide an adapter bridge for the KnowledgeAgent. If any

other methods are missing or problematic, please open a JIRA, and we'll fix for 6.1

25.6.1.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire

documentation has not yet been brought up to date. For this reason there will be continued ref-

Release Notes

756

erences to old terminologies. Apologies in advance, and thank you for your patience. We hope

those in the community will work with us to get the documentation updated throughout, for 6.1

25.6.2. New and Noteworthy in jBPM 6.0.0

25.6.2.1. KIE API

A new public API has been created for interacting with the core engine (shared between jBPM and

Drools). This not only handles runtime operations to start processes, etc. but also instantiating

sessions, registering listeners, configuration, etc.

New APIs were added in various areas, like for example the TaskService interface was moved

to the public API, the new RuntimeManager was introduced and a lot of related interfaces and

classes were added as well.

For backwards compatibility with v5, a knowledge-api JAR has been constructed, that implements

the old v5 knowledge-api interfaces on top of the v6 engine. Make sure to include this JAR in your

classpath if you want to keep using the v5 API.

25.6.2.2. jBPM Core Engine

The execution engine itself has (mostly) remained the same, although we've done various im-

provements in the following areas:

• RuntimeManager: instantiating a ksession (and an associated task service) has been simplified

significantly, by introducing a runtime manager where you can simply ask for a reference to

a ksession whenever you need it. The Runtime manager is responsible for initialization, con-

figuration and disposal of the ksession (and task service), and three predefined strategies are

available:

• Singleton: the RuntimeManager reused the same ksession for all requests (and executes the

requests in sequence, one at a time)

• Session per request: the RuntimeManager instantiates a new ksession per request that will

be used for executing that request and disposed at the end. Each request will receive its own

ksession and they can all be executed in parallel.

• Session per process instance: the RuntimeManager reuses the same ksession for all requests

related to one specific process instance. This might be necessary if you are storing data

inside your session (for example for rule evaluations) that you need to be available later in

the process as well. Note that the session is disposed after each command but stored in the

database so it can be restored whenever necessary.

• jBPM Services (CDI): To simplify integration of jBPM inside CDI-based applications, the jbpm-

services module contains various CDI services that you can configure and use inside your

application simply by injecting the necessary services (like a RuntimeManager or TaskService

for example) inside your application, making integration easier than ever.

Release Notes

757

• Timer service: a Quartz-based timer service is now available, that allows you to dispose your

session at any point in time, and the timer service will be responsible for rehydrating a ksession

whenever a timer should be fired. This timer service also works in a clustered environment,

where multiple nodes can work together on sharing the work load but timers will only be fired

once by one of the nodes.

• Exception and compensation management: various improvements in this area allow you to use

more BPMN2 constructs related to exception and compensation management in your process-

es, and various strategies have been extended and documented to better handle exceptions

in different ways.

• Asynchronous handlers: asynchronous execution of interaction with external services can now

be implemented by reusing the asynchronous job executor.

• Asynchronous auditing using JMS: audit logging can now also be done asynchronously by

sending the events to a JMS queue rather than persisting them as part of the engine transaction.

The task service has been refactored significantly as well, and the TaskService APIs have been

moved to the public kie-api. Although the TaskService interfaces themselves haven't changed

a lot, the internal implementation has been simplified. Auditing for the task-related operations

(similar to the runtime engine auditing) has been added.

By default, a local task service will always be used by a ksession to perform various task-related

operations (creating a task, being notified when a task is completed). Setting up a remote singleton

task service and connecting multiple ksessions to this (using Mina or HornetQ) as was possible

in jBPM5 is no longer possible, as it introduces more challenges that it brings advantages. Since

the jBPM execution service now also provides a remote API for all task-related operations, we

believe this setup is no longer necessary, and has been replaced by the use of a local task service

in all use cases.

25.6.2.3. jBPM Designer

jBPM designer has been reimplemented and is fully integrated into the workbench. It now easily

integrates with many of the workbench services available. In addition, the following features were

added/improved on:

• Improvement of jBPM Simulation engine and the UI. Added ability to specify simulation proper-

ties on more node type and added more results graphs such as the the Total Cost graph.

• Many updates to the Designer Toolbar for usability purposes.

• Visual Validation update - it now is a real-time visualization of issues done during process mod-

eling.

• Ability to generate task forms for specific task node.

• Integration with the jBPM Form Modeler for both task and process forms.

Release Notes

758

• Update to process properties - added grouping of properties into sections making it more user

friendly to find properties.

• Update to Object Library - added type specific tasks to palette (rather than having to morph to

a certain type after adding a task to the canvas).

• Save/Remove/CopyDelete feature have been added directly into Designer and integrate with

the workbench services for those operations.

• Autosave - option for users to enable auto-saving of their business process during modeling.

• Two new default Service Tasks (REST and Web Services)

25.6.2.4. jBPM Data Modeler

A new web-based data modeler is integrated in the workbench, which allows non-technical users

to create data models (to be used in your processes and rules) in a user-friendly manner. These

models are saved as Java classes (with the necessary annotations) in the project and added to

the kjar upon build and deploy. Check the chapter on Data Modeler in the Workbench Part for

all the details.

25.6.2.5. Form Modeler

A new web-based form modeler is integrated in the workbench, which allows non-technical users

to create forms (for starting processes and/or completing human task). The form modeler is a

WYSIWYG editor where you can drag and drop form elements (text boxes, labels, etc.), link it to

data that is expected as input or output of the form, customize properties of each element and the

layout, etc. These forms are then shown when starting the process or completing a task, integrated

into the appropriate runtime views. Check the chapter on Form Modeler in the Workbench Part

for all the details.

25.6.2.6. jBPM Console

The jBPM console has been reimplemented and is integrated into the workbench as well. It pro-

vides similar features as jBPM5 (starting process instances, inspecting current state and variables,

looking at task lists) but is now much more powerful and exposes a lot more features. Check the

chapter on Process and Task Management in the Workbench Part for all the details.

25.6.2.7. BAM / Reporting

A new web-based monitoring and reporting tool has been integrated in the workbench. This

displays charts, tables, etc. about the current status of your application(s). It comes with some

process and task dashboards out-of-the-box (showing for example the number of running process

instances, the number of tasks completed per time frame, etc.). These dashboards however can

be fully customized to show the data that is relevant to you, including for example your own data

sources, making domain-specific charts (for example showing your key performance indicators

(KPIs) instead of generic process-related charts). Check the chapter on Business Activity Moni-

toring in the Workbench Part for all the details.

Release Notes

759

25.6.2.8. Workbench

A workbench application, based on the UberFire framework, now unifies all web-based editors

and tools into one large, configurable web application. It has many features, including:

• Configurable workspace where you layout your own views by dragging and dropping

• Unified login and role-based authentication, where what features you see depends on your role

(admin, analyst, developer, user, manager, etc.).

• A new home screen that will guide you through the life cycle of your business processes (au-

thoring, deployment, execution, tasks and reporting).

• Git-based repository that supports versioning and collaboration.

• New project structure where artifacts (processes, rules, etc.) are combined into kjars (we re-

moved the custom binary packages and replaced them with a normal JAR, containing the source

artifacts) when a project is built. These kjars now also include not only processes and rules,

but also forms, configuration files, data models (Java classes), etc. Kjars are Maven artefacts

themselves (they have a group, id and version) and exposed as a Maven repository. When

creating a ksession, Maven can be used to download the necessary kjars for your project from

this Maven repository.

• Sample playground repositories are (optionally) installed when starting up the workbench the

first time, to get you started quickly with some predefined examples.

Check the Workbench Part for all the details.

25.6.2.9. Remote API

The remote API has been redesigned and allows users to remotely connect to a running execution

server and pass commands. The remote runtime API exposes (almost) the entire KieSession and

TaskService API using REST or JMS, so commands can be sent to the remote execution server

for processing and the results are returned. See the chapter on Business Activity Monitoring for

all the details.

Guvnor also provides a REST API to access the various repositories, projects and artifacts inside

these projects and manage and build them.

25.6.3. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is

inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.

The end result is not only a richer experience for our end users, but we can now develop more

rapidly with a clean component based architecture. If you like he Workbench experience you can

use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there

is an utility project to help with migration. Git is the most scalable and powerful source repository

Release Notes

760

bar none. JGit provides a solid OSS implementation for Git. This addresses the continued perfor-

mance problems with the various JCR implementations, which would slow down once the number

of files and number of versions become too high. There has been a big "low tech" drive, to remove

complexity. Everything is now stored as a file, including meta data. The database is only there

to provide fast indexing and search. So importing and exporting is all standard Git and external

sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team

provider. This team provider was not full featured and not available outside Eclipse. Git enables

our repository to work any existing Git tool or team provider. While not yet supported in the UI, this

will be added over time, it is possible to connect to the repo and tag and branch and restore things.

Figure 25.61. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,

like Decision Tables, being considered Guvnor components instead of Drools components. This

wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus

has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building

a web based IDE. Such as Maven integration for building and deploying, management of Maven

repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions

using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own

plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

Release Notes

761

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called

KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM

plugins. The jBPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-

WB.

Figure 25.62. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,

Maven based Projects, Maven Artifact Repository. These common features are

described in more detail throughout this documentation.

The two primary distributions consist of:

• KIE Drools Workbench

Release Notes

762

• Drools Editors, for rules and supporting assets.

• jBPM Designer, for Rule Flow and supporting assets.

• KIE Workbench

• Drools Editors, for rules and supporting assets.

• jBPM Designer, for BPMN2 and supporting assets.

• jBPM Console, runtime and Human Task support.

• jBPM Form Builder.

• BAM.

Workbench highlights:

• New flexible Workbench environment, with perspectives and panels.

• New packaging and build system following KIE API.

• Maven based projects.

• Maven Artifact Repository replaces Global Area, with full dependency support.

• New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java class-

es to the authoring environment. Java classes are packaged into the project and can be used

within rules, processes etc and externally in your own applications.

• Virtual File System replaces JCR with a default Git based implementation.

• Default Git based implementation supports remote operations.

• External modifications appear within the Workbench.

• Incremental Build system showing, near real-time validation results of your project and assets.

The editors themselves are largely unchanged; however of note imports have moved from the

package definition to individual editors so you need only import types used for an asset and not

the package as a whole.

25.6.4. New and Noteworthy in Integration 6.0.0

25.6.4.1. CDI

CDI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and

KieBases.

@Inject

Release Notes

763

@KSession("kbase1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.0")

private KieBase kbase1v10;

@Inject

@KBase("kbase1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.1")

private KieBase kbase1v10;

Figure 25.63. Side by side version loading for 'jar1.KBase1' KieBase

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.0")

private KieSession ksessionv10;

@Inject

@KSession("ksession1")

@KReleaseId(groupId = "jar1", rtifactId = "art1", version = "1.1")

private KieSession ksessionv11;

Figure 25.64. Side by side version loading for 'jar1.KBase1' KieBase

25.6.4.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml'

with a more powerful spring version. The aim is for consistency with kmodule.xml

25.6.4.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for con-

sistency with spring and kmodule.xml

25.6.4.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing

has been moved to PAX.

	jBPM Documentation
	Table of Contents
	
	Part I. Getting Started
	Chapter 1. Overview
	1.1. What is jBPM?
	1.2. Overview
	1.3. Core Engine
	1.4. Process Designer
	1.5. Data Modeler
	1.6. Form Modeler
	1.7. Process Instance and Task Management
	1.8. Business Activity Monitoring
	1.9. Workbench
	1.10. Eclipse Developer Tools

	Chapter 2. Getting Started
	2.1. Downloads
	2.2. Getting Started
	2.3. Community
	2.4. Sources
	2.4.1. License
	2.4.2. Source code
	2.4.3. Building from source

	2.5. Getting Involved
	2.5.1. Sign up to jboss.org
	2.5.2. Sign the Contributor Agreement
	2.5.3. Submitting issues via JIRA
	2.5.4. Fork GitHub
	2.5.5. Writing Tests
	2.5.6. Commit with Correct Conventions
	2.5.7. Submit Pull Requests

	2.6. What to do if I encounter problems or have questions?

	Chapter 3. jBPM Installer
	3.1. Prerequisites
	3.2. Downloading the Installer
	3.3. Demo Setup
	3.4. 10-Minute Tutorial using the Workbench
	3.5. 10-Minute Tutorial using Eclipse
	3.6. Configuration
	3.6.1. Playgrounds
	3.6.2. Workbench Authentication
	3.6.3. Using your own database with the jBPM installer
	3.6.3.1. Introduction
	3.6.3.2. Database setup
	3.6.3.3. Configuration
	3.6.3.4. Using a different database

	3.6.4. jBPM database schema scripts (DDL scripts)
	3.6.5. jBPM installer script

	3.7. Frequently Asked Questions

	Chapter 4. Examples
	4.1. Introduction
	4.2. Importing Projects through Git
	4.3. Human Resources Example
	4.3.1. The Kie Project: human-resources
	4.3.2. Building the Human Resources Example
	4.3.3. Create a new Process Instance

	4.4. Examples zip

	Part II. jBPM Core
	Chapter 5. Core Engine API
	5.1. Overview
	5.2. KieBase
	5.3. KieSession
	5.3.1. ProcessRuntime
	5.3.2. Event Listeners
	5.3.3. Correlation Keys
	5.3.4. Threads

	5.4. RuntimeManager
	5.4.1. Overview
	5.4.2. Strategies
	5.4.3. Usage
	5.4.3.1. Example

	5.4.4. Configuration
	5.4.4.1. Building RuntimeEnvironment
	5.4.4.2. Registering handlers and listeners
	5.4.4.2.1. Registering handlers and listeners in CDI environment

	5.5. Services
	5.5.1. Deployment Service
	5.5.2. Definition Service
	5.5.3. Process Service
	5.5.4. Runtime Data Service
	5.5.5. User Task Service
	5.5.6. QueryService
	5.5.7. ProcessInstanceMigrationService
	5.5.7.1. Migration report
	5.5.7.2. Known limitations
	5.5.7.3. Example

	5.5.8. Working with deployments

	5.6. Configuration

	Chapter 6. Processes
	6.1. What is BPMN 2.0
	6.2. Process
	6.2.1. Creating a process
	6.2.1.1. Using the graphical BPMN2 Editor
	6.2.1.2. Defining processes using XML
	6.2.1.3. Details: Process properties

	6.3. Activities
	6.3.1. Script task
	6.3.2. Service task
	6.3.3. User task
	6.3.4. Reusable sub-process
	6.3.5. Business rule task
	6.3.6. Embedded sub-process
	6.3.7. Multi-instance sub-process

	6.4. Events
	6.4.1. Start event
	6.4.2. End events
	6.4.2.1. End event
	6.4.2.2. Throwing error event

	6.4.3. Intermediate events
	6.4.3.1. Catching timer event
	6.4.3.2. Catching signal event

	6.5. Gateways
	6.5.1. Diverging gateway
	6.5.2. Converging gateway

	6.6. Others
	6.6.1. Variables
	6.6.2. Scripts
	6.6.3. Constraints
	6.6.4. Timers
	6.6.4.1. Configure timer with delay and period
	6.6.4.2. Configure timer with CRON like expression
	6.6.4.3. Configure timer ISO-8601 date format
	6.6.4.4. Configure timer with process variables
	6.6.4.5. Update timer within running process instance

	6.7. Process Fluent API
	6.7.1. Example

	6.8. Testing
	6.8.1. Unit testing
	6.8.1.1. Testing integration with external services
	6.8.1.2. Configuring persistence

	Chapter 7. Human Tasks
	7.1. Introduction
	7.2. Using User Tasks in our Processes
	7.2.1. Swimlanes

	7.3. Data Mappings
	7.4. Task Lifecycle
	7.5. Task Permissions
	7.5.1. Task Permissions Matrix

	7.6. Task Service and The Process Engine
	7.7. Task Service API
	7.7.1. Task event listener
	7.7.2. Data model of task service

	7.8. Interacting with the Task Service

	Chapter 8. Persistence and Transactions
	8.1. Process Instance State
	8.1.1. Runtime State
	8.1.1.1. Binary Persistence
	8.1.1.2. Safe Points

	8.2. Audit Log
	8.2.1. The jBPM Audit data model
	8.2.2. Storing Process Events in a Database
	8.2.3. Storing Process Events in a JMS queue for further processing
	8.2.4. Variables auditing

	8.3. Transactions
	8.3.1. Container managed transactions
	8.3.1.1. CMT dispose ksession command

	8.4. Configuration
	8.4.1. Adding dependencies
	8.4.2. Manually configuring the engine to use persistence
	8.4.3. Configuring the engine to use persistence using JBPMHelper - for tests only

	Part III. Workbench
	Chapter 9. Workbench (General)
	9.1. Installation
	9.1.1. War installation
	9.1.2. Workbench data
	9.1.3. System properties
	9.1.4. Trouble shooting
	9.1.4.1. Loading.. does not disappear and Workbench fails to show

	9.2. Quick Start
	9.2.1. Add repository
	9.2.2. Add project
	9.2.3. Define Data Model
	9.2.4. Define Rule
	9.2.5. Build and Deploy

	9.3. Administration
	9.3.1. Administration overview
	9.3.2. Organizational unit
	9.3.3. Repositories
	9.3.3.1. Repository Editor

	9.4. Configuration
	9.4.1. Basic user management
	9.4.2. Roles
	9.4.2.1. Admin
	9.4.2.2. Developer
	9.4.2.3. Analyst
	9.4.2.4. Business user
	9.4.2.5. Manager/Viewer-only User

	9.4.3. Restricting access to repositories
	9.4.4. Command line config tool
	9.4.4.1. Config Tool Modes
	9.4.4.2. Available Commands
	9.4.4.3. How to use

	9.5. Introduction
	9.5.1. Log in and log out
	9.5.2. Home screen
	9.5.3. Workbench concepts
	9.5.4. Initial layout

	9.6. Changing the layout
	9.6.1. Resizing
	9.6.2. Repositioning

	9.7. Authoring (General)
	9.7.1. Artifact Repository
	9.7.2. Asset Editor
	9.7.3. Tags Editor
	9.7.3.1. Creating Tags

	9.7.4. Project Explorer
	9.7.4.1. Initial view
	9.7.4.2. Different views
	9.7.4.2.1. Project View examples
	9.7.4.2.2. Repository View examples

	9.7.4.3. Download Project or Repository
	9.7.4.4. Branch selector
	9.7.4.5. Filtering by Tag
	9.7.4.6. Copy, Rename, Delete and Download Actions
	9.7.4.7.
	9.7.4.7.1.

	9.7.5. Project Editor
	9.7.5.1. Build & Deploy
	9.7.5.2. Project Settings
	9.7.5.2.1. Project General Settings
	9.7.5.2.2. Dependencies
	9.7.5.2.2.1. Package Name White List

	9.7.5.2.3. Metadata

	9.7.5.3. Knowledge Base Settings
	9.7.5.3.1. Knowledge bases and sessions
	9.7.5.3.1.1. Knowledge base list
	9.7.5.3.1.2. Knowledge base properties
	9.7.5.3.1.3. Knowledge sessions

	9.7.5.3.2. Metadata

	9.7.5.4. Imports
	9.7.5.4.1. External Data Objects
	9.7.5.4.2. Metadata

	9.7.5.5. Duplicate GAV detection

	9.7.6. Validation
	9.7.6.1. Problem Panel
	9.7.6.2. On demand validation

	9.7.7. Data Modeller
	9.7.7.1. First steps to create a data model
	9.7.7.2. Data Objects
	9.7.7.3. Properties & relationships
	9.7.7.4. Additional options
	9.7.7.4.1. Drools & jBPM domain
	9.7.7.4.1.1. Drools & jBPM object editor
	9.7.7.4.1.2. Drools & jJBPM field editor

	9.7.7.4.2. Persistence domain
	9.7.7.4.2.1. Persistence domain object editor
	9.7.7.4.2.2. Persistence domain field editor
	9.7.7.4.2.2.1. Identifier:
	9.7.7.4.2.2.2. Column Properties:
	9.7.7.4.2.2.3. Relationship Properties:

	9.7.7.4.3. Advanced domain
	9.7.7.4.3.1. Advanced domain Data Object / Field editor.

	9.7.7.5. Generate data model code.
	9.7.7.6. Using external models
	9.7.7.6.1. Dependency to a JAR file in local M2 repository
	9.7.7.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	9.7.7.6.1.2. Click on the "Add" button to add a new dependency line.
	9.7.7.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	9.7.7.6.1.4. Save the project to update its dependencies.

	9.7.7.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	9.7.7.6.2.1. Open the Maven Artifact Repository editor.
	9.7.7.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	9.7.7.6.2.3. Upload the file using the Upload button.
	9.7.7.6.2.4. Guvnor M2 repository files.
	9.7.7.6.2.5. Provide a GAV for the uploaded file (optional).
	9.7.7.6.2.6. Add dependency from repository.

	9.7.7.6.3. Using the external objects

	9.7.7.7. Roundtrip and concurrency
	9.7.7.7.1. No changes have been undertaken through the application
	9.7.7.7.2. Changes have been undertaken through the application

	9.7.8. Data Sets
	9.7.8.1. Data Set Authoring Perspective
	9.7.8.2. Data Set Explorer
	9.7.8.3. Data Set Creation
	9.7.8.3.1. Step 1: Provider type selection
	9.7.8.3.2. Step 2: Configuration
	9.7.8.3.3. Step 3: Data set columns and preview

	9.7.8.4. Data set editor
	9.7.8.5. Advanced settings
	9.7.8.6. Caching
	9.7.8.7. Refresh

	9.8. User and group management
	9.8.1. Introduction
	9.8.2. Security management providers
	9.8.2.1. Security management providers
	9.8.2.2. Secutiry management provider capabilities

	9.8.3. Installation and setup
	9.8.3.1. Enable the security management feature on an existing WAR distribution
	9.8.3.2. Setup and installation in an existing or new project
	9.8.3.3. Disabling the security management feature

	9.8.4. Usage
	9.8.4.1. User management
	9.8.4.2. Group management

	9.9. Embedding Workbench In Your Application
	9.10. Asset Management
	9.10.1. Asset Management Overview
	9.10.2. Managed vs Unmanaged Repositories
	9.10.2.1. Managed Repositories
	9.10.2.2. Unmanaged Repositories

	9.10.3. Asset Management Processes
	9.10.3.1. Configure Repository
	9.10.3.2. Promote Changes Process
	9.10.3.3. Build Process
	9.10.3.4. Release Process

	9.10.4. Usage Flow
	9.10.5. Repository Structure
	9.10.5.1. Single Project Managed Repository
	9.10.5.2. Multi Project Managed Repository
	9.10.5.3. Unmanaged Repository

	9.10.6. Managed Repositories Operations
	9.10.6.1. Branch Selector
	9.10.6.2. Project Operations
	9.10.6.3. Launch Assets Management Processes
	9.10.6.3.1. Launch the Configure Repository Process
	9.10.6.3.2. Launch the Promote Changes Process
	9.10.6.3.3. Launch the Release Process

	9.11. Execution Server Management UI
	9.11.1. Server Templates
	9.11.2. Container
	9.11.3. Remote Server

	Chapter 10. Workbench Integration
	10.1. REST
	10.1.1. Job calls
	10.1.2. Repository calls
	10.1.3. Organizational unit calls
	10.1.4. Maven calls
	10.1.5. REST summary

	10.2. Keycloak SSO integration
	10.2.1. Scenario
	10.2.2. Install and setup a Keycloak server
	10.2.3. Create and setup the demo realm
	10.2.4. Install and setup jBPM Workbench
	10.2.4.1. Install the KC adapter
	10.2.4.2. Configure the KC adapter
	10.2.4.3. Run the environment

	10.2.5. Securing workbench remote services via Keycloak
	10.2.6. Execution server
	10.2.6.1. Create the execution server's client on Keycloak
	10.2.6.2. Install and setup the KC adapter on the execution server
	10.2.6.3. Deploy and run the execution server

	10.2.7. Consuming remote services
	10.2.7.1. Using basic authentication
	10.2.7.2. Using token based authentication

	Chapter 11. Workbench High Availability
	11.1.
	11.1.1. VFS clustering
	11.1.2. jBPM clustering

	Chapter 12. Designer
	12.1. Designer UI Explained
	12.2. Getting started with Modelling
	12.3. Designer Toolbar

	Chapter 13. Forms
	13.1. Configure process and human tasks
	13.2. Generate forms from task definitions
	13.3. Edit forms
	13.3.1. Form generated description
	13.3.2. Customizing form
	13.3.2.1. Moving fields
	13.3.2.2. Adding new fields
	13.3.2.3. Field configuration
	13.3.2.3.1. Generic field properties
	13.3.2.3.2. Specific field properties
	13.3.2.3.3. Complex Fields Configuration
	13.3.2.3.3.1. Simple Object (Subform field Type)
	13.3.2.3.3.2. Arrays of objects.(Multiple subform field Type)

	13.3.2.3.4. Formulas

	13.3.2.4. Customizing form layout

	13.3.3. Field types
	13.3.3.1. Custom Field Types
	13.3.3.1.1. How to create Custom Field Types
	13.3.3.1.2. Configuring and using Custom Field Types

	13.4. Document attachments
	13.4.1. Process and forms configuration
	13.4.2. Marshalling strategy and deployment configuration

	13.5. Using forms on client applications
	13.5.1. What does the API provides?
	13.5.2. Sample usage

	Chapter 14. Runtime Management
	14.1. Deployments
	14.1.1. Deployment descriptors

	14.2. Process Deployments
	14.3. Jobs

	Chapter 15. Process and Task Management
	15.1. Process Management
	15.1.1. Process Definitions
	15.1.1.1. The Process Definition List
	15.1.1.2. The Process Definition Details
	15.1.1.3. Creating Process Instances

	15.1.2. Process Instances
	15.1.2.1.
	15.1.2.2. Process Instance List
	15.1.2.2.1. Filtering. Views on tabs
	15.1.2.2.2. General section configuration. Auto refresh and default views restore
	15.1.2.2.3. Specific view configuration. Columns, Bulk actions, number of items
	15.1.2.2.4. Special filter in process instance list

	15.2. Tasks
	15.2.1. Task List
	15.2.1.1. Task List (Personal and Group Tasks)
	15.2.1.1.1. Task List
	15.2.1.1.2. Task List custom filters. Ability to show bussiness data at task list.

	15.2.1.2. Task Details
	15.2.1.3. Work on a Task
	15.2.1.4. Task Forms generated by the Form Modeller

	15.2.2. New Task (Ad-Hoc Task)

	Chapter 16. Business Activity Monitoring
	16.1. Overview
	16.2. Business Dashboards
	16.3. Process Dashboard
	16.3.1. Task Dashboard

	Chapter 17. Remote API
	17.1. Remote Java API
	17.1.1. Remote REST Java API Client Configuration
	17.1.1.1. Example REST Remote Java Client Configuration

	17.1.2. Remote JMS Java API Client Configuration
	17.1.2.1. Example JMS Remote Java Client Configuration
	17.1.2.2. Remote JMS Runtime Engine Builder methods
	17.1.2.3. Example JMS client configuration and usage with SSL

	17.1.3. Remote CommandWebService Java API Client Configuration
	17.1.4. Supported methods

	17.2. REST
	17.2.1. REST permissions
	17.2.2. Runtime calls
	17.2.2.1. Process calls
	17.2.2.2. Process calls "with variables"
	17.2.2.3. History calls
	17.2.2.4. History calls that search by variable
	17.2.2.5. History calls that search by variable

	17.2.3. Task calls
	17.2.3.1. Task operation calls
	17.2.3.2. Task query call

	17.2.4. Deployment Calls
	17.2.4.1. Asynchrous deployment calls

	17.2.5. Deployment call details
	17.2.6. Execute calls
	17.2.6.1. Execution call details
	17.2.6.2. Commands accepted
	17.2.6.3. Basic example
	17.2.6.4. More Complex Example with a Custom Data Type

	17.2.7. REST summary
	17.2.7.1. Runtime REST calls
	17.2.7.2. Task REST calls
	17.2.7.3. History REST calls
	17.2.7.4. Deployment REST calls

	17.3. REST Query API
	17.3.1. Query URL layout
	17.3.1.1. [POST] /query/runtime/process
	17.3.1.2. [POST] /query/runtime/task
	17.3.1.3. [POST] /query/task

	17.3.2. Query Parameters
	17.3.2.1. Range and Regular Expression parameters
	17.3.2.2. Range query parameters
	17.3.2.3. Regular expression query parameters

	17.3.3. Parameter Table
	17.3.4. Parameter examples
	17.3.5. Query Output Format

	17.4. JMS
	17.4.1. JMS Queue setup
	17.4.2. Using the remote Java API
	17.4.2.1. Serialization issues

	17.4.3. Example JMS usage

	17.5. Additional Information
	17.5.1. REST Serialization: JAXB or JSON
	17.5.2. Sending and receiving user class instances
	17.5.3. Including the deployment id
	17.5.4. REST Pagination
	17.5.5. REST Map query parameters
	17.5.6. REST Number query parameters
	17.5.7. Runtime strategies

	Part IV. Eclipse
	Chapter 18. jBPM Eclipse Plugin
	18.1. jBPM Eclipse Plugin
	18.1.1. Installation
	18.1.2. jBPM Project Wizard
	18.1.3. New BPMN2 Process Wizard
	18.1.4. jBPM Runtime
	18.1.4.1. Defining a jBPM Runtime
	18.1.4.2. Selecting a runtime for your jBPM project

	18.1.5. jBPM Maven Project Wizard
	18.1.6. Drools Eclipse plugin
	18.1.7. Kie Navigator View
	18.1.7.1. Context Menus
	18.1.7.1.1. Server
	18.1.7.1.2. Organizational Unit
	18.1.7.1.3. Repository
	18.1.7.1.4. Project

	18.1.7.2. Property Pages
	18.1.7.2.1. Server
	18.1.7.2.2. Organizational Unit
	18.1.7.2.3. Repository
	18.1.7.2.4. Project

	18.2. Debugging
	18.2.1. The Process Instances View
	18.2.2. The Audit View

	18.3. Synchronizing with Workbench Repositories
	18.3.1. Importing a workbench repository
	18.3.2. Committing changes to the workbench
	18.3.3. Updating from to the workbench
	18.3.4. Working on individual projects

	Chapter 19. Eclipse BPMN 2.0 Modeler
	19.1. Overview
	19.2. Installation
	19.3. Documentation

	Part V. Integration
	Chapter 20. Integration
	20.1. Maven
	20.1.1. Maven artifacts as deployment units
	20.1.1.1.

	20.1.2. Use Maven for dependency management

	20.2. CDI
	20.2.1. Overview
	20.2.1.1. DeploymentService
	20.2.1.1.1.

	20.2.1.2. FormProviderService
	20.2.1.3. RuntimeDataService
	20.2.1.4. DefinitionService
	20.2.1.4.1.
	20.2.1.4.2.

	20.2.2. Configuring CDI integration
	20.2.2.1.

	20.2.3. RuntimeManager as CDI bean
	20.2.3.1.

	20.3. Spring
	20.3.1. Direct use of Runtime Manager API
	20.3.1.1. RuntimeEnvironmentFactoryBean
	20.3.1.2. RuntimeManagerFactoryBean
	20.3.1.3. TaskServiceFactoryBean
	20.3.1.4. Sample configuration of RuntimeManager with Spring

	20.3.2. jBPM services with Spring
	20.3.2.1. Configure jBPM services in Spring application

	20.4. Ejb
	20.4.1. Ejb services implementation
	20.4.2. Local interface
	20.4.3. Remote interface
	20.4.3.1. Remote EJB client

	20.5. OSGi

	Part VI. Advanced Topics
	Chapter 21. Domain-specific Processes
	21.1. Introduction
	21.2. Overview
	21.2.1. Work Item Definitions
	21.2.2. Work Item Handlers

	21.3. Example: Notifications
	21.3.1. The Notification Work Item Definition
	21.3.1.1. Creating the work item definition
	21.3.1.2. Registering the work definition
	21.3.1.3. Using your new work item in your processes

	21.3.2. The NotificationWorkItemHandler
	21.3.2.1. Creating a new work item handler
	21.3.2.2. Registering the work item handler

	21.4. Service Repository
	21.4.1. Public jBPM service repository
	21.4.2. Setting up your own service repository

	Chapter 22. Exception Management
	22.1. Overview
	22.2. Introduction
	22.3.
	22.3.1. Technical Exceptions
	22.3.1.1. Handling exceptions in WorkItemHandler instances

	22.3.2. Technical Exception Examples
	22.3.2.1. Example: service task handlers
	22.3.2.1.1. BPMN2 configuration
	22.3.2.1.2. SignallingTaskHandlerDecorator and WorkItemHandler configuration
	22.3.2.1.3. ExceptionService setup and configuration
	22.3.2.1.4. Changing the example to use a <signal>

	22.3.2.2. Example: logging exceptions thrown by bad <scriptTask> nodes
	22.3.2.2.1. Introduction
	22.3.2.2.2. Example: Exceptions thrown by a <scriptTask>.

	22.4.
	22.4.1. Business Exceptions
	22.4.1.1. Business Exceptions elements in BPMN2
	22.4.1.2. Designing a workflow with Business Exceptions

	Chapter 23. Flexible Processes
	Chapter 24. Concurrency and asynchronous execution
	24.1. Concurrency
	24.1.1. Engine execution
	24.1.2. Multiple knowledge sessions and persistence

	24.2. Asynchronous execution
	24.2.1. Asynchronous handlers
	24.2.2. jbpm executor
	24.2.2.1. WorkItemHandler backed with jbpm executor
	24.2.2.2. Configuration
	24.2.2.3. Reoccurring jobs
	24.2.2.4. Run jobs on same server node on which it was scheduled

	Chapter 25. Release Notes
	25.1. jBPM 6.5
	25.1.1. New and Noteworthy in jBPM 6.5.0
	25.1.1.1. Process instance migration
	25.1.1.2. Kie Server client - fire and forget and async response handling (JMS)
	25.1.1.3. Task variables support in TaskLifeCycleEventListener

	25.1.2. New and Noteworthy in KIE Workbench 6.5.0
	25.1.2.1. Guided Rule Editor : Support formulae in composite field constraints

	25.2. jBPM 6.4
	25.2.1. New and Noteworthy in jBPM 6.4.0
	25.2.1.1. New jBPM Process & Task Dashboard
	25.2.1.2. Task variables auditing
	25.2.1.3. Process and task variables indexation
	25.2.1.4. QueryService
	25.2.1.5. Pluggable Task deadlines notification listeners
	25.2.1.6. Ability to show bussiness data at task list.
	25.2.1.7.
	25.2.1.8. Process Documentation.
	25.2.1.9.

	25.2.2. New and Noteworthy in KIE Workbench 6.4.0
	25.2.2.1. New look and feel
	25.2.2.2. Various UI improvements
	25.2.2.3. New locales
	25.2.2.4. Authoring - Imports - Consistent terminology
	25.2.2.5. Disable automatic build
	25.2.2.6. Support for SCP style git Repository URLs
	25.2.2.7. Authoring - Duplicate GAV detection
	25.2.2.8. New Execution Server Management User Interface
	25.2.2.9. User and group management

	25.3. jBPM 6.3
	25.3.1. New and Noteworthy in jBPM 6.3.0
	25.3.1.1. Process engine extensions
	25.3.1.2. Case management API
	25.3.1.3. Remote API
	25.3.1.4. OSGi
	25.3.1.5. jBPM Designer Data I/O Editor
	25.3.1.6. jBPM executor
	25.3.1.7. Unified KIE Execution Server
	25.3.1.8. Process and Task Lists UI Improvements
	25.3.1.9. Kie Navigator View for Eclipse

	25.3.2. New and Noteworthy in KIE Workbench 6.3.0
	25.3.2.1. Real Time Validation and Verification for the Decision Tables
	25.3.2.2. Improved DRL Editor
	25.3.2.3. Asset locking
	25.3.2.4. Data Modeller Tool Windows
	25.3.2.5. Generation of JPA enabled Data Models
	25.3.2.6. Data Set Authoring

	25.4. jBPM 6.2
	25.4.1. New and Noteworthy in jBPM 6.2.0
	25.4.1.1. jBPM services
	25.4.1.2. Process engine extensions
	25.4.1.3. OSGi
	25.4.1.4. Camel handler
	25.4.1.5. Form Modeler improvements

	25.4.2. New and Noteworthy in KIE Workbench 6.2.0
	25.4.2.1. Download Repository or Part of the Repository as a ZIP
	25.4.2.2. Project Editor permissions
	25.4.2.3. Unify validation style in Guided Decision Table Wizard.
	25.4.2.4. Improved Wizards
	25.4.2.5. Consistent behaviour of XLS, Guided Decision Tables and Guided Templates
	25.4.2.6. Improved Metadata Tab
	25.4.2.7. Improved Data Objects Editor
	25.4.2.8. Execution Server Management UI
	25.4.2.9. Social Activities
	25.4.2.10. Contributors Dashboard
	25.4.2.11. Package selector
	25.4.2.12. Improved visual consistency
	25.4.2.13. Guided Decision Tree Editor
	25.4.2.14. Create Repository Wizard
	25.4.2.15. Repository Structure Screen

	25.5. jBPM 6.1
	25.5.1. New and Noteworthy in jBPM 6.1.0
	25.5.1.1. Embedding forms in external applications
	25.5.1.2. Attaching documents to forms
	25.5.1.3. Web Service (SOAP) interface for remote API
	25.5.1.4. Deployment descriptors
	25.5.1.5. Role-based authorization at runtime for process definitions and process instances
	25.5.1.6. jBPM installer updates
	25.5.1.7. jBPM Spring integration
	25.5.1.8. Other

	25.5.2. New and Noteworthy in KIE Workbench 6.1.0
	25.5.2.1. Data Modeler - round trip and source code preservation
	25.5.2.2. Data Modeler - improved annotations
	25.5.2.3. Standardization of the display of tabular data
	25.5.2.4. Generation of modify(x) {...} blocks

	25.6. jBPM 6.0
	25.6.1. New and Noteworthy in KIE API 6.0.0
	25.6.1.1. New KIE name
	25.6.1.2. Maven aligned projects and modules and Maven Deployment
	25.6.1.3. Configuration and convention based projects
	25.6.1.4. KieBase Inclusion
	25.6.1.5. KieModules, KieContainer and KIE-CI
	25.6.1.6. KieScanner
	25.6.1.7. Hierarchical ClassLoader
	25.6.1.8. Legacy API Adapter
	25.6.1.9. KIE Documentation

	25.6.2. New and Noteworthy in jBPM 6.0.0
	25.6.2.1. KIE API
	25.6.2.2. jBPM Core Engine
	25.6.2.3. jBPM Designer
	25.6.2.4. jBPM Data Modeler
	25.6.2.5. Form Modeler
	25.6.2.6. jBPM Console
	25.6.2.7. BAM / Reporting
	25.6.2.8. Workbench
	25.6.2.9. Remote API

	25.6.3. New and Noteworthy in KIE Workbench 6.0.0
	25.6.4. New and Noteworthy in Integration 6.0.0
	25.6.4.1. CDI
	25.6.4.2. Spring
	25.6.4.3. Aries Blueprints
	25.6.4.4. OSGi Ready

