JBPM Documentation

The JBoss jBPM team [http://www.jbpm.org/community/team.html]

http://www.jbpm.org/community/team.html
http://www.jbpm.org/community/team.html

jBPM Documentation
by
Version 6.5.0.CR1

[=Y 1 1] o S = 5 (=T N 1
I 1Y 7= Y= P 2
1.1, WhaAL iS JBPIM? oot e 2

2 @ Y= 1 PP 4

I T @] (T = o o 11 = 5

1.4, ProCESS DESIGNELuiiiiiiee it 6

1.5, Data MOGEIET ...cooviieiii e e 6

G o T 1Yo To 1= L SN 7

1.7. Process Instance and Task Managementcoocveeiiiiieiin e 8

1.8. Business ACtiVity MONITOINGoiieieiiiiiiiie e 8

I TR o (oY= o] o P 10
1.10. Eclipse DeVElOPEr TOOIScccuuuiiiiiiiiieiieie e 10

2. GEtEING STAEA ..ouiiiii i 12
280 I B T 111/] [7= To £ P 12

2.2, GEttiNg StArEAouiiii i 12

2.3, COMMUIILY ettt ettt ettt et e et e e et e e e et e e e et s 12

A S Yo U] of 1 PP UPTPT 13
T I o T o 1 P 13

2.4.2. SOUICE COUReiiiiiieeiii ettt ettt e e et e e e e et e e e eatn e eeenes 13

2.4.3. BUIldING frOM SOUICEciiiiiiiiiiii e 14

2.5, Getting INVOIVEAiiiiii e 14
2.5.1. SigN UP t0 JDOSS.0MG ..uueiiiiiiiiiiii e 14

2.5.2. Sign the Contributor Agreementccoovviiieiiiiiiiiiecie e, 15

2.5.3. Submitting iSSUES Via JIRAouiiiiiiii e 15

2.5.4. FOrK GItHUD ..ovtiiii e 16

2.5.5. WIIING TESES iiiiiiiiiiiiii e 16

2.5.6. Commit with Correct CONVENLIONSccevvvieriiiiiieeiiiiiee et 18

2.5.7. SUbMIt PUlIl REQUESESuiiiiiiiiiiccee e 19

2.6. What to do if | encounter problems or have questions?cccooeevviveinnnns 21

3L JBPM INSTAIIEE e 22
3.1, PrErEOUISITES ..vuniiiiieiiii et e e e e e e e e e e e e e e e e e eaes 22

3.2. Downloading the InStaller ... 22

3.3, DEIMO SEIUP .ttt 22

3.4. 10-Minute Tutorial using the Workbench ..., 25

3.5. 10-Minute Tutorial using EClIPSEccvvuiiiiieiii e 27

3.6, CONFIQUIALIONiiiitiiiiii et eanens 28
3.6.1. Playgroundsc..oiiuniiiiiie i 28

3.6.2. Workbench Authenticationccooouiiiiiiiiiiiieii e 29

3.6.3. Using your own database with the jBPM installerccc.ccou..ee. 30

3.6.4. BPM database schema scripts (DDL SCIHPLS)vevevveieiiiiinieiiiiineeees 37

3.6.5. [BPM installer SCrPLuuiiiiiiiiiicie e e s 37

3.7. Frequently Asked QUESHIONScuuuuiiiiiiiieieiii et 38

O G 11 1] o] 1= 40

jBPM Documentation

s O 1 1 Yo [o 1 o o P 40
4.2. Importing Projects through Gitcccoeiiiiiiiiiii e 40
4.3. Human Resources EXampPIecoooiiiiiiiiiiiii e 41
4.3.1. The Kie Project: hUman-reéSOUICEScccooveiuieiiiiieeiieeii e e eaenn 43
4.3.2. Building the Human Resources Exampleccccoooviiiiiiiiinieecinnnnn. 43
4.3.3. Create a new Process INStanCeccoceveeiiiiiiiineiiceeeeee e 45

A4, EXAMPIES ZIP i 46
121 Y B o = PP 47
5. C0re ENGINe AP oo 48
DL OVEBIVIEW .ttt e et e e e et e e e et e e e et e e e e b 48
L (1= 2 - 1 P 49
5.3, KIESESSION ...t 50
5.3.1. ProCeSSRUNEIME ...couiiiiiiiiieie e e 50
5.3.2. EVENE LISIENEIS ...oiiiiiiiiii et 52
5.3.3. COrrelation KEYSii it 54
B5.304. TRMBAAS ..uiiiiii e e e e 55

5.4, RUNIMEMAENAGETuiiiiiiieieii ettt ettt e et e e 56
L N O Y= V= PSP 56
B.4.2. SHABGIES ..evvuieiiiii ettt et e 58
D43, USAgE ittt 60
5.4.4. CONFIQUIALION ..eetuiiiiii et 62

B D SBIVICES ittt i et 69
5.5.1. DepPIOYMENT SEIVICE ...couvuiiiiiiiieeeii e 70
5.5.2. DEfINILION SEIVICE ...evvviiiiiiiiieiiiie ettt 71
5.5.3. PrOCESS SEIVICE ...iiiiiiiiiiei ettt e e e eens 72
5.5.4. RUNtIME DaAta SEIVICEccvvuiiiiiiiieiiii et 74
5.5.5. USer Task SEIVICEciuuiiiiiii e 77
5.5.6. QUETIYSEIVICE ...uiiiieiiiieiiie ettt e e e e e e e e e e e et e e e e e et e eaneees 78
5.5.7. ProcessInstanceMigrationServiCecoovveiiiiiiieiiiiineeiiiieeeeeiee 83
5.5.8. Working with deploymentscooeiiiiiiiiiiii e 87

5.6. CONFIQUIALIONiiiitiiiiiii et e eaens 89
(O o oo T] T S PPN 93
6.1. What iS BPMN 2.0uiiiiiiiiiiiii e e e e e e e e e e eaes 93
B.2. PrOCESS ..o 98
6.2.1. Creating 8 PrOCESSoieieriiieieiii et e et et e et e et e e e s 98

6.3, ACHIVILIES ..iiiiii i aanen 103
6.3.1. SCHPL TASK .eeeiei e 103
6.3.2. SEIVICE TASK oiiiiiiiiiiiii e 105
6.3.3. USEI tASK .ovniiiiiieii et 106
6.3.4. Reusable SUD-PIrOCESScc.iiiiiiiiii e 108
6.3.5. BUSINESS FUIE taSK ...evuiiiiiiii e 109
6.3.6. Embedded SUD-ProCesscciiiiiiiiiiii i 110
6.3.7. Multi-inStance SUD-ProCESSccouviiiiiiiiiiiii e 111

B.4. EVENIS oo e 112

jBPM Documentation

B.4.1. STAIT EVENT ...oeiiii e 112
6.4.2. ENA BVENLS ..uuiiiiiiiii ettt 113
6.4.3. Intermediate EVENLScoeviiiii i 115
B.5. GALBWAYS ..vuiiiiiiiii ittt 118
6.5.1. DIVEIgiNg QAtEBWAYcceevunieiiiiiee ittt 118
6.5.2. CONVErgiNg QAtEWAYocvvuiiiiiieiiieeeiiieeiiieesie e e e e e et e eeaeeaanaes 120
B.6. OIS oot e 121
B.6.1. VAriabIEScooiiiiiiiii e 121
B.6.2. SCIIPLS oottt 123
6.6.3. CONSITAINTS ..oivvviiiiiii e e e e eeeae s 124
B.6.4. TIMEIS ouniitiit et e e e e e e e e eas 125
6.7. Process FIUENT AP ... 128
B.7.1. EXAMPIE ..ot 128
LSS T I = 1] o P 129
6.8.1. UNIt LESHING .vvueeiiiii e 129
A 10 g =T g T I 1S PP 136
% W [] o o [¥ Tox i o) IS PSPPSR 136
7.2. Using User Tasks iN OUr PrOCESSESccvvueiiiiiiiiiieiiie e e e e e e eaae e 136
T.2.1. SWIMIANES .oeiiniiiii e 138
7.3. Data MapPPINgS ..veiniiiiiei e 139
7.4, TASK LIfECYCIE ..o e 141
7.5. TASK PeIMISSIONSciiiiiiiiiiiiii i e e e e e eaaens 142
7.5.1. Task Permissions MatriXccccoiiiiiiiiiiieiiici e, 142
7.6. Task Service and The Process ENgiNeccooveviiiiiiiiiiiie i, 144
T.7. TASK SEIVICE APl ..o 145
7.7.1. Task eVent ISTENENooviiiiiiiiiii e 146
7.7.2. Data model Of task SEIVICEccccuuviiiiiiiiiieii e 147
7.8. Interacting with the Task SEerviCeccocciiiiiiiii e 148
8. Persistence and TranSaCtiONSco.oviiiiiiiiiiii e e 150
8.1. Process INStanCe STAtec.ocieiiiiiiiiiiiii e e 150
8.1.1. RUNLIME StAtE ...iveiiiiii e 150
S 2 ¥ o [A o o USRS 155
8.2.1. The jBPM Audit data modelccooviiiiiiiiiii e, 156
8.2.2. Storing Process Events in a Databaseccooeeviiiiiiiiiiinciinns 160
8.2.3. Storing Process Events in a JMS queue for further processing 162
8.2.4. Variables auditingccccciiiiiiiiiiiieci e 162
8.3, TraNSACHIONS ...uuiiiiii ittt e e et aans 166
8.3.1. Container managed tranSactionsScccoeevviiiiiiiieeiiieciiieeeneeains 167
8.4, CONFIQUIALIONiiiiiiee it e e 169
8.4.1. Adding dependencCiesc.coeiiiiiiiiii e 169
8.4.2. Manually configuring the engine to use persistencec........ 170
8.4.3. Configuring the engine to use persistence using JBPMHel per - for
TESES ONIY o e 172
1 BT o (oY= o] o PR 175

jBPM Documentation

9. WOrkbench (General)o oo e 176
9.1, INSEAIIALION ...uiiiiiie e s 176
9.1.1. War installationcc.iiiiiiiiiiiie e 176
9.1.2. Workbench datacooeuviiiiiiiiii e 176
9.1.3. SYSIEM PrOPEITIES ...ciiiiiieiiiiie ettt e 177
9.1.4. Trouble ShOOtINGcivviiiii e 178

9.2, QUICK SEAIT ..oeeieie e 179
LS I T Ao (o I =T o [0 71 (o] Y/ P 179
9.2.2. Add PrOJECE ..ot 181
9.2.3. Define Data MOdeloooeviiiiiiiiiie e 185
9.2.4. DefiNe RUIE ..o 188
9.2.5. BUild @and DEPIOYcvvvniiiiiiiiii e 191

9.3, AMINISIFALIONiiti e e e e 192
9.3.1. ADMINISIration OVEIVIEWcccvvvniieiiiiieeiiiineee e e e s 192
9.3.2. Organizational UNItcooouiiiiiii e 192
9.3.3. REPOSITOMNES ..ovuiiiiiieiii it e e e e aan s 193

9.4, CONFIQUIALION ...ttt e e et e e e et e e 195
9.4.1. BasiC USEr MAaNAQEMENTcciuiieiiiieeiii e e e e e e e e e e ae s 195
9.4.2. ROIBS ..ot 195
9.4.3. Restricting access t0 repoSItOreSccuuveiinieiiiieeiieeciieeeie e eaenns 197
9.4.4. Command line config toolcoeviiiiiiiiiiiii e 197

9.5, INLrOAUCLION .oiiieeie e e b 198
9.5.1. LOG iN @Nd 100 OUL ...uuiiiiiiieiiii e 198
9.5.2. HOME SCIEEIN ...t 199
9.5.3. WOrkbench CONCEPLSuiiiiiiieiiii e 199
9.5.4. INitial [AYOULcoeiniiii e 199

9.6. Changing the 1ayOULcooiiiiii e 200
9.6.1. RESIZING ..ievniiiiiieiii e e 201
9.6.2. REPOSILIONING oevtueiiiiiieeeii et 201

9.7. AUthOriNG (GENETAI)ieie i e 203
9.7.1. Artifact REPOSITOIY ...coovuiiiiii e 203
9.7.2. ASSEE EQItOr ..vuiiiiiiiieeei e 205
9.7.3. TAQS EQItOr ..vneiiiiiieee e 209
9.7.4. ProjeCt EXPIOTEr ...ciii e e e 211
9.7.5. ProjeCt EdItOrccovuiieiiiii e 224
9.7.6. ValidAtON ...oovviiieiiii e 231
9.7.7. Data MOEIIEr ... 233
O0.7.8. DAta SIS ...ceiiiiiii e 273

9.8. User and group ManagemENTceeuuuueeeruinieieiiieeeeiii e eeniaeeeniiaeeenens 287
9.8.1. INFOTUCTIONeiiii ettt e et e et eeeeae e eeeees 287
9.8.2. Security management Providerscoeeuiieveiiiiieiieii e 287
9.8.3. Installation and SELUPccuuveiiiiiiii e 290
O0.8.4. USAQE ..ottt 292

9.9. Embedding Workbench In Your Applicationccooeviiiiiiiiiiiiiciie e, 302

Vi

jBPM Documentation

9.10. ASSEt MANAGEMENTiviiiiiiiee et 303
9.10.1. Asset Management OVEIVIEWcccuuievireeenieeeiiieeiieesiiessnneeanneens 303
9.10.2. Managed vs Unmanaged RepOSItOriesccovvevvivineiiiiinneeiiiinnnn, 304
9.10.3. Asset Management PrOCESSESc.uiuuviiiiiiiiiiieiee e 304
9.10.4. USAQE FIOW ..ot e e 306
9.10.5. REPOSItOrY STIUCLUIEcvviciiii e e e e e e e 308
9.10.6. Managed Repositories OPErationscoveveereiereeiinereriieeeennnns 309

9.11. Execution Server Management Ulccocoiiiiiiiiiiiiciii e 315
9.11.1. Server TEMPIALES ...ccoovuiiiiiiii e 315
L @0 ¢ -] = PP 317
9.11.3. REMOLE SEIVET ...t 321

10. Workbench INtegrationccccouiiiiiiiiiiii e e e e eea 323

10,0, REST i 323
10.2.1. JOD CallS covvneiiiii e 323
10.1.2. RePOSItOry CallSuiiiiiiieiiii et 324
10.1.3. Organizational unit callsccooeeiiiiiiiiiii e, 327
10.1.4. MAVEN CallS ...ceenieiiieee e 328
10.1.5. REST SUMMAIY ..ottt et ettt e et e e en e eneeanens 329

10.2. Keycloak SSO iNtegrationccoouuiieiiiiiiieeiiiie e 330
B S T =Y o = 14 o PSP 331
10.2.2. Install and setup a Keycloak Serverccoooviiiiiiiiiiiiiiciieees 332
10.2.3. Create and setup the demo realmc.cccoveiiiiiiiiieiii e, 332
10.2.4. Install and setup jBPM Workbenchc..cooooiiiiiiiiiiis 334
10.2.5. Securing workbench remote services via Keycloak 337
10.2.6. EXECULION SEIVEL ..iitiiiiiee et e e e e e e e s 338
10.2.7. CoNSUMING rEMOLE SEIVICESuiivvuiiiiieiiiieeiiiee e e et e e e e aenes 341

11. Workbench High Availabilitycooiiiiiiiiii e 343

5 O PP 343
11.2.1. VFS CIUSEEIING oevtnieiiiiiee ettt et e e 343
11.1.2. JBPM CIUSTEINNG .vuiiiniiiie et e e 346

2 B =T o 1= O PP PT TR PPPT 347

12.1. Designer Ul EXplainedccoouiiiiiiii e 348

12.2. Getting started with Modellingccooiiiiiiiii e 349

12.3. DeSigner TOOIDArccuiiiiiicii e 353

G TR o T 0 PP 375

13.1. Configure process and human tasksccocviiiiiiiiiiiiiciie e, 377

13.2. Generate forms from task definitionscccovvviiiiii i 379

R 20c T =l 11 0 o] 11 < PPN 382
13.3.1. Form generated desCriptioncceuviieiiiiiiieiiiiieeee e 382
13.3.2. Customizing fOrMoiiii e 382
13.3.3. FIeld tYPES oo 410

13.4. Document attaChmMeNtSiiiiiiiiiii e e 419
13.4.1. Process and forms configurationc.ocoeeviieiiiinneiiiiineeeciinnn. 419
13.4.2. Marshalling strategy and deployment configuration 421

Vi

jBPM Documentation

13.5. Using forms on client applicationscooveieiiiiiiiiiiieei e 424
13.5.1. What does the APl provides?cccooviiiiiiiiiiciiii e 424
13.5.2. SAMPIE USAGE ..covviiiiiii e 426

14. RUNTIME MaNaAgEemMIENT ...uuiii e e e e e e e e e e ea e eaas 431

14.1. DEPIOYMENLS ...ttt ettt ettt e e ab e e eeaes 431
14.1.1. Deployment deSCHPLOrScuuiiiiiieiiii e eeee e e e e 431

14.2. Process DeplOYMENTSuiiiiiiieiiii et 440

I TN o o PP 442

15. Process and Task Managementcoouuuiiiiiiiiiiiiii e 445

15.1. Process ManagemeNntcuuiuuiiiiiiei e 445
15.1.1. Process DefinitioNsc..oiveiiiiiiiiiiiiein e 445
15.1.2. ProCess INSLANCESoiuuiiiiiiiiiii e en e 448

T2 =] P 456
15.2.1, TASK LIST wuuuiiiiiiiiee i eaans 457
15.2.2. New Task (Ad-HOC TaSK)ccuuuiiiiiiiiiiiiiiieeeii e 463

16. Business ACtivity MONITOTING ..ocouviiiiiiiii e 466

G I @ Y= V= P 466

16.2. BUSINESS Dashboardscoouuiiiiiiiiiieiie e 467

16.3. Process Dashboardccoooiiiiiiiiiiii e 469
16.3.1. Task DashbOardccoouiiiiiiiiiiiiiiii e 473

17, REMOTE AP e 475

17.1. Remote Java AP ... 475
17.1.1. Remote REST Java API Client Configurationcccooeveeiinnnnn. 477
17.1.2. Remote JMS Java API Client Configurationccccocceeevine. 479
17.1.3. Remote CommandWebService Java API Client Configuration 486
17.1.4. Supported Methodscooiiiiiiiiii e 490

17,2, REST i 501
17.2.1. REST PEIMUSSIONS ...uiiiiiiiiiieiiiieeiie e e e e e e e e e e e e e e e e e e aanaes 502
17.2.2. RUNIIME CaIlS ..uiiiiiieie e e 509
17.2.3. TASK CAUIS .eeveiieiiiii e 517
17.2.4. Deployment CallSooooiiiiiiiiiiiiiie e 521
17.2.5. Deployment call detailsccoeeiiiiiiiiiiii e 523
17.2.6. EXECULE CallS ...uviiiiieiiici e 525
17.2.7. REST SUMMAIY ..ottt ettt et e e e e e eneeanens 531

17.3. REST QUETY AP oot e e e 537
17.3.1. QuEry URL layOUL ...cccuuieiiiiiiieeiiii e e e 537
17.3.2. QUErY Parametersc..viiiiiiiiieiiiee e 539
17.3.3. Parameter Tablecooveiiiiiiiii e 542
17.3.4. Parameter eXamplesooiiiiiii e 545
17.3.5. Query OUutput FOrmMAaLo.vvviiiiii e 546

L7.4. IS ot 547
17.4.1. IMS QUEUE SEIUP ..vuivieiiiiiiiiiei sttt e e e 548
17.4.2. Using the remote Java APlcoooiiiiiiiiiiii e 548
17.4.3. EXaMPIe JMS USAQEcovveiiiiiiii e et e e e e e 549

viii

jBPM Documentation

17.5. Additional Informationc.oiiiiiiiiii e 554
17.5.1. REST Serialization: JAXB 0OF JSONccoiiiiiiiiiiiiiiiieeciiin e 554

17.5.2. Sending and receiving user class iNStancesccccooevevineeeennnnnn. 554

17.5.3. Including the deployment idccoooviiiiiiiiiii e, 556

17.5.4. REST Paginationcccuuuiiiiiiiiiiiiii e 557

17.5.5. REST Map query parameterscvuviviviiiiininiiiineinenenenenneanens 563

17.5.6. REST Number query parametersccocuiieeeeiinieeeeeiieeeeiineeeenns 564

17.5.7. RUNLIME SrateQIeS ...evvuiiiiieiii e e e e eeas 564

Y ol [o] PSP PTRSPPPPIN 567
18. [BPM ECHPSE PIUGIN oot 568
18.1. [BPM ECHPSE PIUGIN ...ciiiiiieiiii e 568
18.1.1. INSEAllAtiON ...ueiiiiiieeeei e 568

18.1.2.]BPM Project Wizardcooeeieuiiieiiiiieeeii e 570

18.1.3. New BPMN2 Process Wizardcccooeveuiiiiiiiiiiiieiiiiin e 573

18.1.4. [BPM RUNLIME ...oviiiiiiiii e e s 573

18.1.5. jBPM Maven Project Wizardcooveviieiiiiiiinecin e 578

18.1.6. Drools EclipSe PIUGINoeiiiiiiieiiiiie e 581

18.1.7. Kie NaVIgator VIEWcc.oiiiiiiiiii e e e e e e e e 581

18.2. DEDUGING ..neeettieeiiii ettt ettt eaans 599
18.2.1. The Process INStanCes VIEWovviiiiiiiieiiiiinieiiiinee et e e 600

18.2.2. The AUt VIBW ..oovuiiiieei et 601

18.3. Synchronizing with Workbench RepoSitoriesccccccoeveiiiiiiiiiciicccies 602
18.3.1. Importing a workbench repositorycoooeveiiiiiiiiiineeiiiieeei, 603

18.3.2. Committing changes to the workbenchcco.coo, 606

18.3.3. Updating from to the workbenchc.coooiiii . 608

18.3.4. Working on individual projectsc.ccooveiiiiiiiiiiiiiie e, 610

19. Eclipse BPMN 2.0 MOGEIET .. .couuiiiiiiiie e 614
LO.0. OVEIVIBW euieiiiii ettt ettt ettt e e et e e e et n e e et e e e e et e e e e et eeas 614
19.2. INSTANALION ...eeeie e 614
S JRC T B To Tol ¥] 0 1=] o1 7= L1 o] o IR TPPPIN 615

RV 111 (=T o [=1 (o] o E PSP P TR UPPPTTRUPPPPN 618
b2 I Y (=T | - L o] o TP 619
20,0, MAVEN ot 619
20.1.1. Maven artifacts as deployment Unitscccovvevieiiiiieiin e, 619

20.1.2. Use Maven for dependency managementc.oceeevenveveeinnneeennnn. 621

20.2. CDl i 623
O I R @Y= V1 623

20.2.2. Configuring CDI integrationc.cciieiiiiiiiiiieeie e eeee e 627

20.2.3. RuntimeManager as CDI beancccoiveiiiiiiiniiiiiiecc e 630

b2 IR TS Y o] 12T PN 632
20.3.1. Direct use of Runtime Manager APlcoooieiiiiiiiiinieiieeeeeen, 633

20.3.2. jBPM services With SPringccocoiiiiiiiiiiiieiee e 637

204, B D i 640
20.4.1. Ejb services implementationcccoooviiiiiiiiiiii e 641

jBPM Documentation

20.4.2. LoCal INEITACE ..cevnieiiieee e 643

20.4.3. Remote INerfaceoocevvuiiiiiiiiiie e 644

O T © 1]] PP 647

VI AQVANCEA TOPICS ouuiiiiiiiii et e e e e e e e e e e e e et e e et e e et e e et e e et e e ean e eanaees 648
21. DOMaiN-SPECIfiC PrOCESSESiiiiiiiiiiiii ettt 649
b2 I R 1o o o U1 1 o] o PP 649
A © YT V1 P 650
21.2.1. Work Item Definitionsccouvuiiiiiiiiiiiii e 650

21.2.2. Work Item HandIerscooveuiiiiiieiii e 650

21.3. Example: NOtfICAtioNSccouiiiiiiiii e 652
21.3.1. The Notification Work Item Definitioncc.ocoeveiiiiiiiiinneennnn. 653

21.3.2. The Noti ficationvorkltemHandl erccoovviiiiiiiiieiiiineiieeeeis 658

21.4. SErviCe REPOSIIONYoeiiiiiiieiiii ettt 660
21.4.1. Public |BPM SEIVICe rePOSItONY ...cccvuveiiiieiiieiiiieeiii e e e e eeenns 662

21.4.2. Setting Up Your OWN SErviCe rePOSItONYoeeeeuveeeeerinieeeeniineeeenns 662

22. EXCePtion ManagemENTiiiiiiiiiiiei e e e e e e e e e e e e e 665
N T © 1YY V1 P 665
b2 |11 o o [UTox 1 o] o RSP 665
2 TSP 665
22.3.1. Technical EXCEPLIONSccvvuiiiiiiiiii e e 665

22.3.2. Technical Exception EXamplescooveiiiiinieiiiiinieiiiieeeeineeees 668

S PSP 676
22.4.1. BUSINESS EXCEPLIONSiiiiiiieiiiiii e 677

23, FIEXIDIE PrOCESSES .ovviiiiiiii ittt e e 680
24. Concurrency and asynchronous eXeCULIONovviieuiiiieiiiiinneeiine e 683
24,1, CONCUITEICY tuituiiniteietei e e e e e e e e e et e e et e r et e n et et et et e eaaeens 683
24.1.1. ENQINE EXECULION ..uueiiiiiiieeiiii ettt 683

24.1.2. Multiple knowledge sessions and persistencecccoeevvveeeinnnnns 684

24.2. ASYNCNIONOUS EXECULIONuuiiiiiiieiiiii ettt e s 685
24.2.1. Asynchronous handlerscccooeiiiiiiiiiiii e 685

24.2.2. [DPM EXECULON ...evuiiiiiii ettt et e e et e e e e e e e eaa e aees 685

25, REIEASE NOLES ..ttt e e ettt aaaan 692
25,1, JBPIM B.5 it 692
25.1.1. New and Noteworthy in BPM 6.5.0cooevviiiiiiiiiiiccie e, 692
25.1.2. New and Noteworthy in KIE Workbench 6.5.0c.ccooovviiiiiiiiiinnenennnn, 693
25.2. IBPM B.4 .t 694
25.2.1. New and Noteworthy in [BPM 6.4.0cooviiiiiiiiiiiiiieeeeie e 694
25.2.2. New and Noteworthy in KIE Workbench 6.4.0cccoeeiiiiiiiiicinneenn, 699
25,3, IBPIM 6.3 it 710
25.3.1. New and Noteworthy in BPM 6.3.0cccooviiiiiiiiiiiii e, 710
25.3.2. New and Noteworthy in KIE Workbench 6.3.0cccoooeiiiiiiiiiiiinnenennnn, 718
25,4, IBPM B.2 ..ot 725
25.4.1. New and Noteworthy in [BPM 6.2.0cooviiiiiiiiiiiiiieceec e 725
25.4.2. New and Noteworthy in KIE Workbench 6.2.0cccoeeiiiiiiiincinnennn, 728

jBPM Documentation

25.5. IBPM B.1 ..o
25.5.1. New and Noteworthy in BPM 6.1.0

25.5.2. New and Noteworthy in KIE Workbench 6.1.0

25.6. [BPM 6.0 ..ooiiiiiiiieiiiiiei e
25.6.1. New and Noteworthy in KIE API 6.0.0
25.6.2. New and Noteworthy in BPM 6.0.0

25.6.3. New and Noteworthy in KIE Workbench 6.0.0

25.6.4. New and Noteworthy in Integration 6.0.0

Xi

Part |I. Getting Started

Introduction and getting started with jBPM

Chapter 1. Overview

1.1. What is jBPM?

jBPM is a flexible Business Process Management (BPM) Suite. It is light-weight, fully open-source
(distributed under Apache license) and written in Java. It allows you to model, execute, and monitor
business processes throughout their life cycle.

B

P
I_.~ “““'HF. Evaluation h
(- . I' g _
O—D| “—Ealf Evaluation |—> —|— + —.@
= A
DI “—PM Evaluabion

A business process allows you to model your business goals by describing the steps that need to
be executed to achieve those goals, and the order of those goals are depicted using a flow chart.
This process greatly improves the visibility and agility of your business logic. jBPM focuses on
executable business processes, which are business processes that contain enough detail so they
can actually be executed on a BPM engine. Executable business processes bridge the gap be-
tween business users and developers as they are higher-level and use domain-specific concepts
that are understood by business users but can also be executed directly.

Business processes need to be supported throughout their entire life cycle: authoring, deployment,
process management and task lists, and dashboards and reporting.

The core of BPM is a light-weight, extensible workflow engine written in pure Java that allows you
to execute business processes using the latest BPMN 2.0 specification. It can run in any Java
environment, embedded in your application or as a service.

On top of the core engine, a lot of features and tools are offered to support business processes
throughout their entire life cycle:

* Pluggable human task service based on WS-HumanTask for including tasks that need to be
performed by human actors.

» Pluggable persistence and transactions (based on JPA / JTA).

« Web-based process designer to support the graphical creation and simulation of your business
processes (drag and drop).

» Web-based data modeler and form modeler to support the creation of data models and process
and task forms

Overview

* Web-based, customizable dashboards and reporting

« All combined in one web-based workbench, supporting the complete BPM life cycle:
* Modeling and deployment - author your processes, rules, data models, forms and other assets
» Execution - execute processes, tasks, rules and events on the core runtime engine
» Runtime Management - work on assigned task, manage process instances, etc

* Reporting - keep track of the execution using Business Activity Monitoring capabilities

The Knowledge Life Cycle

Opathezrireg Deploy Proces s Manggemdant Tanas Dashi:nardy

o Aaftarryg Dy rasln Lk igre T Lot [T e & |

=

The Busness Knowledge to drve your company

» Eclipse-based developer tools to support the modeling, testing and debugging of processes
* Remote API to process engine as a service (REST, JMS, Remote Java API)
« Integration with Maven, Spring, OSGi, etc.

BPM creates the bridge between business analysts, developers and end users by offering process
management features and tools in a way that both business users and developers like. Do-
main-specific nodes can be plugged into the palette, making the processes more easily under-
stood by business users.

jBPM supports adaptive and dynamic processes that require flexibility to model complex, real-life
situations that cannot easily be described using a rigid process. We bring control back to the
end users by allowing them to control which parts of the process should be executed; this allows
dynamic deviation from the process.

jBPM is not just an isolated process engine. Complex business logic can be modeled as a com-
bination of business processes with business rules and complex event processing. jBPM can be
combined with the Drools project to support one unified environment that integrates these para-
digms where you model your business logic as a combination of processes, rules and events.

Runtime
Management

Execution

Modeling
& Deployment

Overview

1.2. Overview

| Core

Engine

Figure 1.1.

Human Task

Service

Guvnor
Re pasrtary

&
Business
Analyst
™
-
End User -
b
Developer
[P
y
| |
| Eclipse |
Developer |
| Tools
|
9 J

This figure gives an overview of the different components of the jBPM project.

« The core engine is the heart of the project and allows you to execute business processes in
a flexible manner. It is a pure Java component that you can choose to embed as part of your
application or deploy it as a service and connect to it through the web-based Ul or remote APIs.

« An optional core service is the human task service that will take care of the human task life

cycle if human actors participate in the process.

« Another optional core service is runtime persistence; this will persist the state of all your
process instances and log audit information about everything that is happening at runtime.

« Applications can connect to the core engine by through its Java API or as a set of CDI ser-

vices, but also remotely through a REST and JMS API.

« Web-based tools allows you to model, simulate and deploy your processes and other related
artifacts (like data models, forms, rules, etc.):

¢ The process designer allows business users to design and simulate business processes in

a web-based environment.

Overview

» The data modeler allows non-technical users to view, modify and create data models for use
in your processes.

» A web-based form modeler also allows you to create, generate or edit forms related to your
processes (to start the process or to complete one of the user tasks).

» Rule authoring allows you to specify different types of business rules (decision tables, guided
rules, etc.) for combination with your processes.

» All assets are stored and managed on the Guvnor repository (exposed through Git) and can
be managed (versioning), built and deployed.

» The web-based management console allows business users to manage their runtime (manage
business processes like start new processes, inspect running instances, etc.), to manage their
task list and to perform Business Activity Monitoring (BAM) and see reports.

» The Eclipse-based developer tools are an extension to the Eclipse IDE, targeted towards de-
velopers, and allows you to create business processes using drag and drop, test and debug
your processes, etc.

Each of the components are described in more detail below.

1.3. Core Engine

The core jBPM engine is the heart of the project. It's a light-weight workflow engine that executes
your business processes. It can be embedded as part of your application or deployed as a service
(possibly on the cloud). Its most important features are the following:

 Solid, stable core engine for executing your process instances.

« Native support for the latest BPMN 2.0 specification for modeling and executing business
processes.

» Strong focus on performance and scalability.

 Light-weight (can be deployed on almost any device that supports a simple Java Runtime En-
vironment; does not require any web container at all).

« (Optional) pluggable persistence with a default JPA implementation.
» Pluggable transaction support with a default JTA implementation.

« Implemented as a generic process engine, so it can be extended to support new node types
or other process languages.

» Listeners to be notified of various events.

« Ability to migrate running process instances to a new version of their process definition

Overview

The core engine can also be integrated with a few other (independent) core services:

e The human task service can be used to manage human tasks when human actors need to
participate in the process. It is fully pluggable and the default implementation is based on the
WS-HumanTask specification and manages the life cycle of the tasks, task lists, task forms,
and some more advanced features like escalation, delegation, rule-based assignments, etc.

» The history log can store all information about the execution of all the processes in the engine.
This is necessary if you need access to historic information as runtime persistence only stores
the current state of all active process instances. The history log can be used to store all current
and historic states of active and completed process instances. It can be used to query for any
information related to the execution of process instances, for monitoring, analysis, etc.

1.4. Process Designer

The web-based designer allows you to model your business processes in a web-based environ-
ment. It is targeted towards business users and offers a graphical editor for viewing and editing
your business processes (using drag and drop), similar to the Eclipse plugin. It supports round-
tripping between the Eclipse editor and the web-based designer. It also supports simulation of
processes.

e [o

= Project Explorer = - = Business Process [evaluation bpmn
N e n = - r - & C1 - = =
S Ly s Mo g Ty
: - - -
[=] P—
rea ']
' . == = =
= . = v - 4 —Hﬁ i

= Problems

Figure 1.2. Web-based designer for creating BPMN2 processes

1.5. Data Modeler

Processes almost always have some kind of data to work with. The data modeler allows non-
technical users to view, edit or create these data models.

Overview

Typically, a business process analyst or data analyst will capture the requirements for a process or
application and turn these into a formal set of interrelated data structures. The new Data Modeler
tool provides an easy, straightforward and visual aid for building both logical and physical data
models, without the need for advanced development skills or explicit coding. The data modelers
is transparently integrate into the workbench. Its main goals are to make data models into first
class citizens in the process improvement cycle and allow for full process automation through the
integrated use of data structures (and the forms that will be used to interact with them).

1.6. Form Modeler

The jBPM Form Modeler is a form engine and editor that enables users to create forms to capture
and display information during process or task execution, without needing any coding or template
markup skills.

It provides a WYSIWYG environment to model forms that it's easy to use for less technical users.

Form Modeler [PerformanceEvaluation-taskfiorm] Save | Deleee | w | <
B Form data ongin | &8 Add felds by orign | of] Add lelds by ppe . S Foirn propeies Show moce ¥ Bindings &1 Grd & Ruler =~
_ . __{.l = L m 2 i m |.l.-u L |-'.. |.w 4] |-..'. _I.'.-J o
E‘ || IIL'{__-‘ D T I e B R I L LT I I S B R B e LT I I O e L L LI e e e B R e LT L I U I PR}
..... - i
i paaral it
& Simple subfam '__ﬂg K
E Hushple subform 'i,
" [N Fman
O Ehor ket E
Lomg 1ext 4
. |

[Biginte ger
1:-| ‘- o =
3 Inleger I j

Riich fext

5l Timasiam I " -
] Tim = e

Figure 1.3. Form Modeler

Key features:

« Form Modeling WYSIWYG Ul for forms
« Form autogeneration from data model / Java objects

« Data binding for Java objects

Overview

* Formula and expressions
e Customized forms layouts
* Forms embedding

The form modeler's user interfaces is aimed both at process analyst and developers for building
and testing forms.

Developers or advanced used will also have some advanced features to customize form behavior
and look&feel.

1.7. Process Instance and Task Management

Business processes can be managed through a web-based management console. It is targeted
towards business users and its main features are the following:

» Process instance management: the ability to start new process instances, get a list of running
process instances, visually inspect the state of a specific process instances.

* Human task management: being able to get a list of all your current tasks (either assigned to you
or that you might be able to claim), and completing tasks on your task list (using customizable
task forms).

=
m Dusiness Proces [hidng bamnd . = Indtance Detals A ™ | W |
Frimata Moaig
Instance 1D 1
Defondtin 1 orive]
Dnitfitin Barms Heev i Dty
Deployment 6 oo HL 1D
TN T SN I - T T Sr—— S R— I —— —-.D Oolinition Verslon 1
Ansisre Siate ST

Curront Acthvities 18310 L1030 1 - HR Itervies

Irmtance Log 1

Figure 1.4. Managing your process instances

1.8. Business Activity Monitoring

As of version 6.0, jBPM comes with a full-featured BAM tooling which allows non-technical users to
visually compose business dashboards. With this brand new module, to develop business activity
monitoring and reporting solutions on top of jJBPM has never been so easy!

Overview

Tl R

Tkl geimian s el g
el

- Rt

= P
R]
Abud

Er D omr w Re

[

[P
P vum:

= w0 FROES St - §
Pz Lner o rose-

= BT PROFE LT B §
Fmowns s

- e Prgoms venas &
T

- Saiwe Taxi 65 -
P 0

- Sainct Proces D -
Taik

- Baiwct Task -
Tiwh S b

- Baiwct Tanh Siaet datw 2
Taih Lol dats

- Saiwct Tank Enl ae - 0

Ta®

INSRERCES by PrOTELE ISLLERTEt SLErned by wber

W of LNk ssinpnran | Memiety of vkl pof witr | Tastd 118 ted By date | TRLAY diempieted by i | itk detamee | Firiks By Misbes

Humbser of Lagh IAELaAES

Figure 1.5. Business Activity Monitoring

Key features:

 Visual configuration of dashboards (Drag'n'drop).

» Graphical representation of KPIs (Key Performance Indicators).

» Configuration of interactive report tables.

» Data export to Excel and CSV format.

« Filtering and search, both in-memory or SQL based.

» Data extraction from external systems, through different protocols.

» Granular access control for different user profiles.

* Look'n'feel customization tools.

 Pluggable chart library architecture.
e Chart libraries provided: NVD3 & OFC2.

Target users:

« Managers / Business owners. Consumer of dashboards and reports.

» IT / System architects. Connectivity and data extraction.

* Analysts. Dashboard composition & configuration.

To get further information about the new and noteworthy BAM capabilities of jBPM please read
the chapter Business Activity Monitoring.

Overview

1.9. Workbench

The workbench is the web-based application that combines all of the above web-based tools into
one configurable solution.

It supports the following:

« A repository service to store your business processes and related artefacts, using a Git reposi-
tory, which supports versioning, remote accessing (as a file system), and using REST services.

* A web-based user interface to manage your business processes, targeted towards business
users; it also supports the visualization (and editing) of your artifacts (the web-based editors
like designer, data and form modeler are integrated here), but also categorisation, build and
deployment, etc..

« Collaboration features to have multiple actors (for example business users and developers)
work together on the same project.

Workbench application covers complete life cycle of BPM projects starting at authoring phase,

going through implementation, execution and monitoring.

The Knowledge Life Cycle

fgthagnng Deploy Frocess Managemard Tasin Dashbpardy

@1 Al tareg Dl yr=usin Mo wnn Do re T Lol Propconn & Tim LI NI

The Busness Knowledge to drve your company

Figure 1.6. KIE workbench application

1.10. Eclipse Developer Tools

The Eclipse-based tools are a set of plugins to the Eclipse IDE and allow you to integrate your
business processes in your development environment. It is targeted towards developers and has
some wizards to get started, a graphical editor for creating your business processes (using drag
and drop) and a lot of advanced testing and debugging capabilities.

10

Overview

- J-ai@h=ilio S e e de | e T ST 10 TR 0 Ot NN e i | a | o [Simtn] G0t s [e mepatory tepiorng
Progeat [agsore o R o Mawigair o L Feahsarimnd
T -
] + e el anmey | v
e 4@ o
i -'h"—h-. ST — | iy I . -:1--.-"----..

Figure 1.7. Eclipse editor for creating BPMN2 processes

It includes the following features:

« Wizard for creating a new jBPM project

» A graphical editor for BPMN 2.0 processes

* The ability to plug in your own domain-specific nodes

* Validation

* Runtime support (so you can select which version of jBPM you would like to use)

» Graphical debugging to see all running process instances of a selected session, to visualize the
current state of one specific process instance, etc.

11

Chapter 2. Getting Started

2.1. Downloads

All releases can be downloaded from SourceForge [https://sourceforge.net/projects/jbpm/files/].
Select the version you want to download and then select which artifact you want:

« bin: all the jBPM binaries (JARs) and their dependencies

« src: the sources of the core components

+ docs: the documentation

« examples: some jBPM examples, can be imported into Eclipse

« installer: the jbpme-installer, downloads and installs a demo setup of jBPM

« installer-full: the jbpm-installer, downloads and installs a demo setup of jBPM, already contains
a number of dependencies prepackages (so they don't need to be downloaded separately)

2.2. Getting Started

If you like to take a quick tutorial that will guide you through most of the components using a simple
example, take a look at the Installer chapter. This will teach you how to download and use the
installer to create a demo setup, including most of the components. It uses a simple example to
guide you through the most important features. Screencasts are available to help you out as well.

If you like to read more information first, the following chapters first focus on the core engine
(API, BPMN 2.0, etc.). Further chapters will then describe the other components and other more
complex topics like domain-specific processes, flexible processes, etc. After reading the core
chapters, you should be able to jump to other chapters that you might find interesting.

You can also start playing around with some examples that are offered in a separate download.
Check out the examples chapter to see how to start playing with these.

After reading through these chapters, you should be ready to start creating your own processes
and integrate the engine with your application. These processes can be started from the installer
or be started from scratch.

2.3. Community

Here are a lot of useful links part of the jBPM community:

« A feed of blog entries [http://planet.jboss.org/view/feed.seam?name=jbossjbpm] related to
iBPM

12

https://sourceforge.net/projects/jbpm/files/
https://sourceforge.net/projects/jbpm/files/
http://planet.jboss.org/view/feed.seam?name=jbossjbpm
http://planet.jboss.org/view/feed.seam?name=jbossjbpm

Getting Started

« The #jbossjbpm Twitter account [http://twitter.com/jbossjbpm].

e A user forum [http://www.jboss.com/index.htmlI?module=bb&op=viewforum&f=217]
for asking questions and giving answers

« A JIRA bug tracking system [https://jira.jboss.org/jira/browse/JBPM] for bugs, feature requests
and roadmap

e A continuous build server [https://hudson.jboss.org/hudson/job/iBPM/] for getting the latest
shapshots [https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jopm-distrib-
ution/target/]

Please feel free to join us in our IRC channel at chat.freenode.net #jbpm. This is where most
of the real-time discussion about the project takes place and where you can find most of the
developers most of their time as well. Don't have an IRC client installed? Simply go to http://
webchat.freenode.net/, input your desired nickname, and specify #jbpm. Then click login to join
the fun.

2.4. Sources

2.4.1. License

The jBPM code itself is using the Apache License v2.0.

Some other components we integrate with have their own license:

* The new Eclipse BPMNZ2 plugin is Eclipse Public License (EPL) v1.0.
» The web-based designer is based on Oryx/Wapama and is MIT License

« The Drools project is Apache License v2.0.

2.4.2. Source code

jBPM now uses git for its source code version control system. The sources of the BPM project
can be found here (including all releases starting from jBPM 5.0-CR1):

https://github.com/droolsjbpm/jbpm

The source of some of the other components we integrate with can be found here:

« Other components related to the jJBPM and Drools project can be found here [https://github.com/
droolsjbpm].

e The new Eclipse BPMN2 plugin can be found here [https://git.eclipse.org/c/bpmn2-model-
er/org.eclipse.bpmn2-modeler.git].

13

http://twitter.com/jbossjbpm
http://twitter.com/jbossjbpm
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=217
https://jira.jboss.org/jira/browse/JBPM
https://jira.jboss.org/jira/browse/JBPM
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/hudson/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
http://webchat.freenode.net/
http://webchat.freenode.net/
https://github.com/droolsjbpm/jbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git
https://git.eclipse.org/c/bpmn2-modeler/org.eclipse.bpmn2-modeler.git

Getting Started

» The web-based designer can be found here [https://github.com/droolsjbpm/jbpm-designer]

« The kie workbench can be found here [https://github.com/droolsjbpm/kie-wb-distribution-wars]
note this is an aggregate of other projects (drools-wb, jppm-console-ng)

2.4.3. Building from source

If you're interested in building the source code, contributing, releasing, etc. make sure to read this
README [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md].

2.5. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it :)
2.5.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http://
www.jboss.org/ and click "Register".

Log in | Register | Cool Stuff

Members Projects Products
T LU Community Iser Group!
Choosing the right technology... stay connected: [(&) B3
JBoss Community JBoss Ent i
Community driven projects 'x'.'n‘:::'-%c..?pif:ﬂlﬁ_:g._.;:q T &) JBoss : Check out the |atest
featuring the latest innovations b certifled on multiple platforms "'e.t?' "AS,Y ae audio podcasts
fior cutting edge apps. Tor misshon critical apps. h
JBoss Degf'cper .

Learn more about the Webinar Series»

Building Apps!

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokyo, Roppongi Hills

I‘joq_v—F'u JavaOne Tokyo 2012

- ‘ Join Red Hat at the JavaOne conference in
LLL] o _!nq -l Tokyo where you can hear talks on some of
. hCIS hEE'hhl"EIECIS-E(ﬂ , the latest JBoss projects.

June 25-26 : Baston
HIFTAaTINT D - Darean

NOW OPENIRS
i+ . JUDCon 2012:Boston

CALL anspﬁp

14

https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/jbpm-designer
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/kie-wb-distribution-wars
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
http://www.jboss.org/
http://www.jboss.org/

Getting Started

2.5.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and
ensures that source code can be licensed appropriately"

https://cla.jboss.org/

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using your jboss_org user account and sign an Individual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for vour contributions and ensures that the source code can be licensed appropriatelv.

Username: I—Bl
Password: %]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidy and prevents project leads from reviewing unnecessary agreements.

2.5.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [https://issues.jboss.org/browse/JBRULES](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

15

https://cla.jboss.org/
https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Getting Started

Projects ! lssues = EENIEES

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

2.5.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be
ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.
The fork will create a copy in your own GitHub space which you can work on at your own pace.
If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository
provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm

@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

2.5.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

16

https://github.com/droolsjbpm

Getting Started

then using a String is not practical so then by all means place them in separate DRL files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

17

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Getting Started

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

2.5.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

18

Getting Started

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &

.19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

2.5.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can
now submit your work as a pull request. If you look at the top of the page in GitHub for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

19

Getting Started

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

20

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Getting Started

2.6. What to do if | encounter problems or have ques-
tions?
You can always contact the jJBPM community for assistance.

IRC: #jbpm at chat.freenode.net

jBPM User Forum [http://community.jboss.org/en/jbpm?view=discussions]

21

http://community.jboss.org/en/jbpm?view=discussions
http://community.jboss.org/en/jbpm?view=discussions

Chapter 3. |BPM Installer

3.1. Prerequisites

This script assumes you have Java JDK 1.6+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

Tip

To check whether Java and Ant are installed correctly, type the following com-
mands inside a command prompt:

java -version
ant -version

This should return information about which version of Java and Ant you are cur-
rently using.

3.2. Downloading the Installer

First of all, you need to download [https://sourceforge.net/projects/jbpm/files/iBPM%206/] the in-
staller and unzip it to your local file system. There are two versions

« full installer - which already contains a lot of the dependencies that are necessary during the
installation

» minimal installer - which only contains the installer and will download all dependencies
In general, it is probably best to download the full installer: jBPM-{version}-installer-full.zip

You can also find the latest snapshot release here (only minimal installer) here:

https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
[https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jopm-distribution/target/]

3.3. Demo Setup

The easiest way to get started is to simply run the installation script to install the demo setup.
The demo install will setup all the web tooling (on top of WildFly) and Eclipse tooling in a pre-
configured setup. Go into the jbpm-installer folder where you unzipped the installer and (from a
command prompt) run:

22

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://sourceforge.net/projects/jbpm/files/jBPM%206/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/
https://hudson.jboss.org/jenkins/job/jBPM/lastSuccessfulBuild/artifact/jbpm-distribution/target/

jBPM Installer

ant install.denp

This will:

» Download WildFly application server

» Configure and deploy the web tooling

Download Eclipse

Install the Drools and jBPM Eclipse plugin

Install the Eclipse BPMN 2.0 Modeler

Running this command could take a while (REALLY, not kidding, we are for example downloading
an Eclipse installation, even if you downloaded the full installer, specifically for your operating
system).

Tip

The script always shows which file it is downloading (you could for example check
whether it is still downloading by checking the whether the size of the file in question
in the jbpm-installer/lib folder is still increasing). If you want to avoid downloading
specific components (because you will not be using them or you already have them
installed somewhere else), check below for running only specific parts of the demo
or directing the installer to an already installed component.

Once the demo setup has finished, you can start playing with the various components by starting
the demo setup:

ant start.denp

This will:

 Start H2 database server

« Start WildFly application server

 Start Eclipse

Now wait until the process management console comes up:

http://localhost:8080/jbpm-console

23

http://localhost:8080/jbpm-console

jBPM Installer

@ Note

It could take a minute to start up the application server and web application. If
the web page doesn't show up after a while, make sure you don't have a firewall
blocking that port, or another application already using the port 8080. You can al-
ways take a look at the server log jppm-installer/wildfly-8.1.0.Final/standalone/log/
server.log

Finally, if you also want to use the DashBuilder for reporting (which is implemented as a separate
war), you can now also install this:

ant install.dashboard.into.jboss

Once everything is started, you can start playing with the Eclipse and web tooling, as explained
in the following sections.
If you only want to try out the web tooling and do not wish to download and install the Eclipse

tooling, you can use these alternative commands:

ant install.denp. noeclipse
ant start.deno. noeclipse

Similarly, if you only want to try out the Eclipse tooling and do not wish to download and install
the web tooling, you can use these alternative commands:

ant install.deno.eclipse
ant start.deno. eclipse

Now continue with the 10-minute tutorials. Once you're done playing and you want to shut down
the demo setup, you can use:

ant stop.deno

If at any point in time would like to start over with a clean demo setup - meaning all changes you did
inside the web tooling and/or saved in the database will be lost, you can run the following command
(after which you can run the installer again from scratch, note that this cannot be undone):

ant cl ean. deno

24

jBPM Installer

3.4. 10-Minute Tutorial using the Workbench

Open up the process management console:

http://localhost:8080/jbpm-console

Log in, using krisv / krisv as username / password.

Using a prebuilt Evaluation example, the following screencast [http://people.redhat.com/kver-
laen/jbpm6F-installer-console.swf] gives an overview of how to manage your process instances.
It shows you:

» How to build and deploy a process

« How to start a new process instance

« How to look up the current status of a running process instance
» How to look up your tasks

* How to complete a task

« How to generate reports to monitor your process execution

25

http://localhost:8080/jbpm-console
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf

jBPM Installer

d two sample playground repositories, co

To do so, open up the Project Editor (from the Tools menu) and click Build & Deploy.

« To manage your process definitions and instances, click on the "Process Management" menu
option at the top menu bar an select one of available options depending on you interest:

» Process Definitions - lists all available process definitions

26

http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-console.swf

jBPM Installer

» Process Instances - lists all active process instances (allows to show completed, aborted as
well by changing filter criteria)

» Process definitions panel allow you to start a new process instance by clicking on the "Play”
button. The process form (as defined in the project) will be shown, where you need to fill in the
necessary information to start the process. In this case, you need to fill the user you want to
start an evaluation for (in this case use "krisv") and a reason for the request, after which you
can complete the form. Some details about the process instance that was just started will be
shown in the process instance details panel. From there you can access additional details:

» Process model - to visualize current state of the process

» Process variables - to see current values of process variables
The process instance that you just started is first requiring a self-evaluation of the user and is
waiting until the user has completed this task.

» To see the tasks that have been assigned to you, choose the "Tasks" menu option on the top
bar and select "Task List" (you may need to click refresh to update your task view). The personal
tasks table should show a "Performance Evaluation” task reserved for you. After starting the
task, you can complete the task, which will open up the task form related to this task. You can fill
in the necessary data and then complete the form and close the window. After completing the
task, you could check the "Process Instances" once more to check the progress of your process
instance. You should be able to see that the process is now waiting for your HR manager and
project manager to also perform an evaluation. You could log in as "john" / "john" and "mary" /
"mary" to complete these tasks.

* After starting and/or completing a few process instances and human tasks, you can generate a
report of what has happened so far. Under "Dashboards", select "Process & Task Dashboard".
This is a set of see predefined charts that allow users to spot what is going on in the system.
Charts can be fully customized as well, as explained in the Business Activity Monitoring chapter.

3.5. 10-Minute Tutorial using Eclipse

The following screencast [http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf] gives
an overview of how to use the Eclipse tooling. It shows you:
« How to import and execute the evaluation sample project

« Import the evaluation project (included in the jbpme-installer)

* Open the Evaluation.bpmn process

» Open the com.sample.ProcessTest Java class

» Execute the ProcessTest class to run the process

* How to create a new jBPM project (including sample process and JUnit test)

27

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf

jBPM Installer

stance.

ject wizard.
cess. Select "

elect "iBPM project" and click "Ne
i Hello

3.6. Configuration

3.6.1. Playgrounds

The workbench by default brings two sample playground repositories (by cloning the jopm-play-
ground repository hosted on GitHub). In cases where this is not wanted (access to Internet might
not be available or there might be a need to start with a completely clean installation of the work-

28

http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf
http://people.redhat.com/kverlaen/jbpm6F-installer-eclipse.swf

jBPM Installer

bench) this default behavior can be turned off. To do so, change the following system property in
the start.jboss target to false in the build.xml:

- Dor g. ki e. deno=f al se

Note that this will create a completely empty version of the workbench. To be able to start modeling
processes, the following elements need to be created first:

« Organizational unit
» Repository (new or clone existing one)

» Project

3.6.2. Workbench Authentication

The workbench web application is using the "default” security domain for authenticating and au-
thorizing users (as specified in the WEB-INF/jboss-web.xml inside the WARS).

The application server is configured by default to use properties files for specifying users. Note
that this is for demo purposes only (as passwords and roles are stored in simple property files).
The security domain is configured in the standalone.xml configuration file as follows:

<security-domain nane="other" cache-type="defaul t"> <aut henti cati on> <l ogi n-
nmodul e code="UsersRol es" flag="required"> <nmodul e-opti on nane="usersProperties"
val ue="${j boss. server.config.dir}/users. properties"/> <nodul e-opti on

name="rol esProperties" val ue="${j boss.server.config.dir}/rol es.properties"/> </|ogin-nodul e>
</ aut henti cati on></security-donai n>
nane="ot her" cache-

type="defaul t"> <authentication> <l ogi n- nodul e
code="User sRol es" fl ag="required"> <nmodul e- opti on nane="user sProperties"
val ue="${j boss. server. config.dir}/users. properties"/> <nmodul e- opti on nanme="r ol esProperties"

val ue="${j boss. server.config.dir}/rol es. properties"/>
</l ogi n- nodul e>
</

By default, these configuration files contain the following users:

Table 3.1. Default users

Name Password Workbench roles Task roles
admin admin admin,analyst

krisv krisv admin,analyst

john john analyst Accounting,PM
mary mary analyst HR

sales-rep sales-rep analyst sales

29

jBPM Installer

Name Password Workbench roles Task roles

jack jack analyst IT

katy katy analyst HR

salaboy salaboy admin,analyst IT,HR,Accounting

Authentication can be customized by editing the authentication and configuration files in the jbpm-
installer/auth folder and/or by changing the standalone-*.xml files in the jopm-installer folder. Note
that you need to rerun the installer to make sure the modified files are copied and picked correctly.

3.6.3. Using your own database with the jBPM installer

3.6.3.1. Introduction

jBPM uses the Java Persistence API specification (v2) to allow users to configure whatever data-
source they want to use to persist runtime data. As a result, the instructions below describe how
you should configure a datasource when using JPA on JBoss application server (e.g. AS7, EAP6
or Wildfly8) using a per si st ence. xnl file and configuring your datasource and driver in your ap-
plication server's st andal one. xm , similar to how you would configure any other application using
JPA on JBoss application server. The installer automates some of this (like copying the right files
to the right location after installation).

By default, the jbpm-installer uses an H2 database for persisting runtime data. In this section we
will:

1. modify the persistence settings for runtime persistence of process instance state

2. test the startup with our new settings!

You will need a local instance of a database, in this case we will use MySQL.

3.6.3.2. Database setup

In the MySQL database used in this quickstart, create a single user:

 user/schema "jbpm" with password "jbpm" (which will be used to persist all entities)

If you end up using different names for your user/schemas, please make a note of where we insert
"jopm" in the configuration files.

If you want to try this quickstart with another database, a section at the end of this quickstart
describes what you may need to modify.

3.6.3.3. Configuration

The following files define the persistence settings for the jopm-installer demo:

* jbpm-installer/db/jbpm-persistence-JPA2.xml

30

jBPM Installer

» Application server configuration

« standalone-*.xml

Tip

There are multiple standalone.xml files available (depending on whether you are
using JBoss AS7, JBoss EAP6 or Wildfly8 and whether you are running the normal
or full profile). The full profile is required to use the JIMS component for remote
integration, so will be used by default by the installer. Best practice is to update all
standalone.xml files to have consistent setup but most important is to have stand-
alone-full-wildfly-8.1.0.Final.xml properly configured as this is used by default by
the installer.

Do the following:

» Disable H2 default database and enable MySQL database in build.properties

def aul t is H2# H2. versi on=1. 3. 168# db. nane=h2# db. driver.jar.nanme=
${db. nane}.jar# db. dri ver. downl oad. url =htt p://repol. naven. or g/ maven2/ com h2dat abase/ h2/
${H2. versi on}/ h2- ${ H2. ver si on} . j ar #nysql db. name=nysql db. dri ver. nodul e. prefi x=conl

nysql db. driver.jar.name=nysql - connector-java-5.1.18.jardb. driver.downl oad. url =https://
repository.jboss. org/ nexus/service/local /repositories/central/content/nmysql/nysql-connector-
javal/5.1. 18/ nysql - connector-java-5. 1. 18. j ar

H2#

H2. versi on=1. 3. 168#

db. nane=h2# db. driver.jar.nane=

${db. nane}.jar# db. dri ver. downl oad. url =http://repol. maven. or g/ maven2/ com h2dat abase/ h2/ ${ H2. ver si on}/
h2-

${H2. version}.jar

#mysql

db. name=nysql db. dri ver. nodul e. prefi x=con

nysql db. dri ver.jar. name=nysql - connect or -

java-5.1.18.jardb.driver.downl oad. url =https://repository.jboss. org/ nexus/ service/l ocal /
repositories/central/content/ mysql/nysql -connector-javal/5. 1. 18/ nysql - connect or -
java-5.1.18.jar

You might want to update the db driver jar name and download url to whatever version of the
jar matches your installation.

e db/j bpm persi stence- JPA2. xm :

This is the JPA persistence file that defines the persistence settings used by jBPM for both the
process engine information, the logging/BAM information and task service.

In this file, you will have to change the name of the hibernate dialect used for your database.

The original line is:

31

jBPM Installer

<property nanme="hi bernate.dial ect" val ue="org. hi bernate. di al ect. H2Di al ect"/ >

In the case of a MySQL database, you need to change it to:

<property name="hi bernate. di al ect" val ue="org. hi bernate. di al ect. My/SQLDi al ect"/>

For those of you who decided to use another database, a list of the available hibernate dialect
classes can be found here [http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/ses-
sion-configuration.html#configuration-optional-dialects].

standal one-ful |l -wi [dfly-8. 1. 0. Fi nal . xm :

St andal one. xnml and st andal one-ful | . xm are the configuration for the standalone JBoss
application server. When the installer installs the demo, it copies these files to the st and-
al one/ confi gurati on directory in the JBoss server directory. Since the installer uses Wild-
fly8 by default as application server, you probably need to change standal one-full -
wi | dfly-8.1.0.Final.xm.

We need to change the datasource configuration in st andal one-ful I . xm so that the jBPM
process engine can use our MySQL database. The original file contains (something very similar
to) the following lines:

<dat asour ce jta="true" j ndi - name="j ava: j boss/ dat asour ces/ j bpnDS" pool - name="H2DS"
enabl ed="true" use-java-context="true" use-ccn¥"true"> <connection-url >jdbc: h2:tcp://
| ocal host/ ~/ j bpm db; MVCC=TRUE</ connecti on-url > <driver>h2</driver> <security>
<user - nane>sa</ user - nane> </ security></dat asource><drivers> <driver nanme="h2"
nodul e="com h2dat abase. h2" > <xa- dat asour ce- cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa-
dat asour ce-cl ass> </driver></drivers>
va-context ="true" use-ccn¥"true"> <connection-url >jdbc: h2:tcp://Iocal host/

~/ j bpm db; WVCC=TRUE</ connecti on-url >
<driver>h2</driver>
<security>

<user - name>sa</ user - nane>

</ security></datasource><drivers>
<driver name="h2" nodul e="com h2dat abase. h2"> <xa-
dat asour ce-cl ass>or g. h2. j dbcx. JdbcDat aSour ce</ xa- dat asour ce- cl ass>

Change the lines to the following:

<dat asour ce jta="true" j ndi - name="j ava: j boss/ dat asour ces/ j bpnDS" pool - name=" M/ SQ.DS"
enabl ed="true" use-java-context="true" use-ccm="true"> <connection-url >
ccnE"true"> <connection-jdbc: nysql ://1 ocal host: 3306/] bpnx/ connecti on-url >

<driver>nysql </driver>

32

http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects
http://docs.jboss.org/hibernate/core/3.3/reference/en-US/html/session-configuration.html#configuration-optional-dialects

jBPM Installer

<security>
<user - name>j bpnx/ user - nane>
<passwor d>j bpnk/ passwor d>
</security>
</ dat asour ce>

and add an additional driver configuration:

<driver name="nysql" nodul e="com nysql ">

<xa- dat asour ce- cl ass>com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce</ xa- dat asour ce-
cl ass>
</driver>

To install driver jars in JBoss application server (Wildfly8, EAPS6, etc.), it is recommended to
install the driver jar as a module. The installer already takes care of this mostly: it will copy
the driver jar (you specified in the bui | d. properti es) to the right folder inside the modules
directory of your server and put a matching module.xml next to it. For MySQL, this file is called
db/ nysqgl _nmodul e. xm . Open this file and make sure that the file name of the driver jar listed
there is identical the driver jar name you specified in the bui | d. properti es (including the
version). Note that, even if you simply uncommented the default MySQL configuration, you will
still need to add the right version here.

Starting the denmo

We've modified all the necessary files at this point. Now would be a good time to make sure
your database is started up as well!

The installer script copies this file into the jbpm-console WAR before the WAR is installed on
the server. If you have already run the installer, it is recommended to stop the installer and
clean it first using

ant stop. deno

and

ant cl ean. deno

before continuing.

Run

ant install.deno

33

jBPM Installer

to (re)install the wars and copy the necessary configuration files. Once you've done that, (re)start
the demo using

ant start.deno

* Probl ens?
If this isn't working for you, please try the following:

* Please double check the files you've modified: | wrote this, but still made mistakes when
changing files!

» Please make sure that you don't secretly have another (unmodified) instance of JBoss AS
running.

« If neither of those work (and you're using MySQL), please do then let us know.

3.6.3.4. Using a different database

If you decide to use a different database with this demo, you need to remember the following when
going through the steps above:

» Configuring the jBPM datasource in st andal one. xni :

» After locating the j ava: j boss/ dat asour ces/ j bpnDS datasource, you need to provide the
following properties specific to your database:

e Change url of your database
* Change the user-name and password

¢ Change the name of the driver (which you'll create next)
For example:

<dat asource jta="true" jndi-nane="java:jboss/datasources/jbpnDS" pool - name="Post gr eSQLDS"

enabl ed="t rue" use-j ava- cont ext ="true" use-ccn¥"true"> <connecti on-
url >j dbc: postgresql ://1 ocal host: 5432/ j bpnk/ connecti on-url > <dri ver>post gresql </driver>
<security> <user - nane>j bpnx/ user - nane> <passwor d>j bpnk/ passwor d>
</ security></dat asource>
va-context="true" use-ccnE"true"> <connecti on-

url >j dbc: postgresql ://1 ocal host: 5432/ j bpnx/ connecti on-url >
<dri ver>post gresql </ driver>
<security>

<user - nane>j bpnk/ user - nanme>
<passwor d>j bpnx/ passwor d>

» Add an additional driver configuration:

34

jBPM Installer

* Change the name of the driver to match the name you specified when configuring the
datasource in the previous step

« Change the module of the driver: the database driver jar should be installed as a module
(see below) and here you should reference the unique name of the module. Since the
installer can take care of automatically generating this module for you (see below), this
should match the db. dri ver. nodul e. prefi x property in bui | d. properti es (where for-
ward slashes are replaced by a point). In the example below, | used “or g/ post gresqgl ”
as db. dri ver. nodul e. prefi x which means that | should then use or g. post gresqgl as
module name for the driver.

* Fill in the correct name of the XA datasource class to use
For example:

<driver nane="postgresqgl" nodul e="org. postgresqgl">
<xa- dat asour ce- cl ass>or g. post gresql . xa. PGXADat aSour ce</ xa- dat asour ce- cl ass>
</driver>

* You need to change the dialect in per si stence. xm to the dialect for your database, for ex-
ample:

<property name="hi bernate.dial ect" val ue="org. hi bernate. di al ect. PostgreSQ.D al ect"/>

« In order to make sure your driver will be correctly installed in the JBoss application server, there
are typically multiple options, like install as a module or as a deployment. It is recommended to
install the driver as a module for AS7, EAP6 and Wildfly8. For example, for AS7 both ways are
explained here [https://community.jboss.org/wiki/DataSourceConfigurationinAS7].

* Install [https://[community.jboss.org/wi-
ki/DataSourceConfigurationinAS7#lnstalling_a JDBC_driver_as_a_module] the driver JAR
as a module, which is what the install script does.

e Otherwise, you can modify and install [https://community.jboss.org/wi-
ki/DataSourceConfigurationinAS7#lInstalling_a_JDBC_driver_as_a_deployment] the down-
loaded JAR as a deployment. In this case you will have to copy the JAR yourself to the
st andal one/ depl oynment s directory.

If you choose to install driver as JBoss module (recommended), please do the following:

e Inbuil d. properti es, disable the default H2 driver properties

def aul t is H2# H2. ver si on=1. 3. 168# db. nane=h2# db. driver.jar.nanme=h2-
${H2. version}.jar# db.driver.downl oad. url =http://repol. maven. or g/ maven2/ com h2dat abase/ h2/
${ H2. versi on}/ h2- ${ H2. versi on} . j ar

H2#

H2. versi on=1. 3. 168#

35

https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_module
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment
https://community.jboss.org/wiki/DataSourceConfigurationinAS7#Installing_a_JDBC_driver_as_a_deployment

jBPM Installer

db. nane=h2# db. dri ver.j ar. name=h2-
${H2. version}.jar# db.driver.downl oad. url =http://repol. maven. or g/ maven2/ con’ h2dat abase/ h2/ ${ H2. ver si on}/
h2-

Uncomment one of the other example configs (mysql or postgresql) or create your own:

#post gr esql db. nane=post gresql db. dri ver. nodul e. prefi x=or g/

post gresql db. dri ver.jar.name=post gresql - 9. 1-902. j dbc4. j ardb. dri ver. downl oad. url =https://

repository.jboss. org/ nexus/content/repositories/thirdparty-upl oads/ postgresql/

post gresql /9. 1-902. j dbc4/ post gresql - 9. 1-902. j dbc4. j ar

gresql

db. nane=post gr esql db. dri ver. nodul e. prefi x=or g/

post gresq

db. driver.jar.nane=postgresql -9. 1-902. j dbc4. jardb. dri ver.downl oad. url =https://repository.jboss. org/ nexus/ cont
t hi rdparty-upl oads/ post gresql / post gresql /9. 1- 902. j dbc4/

¢ Change the db. nanme property in bui | d. properti es to a name for your database.

¢ Change the db. driver. nodul e. prefi x property to a name for the module of your dri-
ver. Note that this should match the module property when configuring the driver in
st andal one. xm (where forward slashes in the prefix here are replaced by a point). In the
example above, | used “or g/ post gresql ” as db. dri ver. modul e. prefi x which means
that | should then use or g. post gresql as module name for the driver.

¢ Change the db. dri ver.j ar. name property to the name of the jar that contains your data-
base driver.

¢ Changethedb. dri ver. downl oad. ur| property to where the driver jar can be downloaded.
Alternatively, you could manually download the jar yourself, and place it in the db/ dri ver s
folder, using the same name as you specified in the db. dri ver. j ar. name property.

Lastly, you'll have to create the db/ ${ db. name} _nodul e. xn file. As an example you can
use db/mysqgl_module.xml, so just make a copy of it and:

* Change the name of the module to match the driver module name above

* Change the name of the module resource path to the name of the db. dri ver.j ar. name

property.
For example, the top of the file would look like:

<nmodul e xm ns="urn:j boss: nodul e: 1. 0" nanme="or g. post gresql ">
<resour ces>
<resource-root path="postgresql-9.1-902.jdbc4.jar"/>
</ resources>

36

jBPM Installer

3.6.4. |BPM database schema scripts (DDL scripts)

By default the demo setup makes use of Hibernate auto DDL generation capabilities to build up
the complete database schema, including all tables, sequences, etc. This might not always be
welcomed (by your database administrator), and thus the installer provides DDL scripts for most
popular databases.

Table 3.2. DDL scripts

Database name Location

db2 jbpm-installer/db/ddI-scripts/db2

derby jbpm-installer/db/ddI-scripts/derby

h2 jbpm-installer/db/ddI-scripts/h2

hsqldb jbpm-installer/db/ddl-scripts/hsqldb
mysql5 jbpm-installer/db/ddI-scripts/mysql5
mysgqlinnodb jbpm-installer/db/ddl-scripts/mysqglinnodb
oracle jbpm-installer/db/ddI-scripts/oracle
postgresq| jbpm-installer/db/ddI-scripts/postgresq|l
sqlserver jbpm-installer/db/ddI-scripts/sqlserver
sqlserver2008 jbpm-installer/db/ddI-scripts/sqlserver2008

DDL scripts are provided for both jBPM and Quartz schemas although Quartz schema DDL script
is only required when the timer service should be configured with Quartz database job store. See
the section on timers for additional details.

This can be used to initially create the database schema, but it can also serve as the basis for
any\ optimization that needs to be applied - such as indexes, etc.

3.6.5. jBPM installer script

jBPM installer ant script performs most of the work automatically and usually does not require
additional attention but in case it does, here is a list of available targets that might be needed to
perform some of the steps manually.

Table 3.3. JBPM installer available targets

Target Description

clean.db cleans up database used by jBPM demo (ap-
plies only to H2 database)

clean.demo cleans up entire installation so new installation
can be performed

clean.demo.noeclipse same as clean.demo but does not remove
Eclipse

37

jBPM Installer

Target
clean.eclipse
clean.generated.dd|

clean.jboss

clean.jboss.repository

download.dashboard

download.db.driver

download.ddl.dependencies

download.droolsjbpm.eclipse
download.eclipse
download.jboss

download.jBPM.bin

download.jBPM.console
install.dashboard.into.jboss
install.db.files

install.demo

install.demo.eclipse

install.demo.noeclipse

install.dependencies

install.droolsjbpm-eclipse.into.eclipse

install.eclipse

install.jboss

install.jBPM-console.into.jboss

Description
removes Eclipse and its workspace
removes DDL scripts generated if any

removes application server with all its deploy-
ments

removes repository content for demo setup
(guvnor Maven repo, niogit, etc)

downloads jBPM dashboard component (BAM)

downloads DB driver configured in
build.properties

downloads all dependencies required to run
DDL script generation tool

downloads Drools and jBPM Eclipse plugin
downloads Eclipse distribution
downloads JBoss Application Server

downloads jBPM binary distribution (jBPM libs
and its dependencies)

downloads jBPM console for JBoss AS
installs jBPM dashboard into JBoss AS
installs DB driver as JBoss module
installs complete demo environment

installs Eclipse with all jBPM plugins, no server
installation

similar to install.demo but skips Eclipse instal-
lation

installs custom libraries (such as work item
handlers, etc) into the jBPM console

installs droolsjbpm Eclipse plugin into Eclipse
install Eclipse IDE
installs JBoss AS

installs jBPM console application into JBoss
AS

3.7. Frequently Asked Questions

Some common issues are explained below.

Q: What if the installer complains it cannot download component X?

38

jBPM Installer

A: Are you connected to the Internet? Do you have a firewall turned on? Do you require a proxy? It
might be possible that one of the locations we're downloading the components from is temporarily
offline. Try downloading the components manually (possibly from alternate locations) and put
them in the jbpme-installer/lib folder.

Q: What if the installer complains it cannot extract / unzip a certain JAR/WAR/zip?

A: If your download failed while downloading a component, it is possible that the installer is trying
to use an incomplete file. Try deleting the component in question from the jbpm-installer/lib folder
and reinstall, so it will be downloaded again.

Q: What if | have been changing my installation (and it no longer works) and | want to start over
again with a clean installation?

A: You can use ant clean.demo to remove all the installed components, so you end up with a
fresh installation again.

Q: | sometimes see exceptions when trying to stop or restart certain services, what should | do?

A: If you see errors during shutdown, are you sure the services were still running? If you see
exceptions during restart, are you sure the service you started earlier was successfully shutdown?
Maybe try killing the services manually if necessary.

Q: Something seems to be going wrong when running Eclipse but | have no idea what. What
can | do?

A: Always check the consoles for output like error messages or stack traces. You can also check
the Eclipse Error Log for exceptions. Try adding an audit logger to your session to figure out what's
happening at runtime, or try debugging your application.

Q: Something seems to be going wrong when running the a web-based application like the jbpm-
console. What can | do?

A: You can check the server log for possible exceptions: jppm-installer/jpboss-as-{version}/stand-
alone/log/server.log (for JBoss AS7).

For all other questions, try contacting the jBPM community as described in the Getting Started
chapter.

39

Chapter 4. Examples

4.1. Introduction

The web-based workbench by default will install two sample repositories that contain various sam-
ple projects that help you getting started. This section shows different examples that can be found
in the jopm-playground repository (also available here: https://github.com/droolsjbpm/jbpm-play-
ground). All these examples are high level and business oriented.

If you want to contribute with these examples please get in touch with any member of the jBPM/
Drools Team.

4.2. Importing Projects through Git

To import the Human Resources example, as well as other examples, follow these steps:
1. Logging into Workbench

a. On the command line, change into the $SERVER_HOVE/ bi n/ directory and execute the
following command:

« for Unix environment:
./ st andal one. sh
» for Windows environment:
./ st andal one. bat
b. Once your server is up and running, open the following address in a web browser:

http://1 ocal host: 8080/ busi ness-centr al

This opens the login page.
c. Log into Workbench with the user credentials created during installation.

2. Importing Projects Through Git

a. Click Authoring — Administration.

40

https://github.com/droolsjbpm/jbpm-playground
https://github.com/droolsjbpm/jbpm-playground

Examples

b. Click Repositories - Clone repository.

c. Inthe New Repository dialogue, enter following information:

» Repository Name: for example, playground.
» Organizational Unit: select your organizational unit, for example example.

» Git URL: enter the Git URL you want to import, for example: https://github.com/drool-
sjbpm/jbpm-playground.

d. Click Clone.

This will import a number of premade examples into your instance of jBPM.

4.3. Human Resources Example

The Human Resource Example's use case can be described as follows: A company wants to
hire new developers. In this process, three departments (that is the Human resources, IT, and
Accounting) are involved. These departments are represented by three users: Katy, Jack, and
John respectively.

41

Examples

Resources

_.:J—\ f :2]— N _.:]— ™y '/':é?h— ™ / :3]—‘ \ :,.“—‘\
Initial HR Technical 7 Mail Job) R)
.-‘ pirkacsiuil J——> i H Job Proposal }——» st Sign Contract }——» Twit new Hire)——.
R —— \ \ \ / | R —

% L 4 L > \ . > p >

Accounting

L g

Jack

Business process designed for the Human Resource Example's use case

Figure 4.1. Business Process

Note that only four out of the six defined activities within the business process are User Tasks. User
Tasks require human interaction. The other two tasks are Service Tasks, which are automated
and connected to other systems.

Each instance of the process will follow certain actions:

» The human resources team performs the initial interview with the candidate.

e The IT department team performs the technical interview.

42

Examples

« Based on the output from the previous two steps, the accounting team creates a job proposal.

When the proposal has been drafted, it is automatically sent to the candidate via email.

If the candidate accepts the proposal, a new meeting to sign the contract is scheduled.

Finally, if the candidate accepts the proposal, the system posts a message about the new hire
using Twitter service connector.

Note, that Jack, John, and Katy represent any employee within the company with appropriate role
assigned.

4.3.1. The Kie Project: human-resources

To start exploring the project:

1. Click Authoring — Project Authoring.

2. Click BUSINESS PROCESSES - hiring.

The authoring perspective contains the hiring.bpmn2 process and a set of forms for each human
task. Click these assets to explore. Notice that different editors open for different types of assets.

bpmnZ - Business Processes Save | De
Overview

éjl a {E,v ol T _E_-|v L :n: e':jo':; : - Iil' 2T & - v gv |-_] F .:. [lE 43 _ N [ton \J]
s Modelling Simulation Results Process Documentation

&

HR Interview

&

Tech Interview

=1

Tweet New Hire

Create Proposal Send Proposal

Sign Contract

4.3.2. Building the Human Resources Example

To build the Project:

1. cClick Authoring - Project Authoring.
2. Click Open Project Editor.
3. Click Build - Build & Deploy.

Build & Deploy creates a new JAR artifact that is deployed to the runtime environment as a new
deployment unit.

43

Examples

O 6 @ 1 Admi

Asset Searc|

save | Delete | Rename | Copy | Build ~ o | M

Build & Deploy

After successfully building and deploying your project, you can verify its presence in the Deploy-

ments tab. Click Deploy — Deployments to do so.

ed Units MNew Deployment Unit | ;
ment Runtime strategy Status Actions
rmor:guvnor-asset-mgmt-project6.4.0-redha... | SINGLETOM Active Deactivate | | Undeploy
m:human-resources:1.0 SINGLETOM Active Deactivate | | Undeploy

Figure 4.2. Deployment Units Section

You can find all the deployed units in the Deployments tab. When you Build & Deploy a project from
the Project Editor, it is deployed using the default configurations. That means using the Singleton
Strategy, the default Kie Base and the default Kie Session.

44

Authoring -

Examples

If you want a more advanced deployment, undeploy and re-deploy your artifacts using their GAV
and selecting non-default settings. Then, you will be able to set a different strategy, or use a non-
default Kie Base or Kie Session.

Once your artifact that contains the process definition is deployed, the Process Definition will

become available in Process Management — Process Definitions.

4.3.3. Create a new Process Instance

To create new process instances:

1. Click Process Management - Process Definitions.

2. Start your instance:

Deploy Process Management « Tasks

=finitions

veloper

1

e, = org.jppm:human-resource... Dptions

= Details
Version Project Actions L.
Definition Id hiring
org.joppm:human-resourc...
Definition Hiring a Dewveloper
Name
Deployment org.jbpm:human-resources:1.0

You can start process instances using any of the two highlighted options.

Figure 4.3. Starting Process Instances

The Process Definitions tab contains all the available process definitions in the runtime environ-
ment. In order to add new process definitions, build and deploy a new project.

Most processes require additional information to create a new process instance. This is done
through forms. For this project, fill in the name of the candidate that is to be interviewed.

When you click Submit, you create a new process instance. This creates the first task, that is
available for the Human Resources team. To see the task, you need to logout and log in as a user
with the appropriate role assigned, that is someone from the Human Resources.

When you start the process, you can interact with the human tasks. To do so, click Task — Tasks.

Note that in order to see the tasks in the task list, you need to belong to specific user groups, for
which the task is designed. For example, the HR Interview task is visible only for the members of
the HR group, and the Tech Interview Task is visible only to the members of the IT group.

45

Examples

4.4. Examples zip

A zip file of examples can also be downloaded from the downloads page, containing various
examples that can be opened in the Eclipse-based Developers Tools. Simply download and unzip
the examples artefact and import into your Eclipse workspace.

46

Part Il. IBPM Core

Using the jBPM Core Engine

Chapter 5. Core Engine API

5.1. Overview

This chapter introduces the API you need to load processes and execute them. For more detail
on how to define the processes themselves, check out the chapter on BPMN 2.0.

To interact with the process engine (for example, to start a process), you need to set up a session.
This session will be used to communicate with the process engine. A session needs to have a
reference to a knowledge base, which contains a reference to all the relevant process definitions.
This knowledge base is used to look up the process definitions whenever necessary. To create
a session, you first need to create a knowledge base, load all the necessary process definitions
(this can be from various sources, like from classpath, file system or process repository) and then
instantiate a session.

Once you have set up a session, you can use it to start executing processes. Whenever a process
is started, a new process instance is created (for that process definition) that maintains the state
of that specific instance of the process.

AT Ty
~

Stateful
Knowledge Knowledge
Base Session

Process
Instance

Process
Definition

For example, imagine you are writing an application to process sales orders. You could then define
one or more process definitions that define how the order should be processed. When starting up
your application, you first need to create a knowledge base that contains those process definitions.
You can then create a session based on this knowledge base so that, whenever a new sales order

48

Core Engine API

comes in, a new process instance is started for that sales order. That process instance contains
the state of the process for that specific sales request.

A knowledge base can be shared across sessions and usually is only created once, at the start of
the application (as creating a knowledge base can be rather heavy-weight as it involves parsing
and compiling the process definitions). Knowledge bases can be dynamically changed (so you
can add or remove processes at runtime).

Sessions can be created based on a knowledge base and are used to execute processes and
interact with the engine. You can create as many independent session as you need and creating
a session is considered relatively lightweight. How many sessions you create is up to you. In
general, most simple cases start out with creating one session that is then called from various
places in your application. You could decide to create multiple sessions if for example you want
to have multiple independent processing units (for example, if you want all processes from one
customer to be completely independent from processes for another customer, you could create an
independent session for each customer) or if you need multiple sessions for scalability reasons.
If you don't know what to do, simply start by having one knowledge base that contains all your
process definitions and create one session that you then use to execute all your processes.

The jBPM project has a clear separation between the API the users should be interacting with
and the actual implementation classes. The public API exposes most of the features we believe
"normal” users can safely use and should remain rather stable across releases. Expert users can
still access internal classes but should be aware that they should know what they are doing and
that the internal API might still change in the future.

As explained above, the jBPM API should thus be used to (1) create a knowledge base that
contains your process definitions, and to (2) create a session to start new process instances,
signal existing ones, register listeners, etc.

5.2. KieBase

The jBPM API allows you to first create a knowledge base. This knowledge base should include
all your process definitions that might need to be executed by that session. To create a knowledge
base, use a KieHelper to load processes from various resources (for example from the classpath
or from the file system), and then create a new knowledge base from that helper. The following
code snippet shows how to create a knowledge base consisting of only one process definition
(using in this case a resource from the classpath).

Ki eHel per ki eHel per = new Ki eHel per();

Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newCl assPat hResour ce(" MyProcess. bpmm"))
.bui ld();

The ResourceFactory has similar methods to load files from file system, from URL, InputStream,
Reader, etc.

49

Core Engine API

This is considered manual creation of knowledge base and while it is simple it is not recommend-
ed for real application development but more for try outs. Following you'll find recommended and
much more powerful way of building knowledge base, knowledge session and more - Runtime-
Manager.

5.3. KieSession

Once you've loaded your knowledge base, you should create a session to interact with the engine.
This session can then be used to start new processes, signal events, etc. The following code
shippet shows how easy it is to create a session based on the previously created knowledge base,
and to start a process (by id).

Ki eSessi on ksessi on = kbase. newKi eSessi on();
Processl nstance processlnstance = ksession.startProcess("com sanpl e. M/Process");

5.3.1. ProcessRuntime

The ProcessRunt i me interface defines all the session methods for interacting with processes, as
shown below.

| **

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id.

*

* (@aram processld The id of the process that should be started

* @eturn the that represents the instance of the process that was started
*/

Processl nstance startProcess(String processld);

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Paraneters can be passed
* to the process instance (as nane-value pairs), and these will be set

as variabl es of the process instance.

* @aram processld the id of the process that should be started
* @aram paranmeters the process variables that should be set when starting the process instance
* @eturn the that represents the instance of the process that was started
*/
Processl nstance startProcess(String processld,
Map<String, Object> paraneters);

* Signal s the engine that an event has occurred. The type paraneter defines

* which type of event and the event paraneter can contain additional information

* related to the event. All process instances that are listening to this type

* of (external) event will be notified. For perfornmance reasons, this type of event
* signaling should only be used if one process instance should be able to notify

* other process instances. For internal event within one process instance, use the

50

Core Engine API

* signal Event nmethod that al so include the processlnstanceld of the process instance
* in question.

*

* @aramtype the type of event

* @aram event the data associated with this event

*/
voi d signal Event(String type,

bj ect event);

/*-k

* Signals the process instance that an event has occurred. The type paraneter defines

* which type of event and the event paraneter can contain additional information

* related to the event. All node instances inside the given process instance that

* are listening to this type of (internal) event will be notified. Note that the event
* will only be processed inside the given process instance. All other process instances
* waiting for this type of event will not be notified.

* @aramtype the type of event
* @aram event the data associated with this event
* @ar am processlnstanceld the id of the process instance that should be signal ed
*/
voi d signal Event(String type,
bj ect event,
I ong processlnstancel d);

/*-k

* Returns a collection of currently active process instances. Note that only process
* instances that are currently | oaded and active inside the engine will be returned.
* \When using persistence, it is likely not all running process instances w |l be |oaded
* as their state will be stored persistently. It is reconmended not to use this

* nethod to collect information about the state of your process instances but to use
* a history log for that purpose.

*

* @eturn a collection of process instances currently active in the session

*/

Col | ecti on<Processl nst ance> get Processl nstances();

/**

* Returns the process instance with the given id. Note that only active process instances
*will bereturned. If a process instance has been conpleted already, this method will return
* null.

*

* @aramid the id of the process instance

* @eturn the process instance with the given id or null if it cannot be found

*/

Processl nstance get Processl nstance(l ong processl nstancel d);

/**

* Aborts the process instance with the given id. |f the process instance has been conpl eted
* (or aborted), or the process instance cannot be found, this nmethod will throw an

* |11 egal Argunment Excepti on.

*

* @aramid the id of the process instance

*/

voi d abort Processl nstance(l ong processlnstancel d);

/**
* Returns the WorkltenmManager related to this session. This can be used to
* register new WirkltenHandl ers or to conplete (or abort) Workltens.

51

Core Engine API

*

* the Workltemvanager related to this session
*/
Wor ki t emVanager get Wor kil t emvanager () ;

5.3.2. Event Listeners

The session provides methods for registering and removing listeners. A ProcessEvent Li st ener
can be used to listen to process-related events, like starting or completing a process, entering
and leaving a node, etc. Below, the different methods of the ProcessEvent Li st ener class are
shown. An event object provides access to related information, like the process instance and node
instance linked to the event. You can use this API to register your own event listeners.

public interface ProcessEventListener {

voi d beforeProcessStarted(ProcessStartedEvent event);

voi d afterProcessStarted(ProcessStartedEvent event);

voi d bef oreProcessConpl et ed(ProcessConpl et edEvent event);
voi d afterProcessConpl et ed(ProcessConpl et edEvent event);

voi d beforeNodeTri ggered(ProcessNodeTri ggeredEvent event);
voi d afterNodeTri ggered(ProcessNodeTriggeredEvent event);
voi d bef oreNodeLeft(ProcessNodeLeftEvent event);

voi d afterNodeLeft(ProcessNodelLeftEvent event);

voi d bef oreVari abl eChanged(ProcessVari abl eChangedEvent event);
voi d afterVariabl eChanged(ProcessVari abl eChangedEvent event);

A note about before and after events: these events typically act like a stack, which means that any
events that occur as a direct result of the previous event, will occur between the before and the
after of that event. For example, if a subsequent node is triggered as result of leaving a node, the
node triggered events will occur inbetween the beforeNodeLeftEvent and the afterNodelLeftEvent
of the node that is left (as the triggering of the second node is a direct result of leaving the first
node). Doing that allows us to derive cause relationships between events more easily. Similarly,
all node triggered and node left events that are the direct result of starting a process will occur
between the beforeProcessStarted and afterProcessStarted events. In general, if you just want
to be notified when a particular event occurs, you should be looking at the before events only (as
they occur immediately before the event actually occurs). When only looking at the after events,
one might get the impression that the events are fired in the wrong order, but because the after
events are triggered as a stack (after events will only fire when all events that were triggered as
a result of this event have already fired). After events should only be used if you want to make
sure that all processing related to this has ended (for example, when you want to be notified when
starting of a particular process instance has ended.

Also note that not all nodes always generate node triggered and/or node left events. Depending
on the type of node, some nodes might only generate node left events, others might only generate
node triggered events. Catching intermediate events for example are not generating triggered

52

Core Engine API

events (they are only generating left events, as they are not really triggered by another node, rather
activated from outside). Similarly, throwing intermediate events are not generating left events
(they are only generating triggered events, as they are not really left, as they have no outgoing
connection).

jBPM out-of-the-box provides a listener that can be used to create an audit log (either to the
console or the a file on the file system). This audit log contains all the different events that occurred
at runtime so it's easy to figure out what happened. Note that these loggers should only be used
for debugging purposes. The following logger implementations are supported by default:

1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This
log file might then be used in the IDE to generate a tree-based visualization of the events that
occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the
logger or when the number of events in the logger reaches a predefined level, it cannot be
used when debugging processes at runtime. A threaded file logger writes the events to a file
after a specified time interval, making it possible to use the logger to visualize the progress in
realtime, while debugging processes.

The Ki eServi ces lets you add a Ki eRunt i meLogger to your session, as shown below. When
creating a console logger, the knowledge session for which the logger needs to be created must
be passed as an argument. The file logger also requires the name of the log file to be created,
and the threaded file logger requires the interval (in milliseconds) after which the events should
be saved. You should always close the logger at the end of your application.

i mport org. ki e. api.KieServices;
i nport org.kie.api.logger.Ki eRunti nmeLogger ;

Ki eRunti neLogger |ogger = KieServices. Factory. get().getLoggers().newri|eLogger(ksession, "test");
/1 add invocations to the process engi ne here,
/'l e.g. ksession.startProcess(processld);

| ogger.close();

The log file that is created by the file-based loggers contains an XML-based overview of all the
events that occurred at runtime. It can be opened in Eclipse, using the Audit View in the Drools
Eclipse plugin, where the events are visualized as a tree. Events that occur between the before
and after event are shown as children of that event. The following screenshot shows a simple
example, where a process is started, resulting in the activation of the Start node, an Action node
and an End node, after which the process was completed.

53

Core Engine API

= =, RuleFlow started: ruleflow[com.sample . ruleflow]
= #] RuleFlow node triggered: Start in process ruleflow[com sample ruleflow]
=) RuleFlow node triggered: Hello in process ruleflow[com.sample.ruleflow]
= 4 RuleFlow node triggered: End in process ruleflow[com.sample.ruleflow]

= RuleFlow completed: ruleflow[com sample ruleflow]

5.3.3. Correlation Keys

A common requirement when working with processes is ability to assign a given process instance
some sort of business identifier that can be later on referenced without knowing the actual (gen-
erated) id of the process instance. To provide such capabilities, jBPM allows to use Correlation-
Key that is composed of CorrelationProperties. CorrelationKey can have either single property
describing it (which is in most cases) but it can be represented as multi valued properties set.

Correlation capabilities are provided as part of interface

Correl ati onAwar eProcessRunt i ne

that exposes following methods:

/**

* Start a new process instance. The process (definition) that should

* be used is referenced by the given process id. Paraneters can be passed
* to the process instance (as nane-val ue pairs), and these will be set

* as variables of the process instance.

* processld the id of the process that should be started

* correl ati onKey customcorrel ati on key that can be used to identify process instance

* paranmeters the process variables that should be set when starting the process instance
* the that represents the instance of the process that was started

*/

Processl nstance startProcess(String processld, Correl ationKey correl ati onKey, Map<String, Cbject> paraneter:

/**

* Creates a new process instance (but does not yet start it). The process

* (definition) that should be used is referenced by the given process id.

* Paraneters can be passed to the process instance (as nane-val ue pairs),

* and these will be set as variables of the process instance. You should only

* use this nethod if you need a reference to the process instance before actually
* starting it. Oherw se, use startProcess.

* processld the id of the process that should be started

* correl ati onKey customcorrel ati on key that can be used to identify process instance

* paranmeters the process variables that should be set when creating the process instance
* the that represents the instance of the process that was created (but not yet started)
*/

Processl nstance createProcesslnstance(String processlid, Correlati onKey correl ati onKey, Map<String, Object> |

54

Core Engine API

| **

* Returns the process instance with the given correlationkKey. Note that only active process instances
*will bereturned. If a process instance has been conpl eted al ready, this nethod will return

*

*

* @aramcorrel ati onKey the customcorrel ati on key assi gned when process i nstance was creat ed
* @eturn the process instance with the given id or if it cannot be found
*/
Processl nst ance get Processlnstance(Correl ati onKey correl ati onKey);

Correlation is usually used with long running processes and thus require persistence to be enabled
to be able to permanently store correlation information.

5.3.4. Threads

In the following text, we will refer to two types of "multi-threading™: logical and technical. Technical
multi-threading is what happens when multiple threads or processes are started on a computer,
for example by a Java or C program. Logical multi-threading is what we see in a BPM process after
the process reaches a parallel gateway, for example. From a functional standpoint, the original
process will then split into two processes that are executed in a parallel fashion.

Of course, the jBPM engine supports logical multi-threading: for example, processes that include
a parallel gateway. We've chosen to implement logical multi-threading using one thread: a jBPM
process that includes logical multi-threading will only be executed in one technical thread. The
main reason for doing this is that multiple (technical) threads need to be be able to communicate
state information with each other if they are working on the same process. This requirement brings
with it a number of complications. While it might seem that multi-threading would bring perfor-
mance benefits with it, the extra logic needed to make sure the different threads work together
well means that this is not guaranteed. There is also the extra overhead incurred because we
need to avoid race conditions and deadlocks.

In general, the jBPM engine executes actions in serial. For example, when the engine encounters
a script task in a process, it will synchronously execute that script and wait for it to complete before
continuing execution. Similarly, if a process encounters a parallel gateway, it will sequentially
trigger each of the outgoing branches, one after the other. This is possible since execution is
almost always instantaneous, meaning that it is extremely fast and produces almost no overhead.
As a result, the user will usually not even notice this. Similarly, action scripts in a process are also
synchronously executed, and the engine will wait for them to finish before continuing the process.
For example, doing a Thread. sl eep(...) as part of a script will not make the engine continue
execution elsewhere but will block the engine thread during that period.

The same principle applies to service tasks. When a service task is reached in a process, the
engine will also invoke the handler of this service synchronously. The engine will wait for the
conpl et eworkl ten(...) method to return before continuing execution. It is important that your
service handler executes your service asynchronously if its execution is not instantaneous.

55

Core Engine API

An example of this would be a service task that invokes an external service. Since the delay in
invoking this service remotely and waiting for the results might be too long, it might be a good idea
to invoke this service asynchronously. This means that the handler will only invoke the service and
will notify the engine later when the results are available. In the mean time, the process engine
then continues execution of the process.

Human tasks are a typical example of a service that needs to be invoked asynchronously, as we
don't want the engine to wait until a human actor has responded to the request. The human task
handler will only create a new task (on the task list of the assigned actor) when the human task
node is triggered. The engine will then be able to continue execution on the rest of the process (if
necessary) and the handler will notify the engine asynchronously when the user has completed
the task.

5.4. RuntimeManager

5.4.1. Overview

RuntimeManager has been introduced to simplify and empower usage of knowledge API espe-
cially in context of processes. It provides configurable strategies that control actual runtime exe-
cution (how KieSessions are provided) and by default provides following:

» Singleton - runtime manager maintains single KieSession regardless of number of processes
available

« Per Request - runtime manager delivers new KieSession for every request

« Per Process Instance - runtime manager maintains mapping between process instance and
KieSession and always provides same KieSession whenever working with given process in-
stance

Runtime Manager is primary responsible for managing and delivering instances of RuntimeEngine
to the caller. In turn, RuntimeEngine encapsulates two the most important elements of jBPM en-
gine:

» KieSession

* TaskService

Both of these components are already configured to work with each other smoothly without addi-
tional configuration from end user. No more need to register human task handler or keeping track
if it's connected to the service or not.

public interface Runti meManager {

/**

* Returns <code>Runti neEngi ne</code> instance that is fully initialized

*

* <|i>KiseSession is created or |oaded dependi ng on the strategy</Ili>

* TaskService is initialized and attached to ksession (via listener)

56

Core Engine API

* WorkltenHandl ers are initialized and regi stered on ksession</I|i>
* EventListeners (process, agenda, worki ng menory) are initialized and added t o ksessi on</
li>
* <ful >
*@ar ancont ext t heconcr et ei npl enent ati onof t hecont extt hati ssupport edbygi ven<code>Runt i neManager </
code>
* @eturn instance of the <code>Runti neEngi ne</code>
*/
Runt i meEngi ne get Runti meEngi ne(Cont ext <?> cont ext);

/-k*

* Unique identifier of the <code>Runti nmeManager </ code>
* @eturn

*/

String getldentifier();

/*-k
* Di sposes <code>Runti nmeEngi ne</code> and notifies all |isteners about that fact.
* This nmet hod shoul d al ways be used to di spose <code>Runti meEngi ne</ code> that is not needed
* anynore.

* ksession. di spose() shall never be used with Runti neManager as it will break the internal
* nechani sms of the manager responsible for clear and efficient disposal.

* Di spose is not needed if <code>Runt i meEngi ne</
code> was obtained within active JTA transacti on,
* this means that when get Runti neEngi ne net hod was invoked during active JTA transacti on then di spose of
* the runtine engine will happen automatically on transacti on conpletion.
* @aram runtime
*/
voi d di sposeRunti neEngi ne(Runti meEngi ne runtine);

| **

* Cl oses <code>Runti neManager </ code> and rel eases its resources. Shall al ways be cal | ed when
* runtinme manager is not needed any nore. Gtherwise it will still be active and operational .
*/

voi d close();

RuntimeEngine interface provides the most important methods to get access to engine compo-
nents:

public interface Runti meEngi ne {

/**
* Returns <code>Ki eSessi on</code> configured for this <code>Runti neEngi ne</ code>
* @eturn
*/

Ki eSessi on get Ki eSessi on();

/**
* Returns <code>TaskServi ce</code> configured for this <code>Runti neEngi ne</ code>
* @eturn
=

TaskServi ce get TaskService();

57

Core Engine API

RuntimeManager will ensure that regardless of the strategy it will provide same capabilities when
it comes to initialization and configuration of the RuntimeEngine. That means
 KieSession will be loaded with same factories (either in memory or JPA based)

» WorkltemHandlers will be registered on every KieSession (either loaded from db or newly cre-
ated)

» Event listeners (Process, Agenda, WorkingMemory) will be registered on every KieSession (ei-
ther loaded from db or newly created)

» TaskService will be configured with:
¢ JTA transaction manager
¢ same entity manager factory as for the KieSession

¢ UserGroupCallback from environment

On the other hand, RuntimeManager maintains the engine disposal as well by providing dedicated
methods to dispose RuntimeEngine when it's no more needed to release any resources it might
have acquired.

5.4.2. Strategies

Singleton strategy - instructs RuntimeManager to maintain single instance of RuntimeEngine
(and in turn single instance of KieSession and TaskService). Access to the RuntimeEngine is
synchronized and by that thread safe although it comes with a performance penalty due to syn-
chronization. This strategy is similar to what was available by default in jBPM version 5.x and it's
considered easiest strategy and recommended to start with.

It has following characteristics that are important to evaluate while considering it for given scenario:

58

Core Engine API

» small memory footprint - single instance of runtime engine and task service
« simple and compact in design and usage
« good fit for low to medium load on process engine due to synchronized access

« due to single KieSession instance all state objects (such as facts) are directly visible to all
process instances and vice versa

* not contextual - meaning when retrieving instances of RuntimeEngine from singleton Runtime-
Manager Context instance is not important and usually EmptyContext.get() is used although
null argument is acceptable as well

» keeps track of id of KieSession used between RuntimeManager restarts to ensure it will use
same session - this id is stored as serialized file on disc in temp location that depends on the
environment can be one of following:

« value given by jopm.data.dir system property
 value given by jboss.server.data.dir system property
 value given by java.io.tmpdir system property

Per request strategy - instructs RuntimeManager to provide new instance of RuntimeEngine for
every request. As request RuntimeManager will consider one or more invocations within single
transaction. It must return same instance of RuntimeEngine within single transaction to ensure
correctness of state as otherwise operation done in one call would not be visible in the other. This
is sort of "stateless" strategy that provides only request scope state and once request is completed
RuntimeEngine will be permanently destroyed - KieSession information will be removed from the
database in case persistence was used.

It has following characteristics:

« completely isolated process engine and task service operations for every request
« completely stateless, storing facts makes sense only for the duration of the request

 good fit for high load, stateless processes (no facts or timers involved that shall be preserved
between requests)

» KieSession is only available during life time of request and at the end is destroyed

* not contextual - meaning when retrieving instances of RuntimeEngine from per request Run-
timeManager Context instance is notimportant and usually EmptyContext.get() is used although
null argument is acceptable as well

Per process instance strategy - instructs RuntimeManager to maintain a strict relationship be-
tween KieSession and Processinstance. That means that KieSession will be available as long as
the Processinstance that it belongs to is active. This strategy provides the most flexible approach
to use advanced capabilities of the engine like rule evaluation in isolation (for given process in-

59

Core Engine API

stance only), maximum performance and reduction of potential bottlenecks intriduced by synchro-
nization; and at the same time reduces number of KieSessions to the actual number of process
instances rather than number of requests (in contrast to per request strategy).

It has following characteristics:

« most advanced strategy to provide isolation to given process instance only

e maintains strict relationship between KieSession and Processinstance to ensure it will always
deliver same KieSession for given ProcessInstance

« merges life cycle of KieSession with Processinstance making both to be disposed on process
instance completion (complete or abort)

- allows to maintain data (such as facts, timers) in scope of process instance - only process
instance will have access to that data

« introduces bit of overhead due to need to look up and load KieSession for process instance

« validates usage of KieSession so it cannot be (ab)used for other process instances, in such a
case exception is thrown

« is contextual - accepts following context instances:

» EmptyContext or null - when starting process instance as there is no process instance id
available yet

» ProcessinstanceldContext - used after process instance was created

» CorrelationKeyContext - used as an alternative to ProcessinstanceldContext to use custom
(business) key instead of process instance id

5.4.3. Usage

Regular usage scenario for RuntimeManager is:

At application startup

* build RuntimeManager and keep it for entire life time of the application, it's thread safe and
can be (or even should be) accessed concurrently

 Atrequest

» get RuntimeEngine from RuntimeManager using proper context instance dedicated to strat-
egy of RuntimeManager

» get KieSession and/or TaskService from RuntimeEngine

» perform operations on KieSession and/or TaskService such as startProcess, completeTask,
etc

60

Core Engine API

e once done with processing dispose RuntimeEngine using
RuntimeManager.disposeRuntimeEngine method

At application shutdown

¢ close RuntimeManager

5.4.3.1. Example

Here is how you can build RuntimeManager and get RuntimeEngine (that encapsulates KieSes-
sion and TaskService) from it:

I/ first configure environment that will be used by RuntinmeManager
Runt i meEnvi ronment environnent = Runti neEnvironnent Bui |l der. Factory. get ()
. newDef aul t | nMenor yBui | der ()
. addAsset (Resour ceFact ory. newCl assPat hResour ce(" BPM\2-
Scri pt Task. bprm2"), Resour ceType. BPM\2)
-get();

/'l next create RuntineManager - in this case singleton strategy is chosen
Runt i meManager manager = Runti neManager Factory. Factory. get (). newSi ngl et onRunt i meManager (envi r

/'l then get Runti nmeEngi ne out of manager - using enpty context as singleton does not keep track
/1 of runtine engine as there is only one
Runt i mreEngi ne runti me = nanager. get Runti meEngi ne(Enpt yCont ext. get());

/1 get KieSession from runtine runtinmeEngine - already initialized with all handlers,
listeners, etc that were configured
/1 on the environnent
Ki eSessi on ksession = runtimeEngi ne. get Ki eSessi on();

/1 add invocations to the process engine here,
/'l e.g. ksession.startProcess(processld);

// and | ast dispose the runtine engine
manager . di sposeRunt i meEngi ne(runti meEngi ne) ;

onnent) ;

This example provides simplest (minimal) way of using RuntimeManager and RuntimeEngine
although it provides few quite valuable information:

61

Core Engine API

* KieSession will be in memory only - by using newDefaultinMemoryBuilder
« there will be single process available for execution - by adding it as an asset

» TaskService will be configured and attached to KieSession via LocalHTWorkltemHandler to
support user task capabilities within processes

5.4.4. Configuration

The complexity of knowing when to create, dispose, register handlers, etc is taken away from the
end user and moved to the runtime manager that knows when/how to perform such operations
but still allows to have a fine grained control over this process by providing comprehensive con-
figuration of the RuntimeEnvironment.

public interface RuntimeEnvironnment {

| **

* Returns <code>Ki eBase</code> that shall be used by the nanager

*/
Ki eBase get Ki eBase();

/**

* Ki eSession environnment that shall be used to create instances of <code>Ki eSessi on</code>
*

*/
Envi ronment get Envi ronnent () ;

/**

* Ki eSession configuration that shall be used to create instances of <code>Ki eSessi on</ code>
*
*/

Ki eSessi onConfi gurati on get Confi guration();

/**

* Indicates if persistence shall be used for the KieSession instances
*

*/

bool ean usePersi stence();

/**
* Del i vers concrete i mpl erent ati on of <code>Regi st er abl el t emsFact or y</
code> to obtain handlers and |isteners
* that shall be registered on instances of <code>Ki eSessi on</code>
*
*/
Regi st erabl el t emsFact ory get Regi sterabl eltensFactory();

/**
* Del i vers concrete i mpl erent ati on of <code>User G- oupCal | back</
code> that shall be registered on instances
* of <code>TaskServi ce</code> for mmnagi ng users and groups.

*

*/

62

Core Engine API

User GroupCal | back get User G oupCal | back() ;

| **

* Delivers customclass | oader that shall

*

*/

Cl assLoader get C assLoader ();

| **

* Closes the environnent allowing to close all depending conponents such as ksession factories,

*/

void close();

5.4.4.1. Building RuntimeEnvironment

While RuntimeEnvironment interface provides mostly access to data kept as part of the environ-
ment and will be used by the RuntimeManager, users should take advantage of builder style class
that provides fluent API to configure RuntimeEnvironment with predefined settings.

public interface RuntimeEnvironnentBuilder {

publ i c Runti meEnvironment Buil der persistence(bool ean persi stenceEnabl ed);

publ i

publ i

publ i

publ i

publ i

publ i

(o3

Cc

o3

C]

(o3

Cc

Runt i meEnvi r onnent Bui | der

Runt i meEnvi r onnment Bui | der

Runt i meEnvi r onnent Bui | der

Runt i neEnvi r onnent Bui | der

Runt i neEnvi r onnent Bui | der

Runt i meEnvi r onnment Bui | der

entityManager Fact ory(Obj ect enf);

addAsset (Resource asset, ResourceType type);

addEnvi ronment Entry(String nane, Object val ue);

addConfiguration(String name, String val ue);

know edgeBase(Ki eBase kbase);

user G oupCal | back(User G- oupCal | back cal | back);

publ i c RuntineEnvironment Bui | der regi sterabl eltensFact ory(Regi sterableltenmsFactory factory);

public Runti meEnvironnment get();

public Runti meEnvironnentBuil der cl assLoader (C assLoader cl);

public Runti meEnvironnentBuil der schedul er Servi ce(Qbj ect gl obal Schedul er);

Instances of the RuntimeEnvironmentBuilder can be obtained via RuntimeEnvironmentBuilder-
Factory that provides preconfigured sets of builder to simplify and help users to build the environ-
ment for the RuntimeManager.

public interface RuntineEnvironnent Buil der Factory {

63

be used by the process engine and task service instances

etc

Core Engine API

/*-k
* Provi des conpletely enpty <code>Runt i meEnvi r onnent Bui | der </
code> instance that allows to nanually
* set all required conponents instead of relying on any defaults.
* @eturn new instance of <code>Runti meEnvironnent Bui | der </ code>
*/
public Runti meEnvironnent Bui | der newEnpt yBuil der () ;

/**
* Provides default configuration of <code>Runti meEnvironnent Bui | der</code> that is based on:
*
* <l i>Defaul t Runti neEnvironnment</Ii>
*
i @eturn new i nst ance of <code>Runt i meEnvi r onnent Bui | der </

code> that is already preconfigured with defaults
*

* @ee Defaul t Runti nmeEnvir onnent
*/
publ i c Runti meEnvironnment Bui | der newDef aul t Bui | der () ;

| **

* Provi des default configuration of <code>Runti neEnvironnent Bui | der </ code> that i s based on:

*
* <|i>Defaul t Runti nmeEnvironnent</1i>
* <ful >

* but it does not have persistence for process engine configured so it will only store process instances in I
& @eturn new i nst ance of <code>Runt i neEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironnent
*/
publ i c Runti meEnvironment Bui | der newDef aul t | nMenor yBui | der () ;

/*-k
* Provides default configuration of <code>Runti neEnvironnent Bui | der </ code> that i s based on:
*
* <l i>Defaul t Runti neEnvironnment</Ii>
* <ful >
* This one is tailored to works smoothly with kjars as the notion of kbase and ksessions
* @aram groupld group id of kjar
* @aramartifactld artifact id of kjar
* (@aram version version nunber of Kkjar
& @eturn new i nst ance of <code>Runt i neEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti neEnvironnent
*/
publ i c Runti meEnvironment Bui | der newDef aul t Buil der (String groupld, String artifactld, String version);

/*-k

* Provides default configuration of <code>Runti neEnvironnent Bui | der </ code> that i s based on:
*

* <l i>Defaul t Runti neEnvironnment</Ii>

* <ful >

* This one is tailored to works smoothly with kjars as the notion of kbase and ksessions
* @aram groupld group id of kjar

* @aramartifactld artifact id of kjar

* (@aram version version nunber of Kkjar

* @ar am kbaseNane nane of the kbase defined in knodul e.xm stored in kjar

64

Core Engine API

* @ar am ksessi onNane nanme of the ksession define in knodule.xm stored in kjar
& @eturn new i nst ance of <code>Runt i neEnvi r onnent Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti nmeEnvironnent
*/
public Runti nmeEnvironnent Bui | der newDef aul t Bui |l der (String groupld, String artifactld, String version, String |

/**
* Provides default configuration of <code>Runti meEnvironnent Bui | der</code> that is based on:
*
* <l i>Defaul t Runti neEnvironnment</Ii>
*
* This one is tailored to works smoothly with kjars as the notion of kbase and ksessions
* (@aramrel easel d <code>Rel easel d</ code> that described the kjar
* @eturn new i nstance of <code>Runt i meEnvi r onment Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti nmeEnvironnent
*/
public Runti meEnvironnentBui | der newDef aul t Bui | der (Rel easel d rel easel d);

/**
* Provides default configuration of <code>Runti neEnvironnent Bui | der </ code> that is based on:
*
* <l i>Defaul t Runti neEnvironnent
* <ful >
* This one is tailored to works smoothly with kjars as the notion of kbase and ksessions
* @aram rel easel d <code>Rel easel d</ code> that descri bed the kjar
* @ar am kbaseNane nane of the kbase defined in knodul e.xm stored in kjar
* (@ar am ksessi onNane name of the ksession define in knodule.xm stored in kjar
* @eturn new i nstance of <code>Runt i meEnvi r onment Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti nmeEnvironnent
*/
public Runti meEnvironnentBuil der newDef aul t Bui | der (Rel easel d rel easeld, String kbaseNanme, String ksessi onNane)

/**
* Provides default configuration of <code>Runti meEnvironnent Bui | der</code> that is based on:
*
* <l i>Defaul t Runti neEnvironnent
* <ful >
* It relies on KieC asspathContainer that requires to have knodul e.xml present in META-
I NF fol der which
* defines the kjar itself.
* Expects to use default kbase and ksession from knodul e.
* @eturn new i nstance of <code>Runt i meEnvi r onment Bui | der </
code> that is already preconfigured with defaults
*
* @ee Defaul t Runti nmeEnvironnent
*/
public Runti meEnvironnent Bui | der newCl asspat hkKnodul eDef aul t Bui | der () ;

/**

* Provides default configuration of <code>Runti neEnvironnent Bui | der </ code> that is based on:
* <yl >
* <|i>Defaul t Runti meEnvironnment</1i>
*

65

Core Engine API

* It relies on KieC asspathContainer that requires to have knodul e.xml present in META-
I NF fol der which
* defines the kjar itself.
* @ar am kbaseNane nanme of the kbase defined in knmodul e. xm
* @ar am ksessi onNanme nanme of the ksession define in knodul e. xni
i @eturn new i nst ance of <code>Runt i meEnvi r onnent Bui | der </
code> that is already preconfigured with defaults

*

* @ee Default Runti neEnvironnent
*/
publ i c Runti meEnvironnent Bui | der newCl asspat hKnodul eDef aul t Bui | der (String kbaseNane, String ksessi onNane);

Besides KieSession Runtime Manager provides access to TaskService too as integrated compo-
nent of a RuntimeEngine that will always be configured and ready for communication between
process engine and task service.

Since the default builder was used, it will already come with predefined set of elements that con-
sists of:

 Persistence unit name will be set to org.jppm.persistence.jpa (for both process engine and task
service)

* Human Task handler will be automatically registered on KieSession
« JPA based history log event listener will be automatically registered on KieSession

« Event listener to trigger rule task evaluation (fireAllRules) will be automatically registered on
KieSession
5.4.4.2. Registering handlers and listeners

To extend it with your own handlers or listeners a dedicated mechanism is provided that comes
as implementation of RegisterableltemsFactory

/**
* Ret ur ns new i nstances of <code>Wor kil t enHandl er </
code> that will be registered on <code>Runti neEngi ne</ code>
* @ar am runtime provi des <code>Runt i meEngi ne</

code> in case handler need to nake use of it internally
* @eturn map of handl ers to be registered - in case of no handl ers enpty map shal |l be returned.
*/
Map<Stri ng, WorkltenmHandl er> get Wor kl t emHandl er s(Runt i meEngi ne runti ne);

/**
* Ret ur ns new i nstances of <code>Pr ocessEvent Li st ener </
code> that will be registered on <code>Runti neEngi ne</ code>
* @ar am runtime provi des <code>Runt i meEngi ne</
code> in case listeners need to nake use of it internally
* @eturn list of listeners to be registered - in case of no listeners enpty list shall be returned.
*/

Li st <ProcessEvent Li st ener > get ProcessEvent Li st ener s(Runti meEngi ne runti ne);

66

Core Engine API

| **

* Ret ur ns new i nstances of <code>AgendaEvent Li st ener </
code> that will be registered on <code>Runti neEngi ne</ code>
* runtinme provi des <code>Runt i neEngi ne</

code> in case |listeners need to nake use of it internally
* list of listeners to be registered - in case of no |listeners enpty list shall be returned.
*/
Li st <AgendaEvent Li st ener > get AgendaEvent Li st ener s(Runti meEngi ne runti nme);

| **

* Ret ur ns new i nst ances of <code>Wor ki ngMenor yEvent Li st ener </
code> that will be registered on <code>Runti neEngi ne</ code>
* runtinme provi des <code>Runt i nreEngi ne</

code> in case listeners need to nake use of it internally
* list of listeners to be registered - in case of no |listeners enpty |list shall be returned.
*/
Li st <Wor ki ngMenor yEvent Li st ener > get Wr ki ngMenor yEvent Li st ener s(Runti meEngi ne runti nme);

A best practice is to just extend those that come out of the box and just add your own. Extensions
are not always needed as the default implementations of RegisterableltemsFactory provides pos-
sibility to define custom handlers and listeners. Following is a list of available implementations
that might be useful (they are ordered in the hierarchy of inheritance):

« org.jopm.runtime.manager.impl.SimpleRegisterableltemsFactory - simplest possible imple-
mentations that comes empty and is based on reflection to produce instances of handlers and
listeners based on given class names

 org.jopm.runtime.manager.impl.DefaultRegisterableltemsFactory - extension of the Simple im-
plementation that introduces defaults described above and still provides same capabilities as
Simple implementation

 org.jopm.runtime.manager.impl.KModuleRegisterableltemsFactory - extension of default im-
plementation that provides specific capabilities for kmodule and still provides same capabilities
as Simple implementation

* org.jopm.runtime.manager.impl.cdi.lnjectableRegisterableltemsFactory - extension of default
implementation that is tailored for CDI environments and provides CDI style approach to finding
handlers and listeners via producers

Alternatively, simple (stateless or requiring only KieSession) work item handlers might be regis-
tered in the well known way - defined as part of CustomWorkltem.conf file that shall be placed on
class path. To use this approach do following:

« create file "drools.session.conf" inside META-INF of the root of the class path, for web applica-
tions it will be WEB-INF/classes/META-INF

« add following line to drools.session.conf file "drools.workitemHandlers =
CustomWorkltemHandlers.conf"

- create file "CustomWorkltemHandlers.conf" inside META-INF of the root of the class path, for
web applications it will be WEB-INF/classes/META-INF

67

Core Engine API

« define custom work item handlers in MVEL style inside CustomWorkltemHandlers.conf

"Log": new org.jbpm process.instance.inpl.denp. Systenut WrkltenHandl er(),

"WebService": new org.jbpm process. wor kit em webservi ce. WebSer vi ceWor kI t enHandl er (ksessi on),
"Rest": new org.jbpm process. workitem rest. RESTWr kil t enHandl er (),

"Service Task" : new org.jbpm process. workitem bpm2. Ser vi ceTaskHandl er (ksessi on)

And that's it, now all these work item handlers will be registered for any KieSession created by
that application, regardless if it uses RuntimeManager or not.

5.4.4.2.1. Registering handlers and listeners in CDI environment

When using RuntimeManager in CDI environment there are dedicated interfaces that can be used
to provide custom WorkltemHandlers and EventListeners to the RuntimeEngine.

public interface WrkltenHandl er Producer {

* Returns map of (key = work item name, value work item handl er instance) of work itens
* to be registered on Ki eSession

*

* Paraneters that mght be given are as foll ows:

*

* <|li>ksession

* taskService</Ili>

* runtinmeManager

* <ful >

*

* identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out
* and provide valid instances for given owner

* paranms - owner might provide sone paraneters, usually KieSession, TaskService, RuntineManager instal
* map of work item handl er instances (recomendation is to always return new i nstances when this netl
*/

Map<String, WorkltenmHandl er> get WrkltenHandl ers(String identifier, Map<String, Cbject> parans);

Event listener producer shall be annotated with proper qualifier to indicate what type of listeners
they provide, so pick one of following to indicate they type:

* @Process - for ProcessEventListener
* @Agenda - for AgendaEventListener

* @WorkingMemory - for WorkingMemoryEventListener

public interface EventListenerProducer<T> {

| **

* Returns list of instances for given (T) type of listeners

68

Core Engine API

*

* Parameters that mght be given are as follows:

*

* <|i>ksession

* taskService

* runtimeManager</I|i>

* <ful >

* identifier - identifier of the owner - usually RuntimeManager that allows the producer to filter out
* and provide valid instances for given owner

* paranms - owner night provide sone paraneters, usually KieSession, TaskService, RuntineManager instatl
* list of listener instances (recomendation is to always return new i nstances when this nethod is il
*/

Li st <T> get EventLi steners(String identifier, Map<String, Cbject> parans);

Implementations of these interfaces shall be packaged as bean archive (includes beans.xml inside
META-INF) and placed on application classpath (e.g. WEB-INF/lib for web application). THat is
enough for CDI based RuntimeManager to discover them and register on every KieSession that
is created or loaded from data store.

Some parameters are provided to the producers to allow handlers/listeners to be more stateful
and be able to do more advanced things with the engine - like signal of the engine or process
instance in case of an error. Thus all components are provided:

+ KieSession
* TaskService

* RuntimeManager

Note

Whenever there is a need to interact with the process engine/task service from
within handler or listener, recommended approach is to use RuntimeManager and
retrieve RuntimeEngine (and then KieSession and/or TaskService) from it as that
will ensure proper state managed according to strategy

In addition, some filtering can be applied based on identifier (that is given as argument to the
methods) to decide if given RuntimeManager shall receive handlers/listeners or not.

5.5. Services

On top of RuntimeManager API a set of high level services has been provided from jBPM version
6.2. These services are meant to be the easiest way to embed (j)BPM capabilities into custom
application. A complete set of modules are delivered as part of these services. They are partitioned
into several modules to ease thier adoptions in various environments.

 jbpm-services-api

69

Core Engine API

contains only api classes and interfaces
 jbpm-kie-services
rewritten code implementation of services api - pure java, no framework dependencies
e jbpm-services-cdi
CDI wrapper on top of core services implementation
* jbpm-services-ejb-api
extension to services api for ejb needs
 jbpm-services-ejb-impl
EJB wrappers on top of core services implementation
 jbpm-services-ejb-timer

scheduler service based on EJB TimerService to support time based operations e.g. timer
events, deadlines, etc

» jbpm-services-ejb-client

EJB remote client implementation - currently only for JBoss
Service modules are grouped with its framework dependencies, so developers are free to choose
which one is suitable for them and use only that.

5.5.1. Deployment Service

As the name suggest, its primary responsibility is to deploy (and undeploy) units. Deployment
unit is kjar that brings in business assets (like processes, rules, forms, data model) for execution.
Deployment services allow to query it to get hold of available deployment units and even their
RuntimeManager instances.

@ Note
there are some restrictions on EJB remote client to do not expose RuntimeManager
as it won't make any sense on client side (after it was serialized).

So typical use case for this service is to provide dynamic behavior into your system so multiple
kjars can be active at the same time and be executed simultaneously.

/'l create deploynment unit by giving GAV
Depl oynment Unit depl oynent Unit = new KMbdul eDepl oynent Uni t (GROUP_I D, ARTI FACT_I D, VERSI ON);
/1 depl oy

70

Core Engine API

depl oynent Ser vi ce. depl oy(depl oynent Uni t);

Il retrieve deployed unit

Depl oyedUnit depl oyed = depl oynment Servi ce. get Depl oyedUni t (depl oynment Unit.getldentifier());
/1 get runtine manager

Runt i reManager manager = depl oyed. get Runti meManager () ;

Complete DeploymentService interface is as follows:

public interface Depl oyment Service {
voi d depl oy(Depl oynent Unit unit);
voi d undepl oy(Depl oyment Unit unit);
Runt i reManager get Runti neManager (String depl oynentUnitld);
Depl oyedUnit get Depl oyedUni t (String depl oyment Unitld);
Col | ect i on<Depl oyedUni t > get Depl oyedUni t s();
void activate(String depl oynentld);
voi d deactivate(String depl oynentld);

bool ean i sDepl oyed(String depl oynent Unitld);

5.5.2. Definition Service

Upon deployment, every process definition is scanned using definition service that parses the
process and extracts valuable information out of it. These information can provide valuable input to
the system to inform users about what is expected. Definition service provides information about:

 process definition - id, name, description
 process variables - name and type

 reusable subprocesses used in the process (if any)
 service tasks (domain specific activities)

« user tasks including assignment information

« task data input and output information

So definition service can be seen as sort of supporting service that provides quite a few information
about process definition that are extracted directly from BPMN2.

String processld = "org.jbpmwitedocunment"”;

71

Core Engine API

Col | ecti on<User TaskDefiniti on> processTasks =
bpm2Ser vi ce. get TasksDef i ni ti ons(depl oyment Unit. getldentifier(), processld);

Map<String, String> processData =
bpm2Ser vi ce. get ProcessVari abl es(depl oyment Unit. getldentifier(), processld);

Map<String, String> tasklnput Mappings =

bpm2Ser vi ce. get Taskl nput Mappi ngs(depl oynent Uni t. get |l dentifier(), processld, "Wite a
Docunent");

While it usually is used with combination of other services (like deployment service) it can be used
standalone as well to get details about process definition that do not come from kjar. This can be
achieved by using buildProcessDefinition method of definition service.

public interface DefinitionService {

ProcessDefinition buil dProcessDefinition(String deploymentld, String bpm2Content,
Cl assLoader classLoader, bool ean cache) throws ||| egal Argunent Excepti on;

ProcessDefinition getProcessDefinition(String deploynentld, String processld);
Col | ection<String> get Reusabl eSubProcesses(String deploynentld, String processlid);
Map<String, String> getProcessVariables(String deploynmentld, String processld);
Map<String, String> getServiceTasks(String deploynentld, String processld);

Map<String, Collection<String>> getAssoci atedEntities(String deploynentld, String processld);
Col | ecti on<User TaskDefi ni ti on> get TasksDefinitions(String depl oynmentld, String processld);

Map<String, String> getTasklnput Mappi ngs(String deploynentld, String processld, String
t askNane) ;

Map<String, String> get TaskQutput Mappi ngs(String deploynentld, String processld, String
t askNane) ;

5.5.3. Process Service

Process service is the one that usually is of the most interest. Once the deployment and definition
service was already used to feed the system with something that can be executed. Process service
provides access to execution environment that allows:

« start new process instance
» work with existing one - signal, get details of it, get variables, etc

« work with work items

72

Core Engine API

At the same time process service is a command executor so it allows to execute commands
(essentially on ksession) to extend its capabilities.

Important to note is that process service is focused on runtime operations so use it whenever there
is a need to alter (signal, change variables, etc) process instance and not for read operations like
show available process instances by looping though given list and invoking getProcessinstance
method. For that there is dedicated runtime data service that is described below.

An example on how to deploy and run process can be done as follows:

KModul eDepl oynent Unit deploymentUnit = new KMdul eDepl oynent Unit (GROUP_I D, ARTIFACT_I D,
VERS| ON) ;

depl oynent Ser vi ce. depl oy(depl oynent Uni t);

| ong processl nst ancel d = processService. start Process(depl oynent Unit. getldentifier(),
"custont ask");

Processl nstance pi = processService. get Processl nst ance(processl nstancel d);

As you can see start process expects deploymentld as first argument. This is extremely powerful
to enable service to easily work with various deployments, even with same processes but coming
from different versions - kjar versions.

public interface ProcessService {
Long startProcess(String deploynmentld, String processld);
Long startProcess(String deploynmentld, String processld, Map<String, Cbject> paramns);
voi d abort Processl nstance(Long processlnstancel d);
voi d abort Processl nstances(Li st<Long> processl nstancel ds);
voi d signal Processl nstance(Long processlnstanceld, String signal Nane, Object event);
voi d si gnal Processl nst ances(Li st<Long> processl nstancelds, String signal Name, Cbject event);
Processl nst ance get Processl nstance(Long processlnstancel d);
voi d setProcessVari abl e(Long processlnstanceld, String variableld, Object value);
voi d setProcessVari abl es(Long processlnstanceld, Map<String, Cbject> variables);
Obj ect get Processl nstanceVari abl e(Long processlnstanceld, String variabl eNane);
Map<String, Object> get ProcesslnstanceVari abl es(Long processlnstancel d);
Col | ection<String> get Avai |l abl eSi gnal s(Long processl nstancel d);

voi d conpl eteWorklten(Long id, Map<String, Object> results);

73

Core Engine API

voi d abortWrklten(Long id);

Workltem get Wrkltem(Long id);

Li st <Wor kit en> get Wor kil t enByPr ocessl nst ance(Long processl nstancel d);
public <T> T execute(String deploynentld, Conmand<T> command);

public <T> T execute(String depl oymentld, Context<?> context, Command<T> command);

5.5.4. Runtime Data Service

Runtime data service as name suggests, deals with all that refers to runtime information:

 started process instances
» executed node instances
« executed node instances
e and more

Use this service as main source of information whenever building list based Ul - to show process
definitions, process instances, tasks for given user, etc. This service was designed to be as effi-
cient as possible and still provide all required information.

Some examples:

 get all process definitions

Col l ection definitions = runti meDat aServi ce. get Processes(new QueryContext());

 get active process instances

Col | ecti on<processi nst ancedesc> i nstances = runt i meDat aSer vi ce. get Processl nst ances(new
QueryContext());

 get active nodes for given process instance

Col | ecti on<nodei nst ancedesc> i nstances =
runt i meDat aSer vi ce. get Processl nst anceHi st or yActi ve(processl nstancel d, new QueryContext());

74

Core Engine API

» get tasks assigned to john

Li st <t asksunmar y> t askSummari es = runti meDat aSer vi ce. get TasksAssi gnedAsPot ent i al Omer ("j ohn",
new QueryFilter(0, 10));

There are two important arguments that the runtime data service operations supports:

¢ QueryContext
» QueryFilter - extension of QueryContext

These provide capabilities for efficient management result set like pagination, sorting and order-
ing (QueryContext). Moreover additional filtering can be applied to task queries to provide more
advanced capabilities when searching for user tasks.

public interface RuntinmeDataService {
/'l Process instance infornation
Col | ecti on<Processl nst anceDesc> get Processl nst ances(Quer yCont ext queryCont ext);

Col | ecti on<Processl nstanceDesc> get Processl nst ances(Li st<Integer> states, String initiator,
Quer yCont ext queryCont ext);

Col | ecti on<Processl nst anceDesc> get Processl nst ancesByProcessl d(Li st<Integer> states, String
processld, String initiator, QueryContext queryContext);

Col | ecti on<Processl nstanceDesc> get Processl nst ancesByProcessNane(Li st<Integer> states,
String processName, String initiator, QueryContext queryContext);

Col | ecti on<Processl| nstanceDesc> get Processl nstancesByDepl oynent|ld(String deploynentld,
Li st<I nteger> states, QueryContext queryContext);

Processl nst anceDesc get Processl nst anceByl d(1 ong processl nstancel d);

Col | ecti on<Processl nst anceDesc> get Processl nst ancesByProcessDefinition(String processDefld,
Quer yCont ext queryCont ext);

Col | ecti on<Processl| nst anceDesc> get Processl nst ancesByProcessDefinition(String processDefld,
Li st<I nteger> states, QueryContext queryContext);

/1 Node and Variabl e instance information

Nodel nst anceDesc get Nodel nst anceFor Wor kil t em(Long workltemnl d);

Col | ecti on<Nodel nst anceDesc> get Processl nstanceHi st oryActi ve(long processlnstanceld,
Quer yCont ext queryCont ext);

Col | ecti on<Nodel nst anceDesc> get Processl nstanceHi st oryConpl et ed(l ong processl nstancel d,
QueryCont ext queryContext);

75

Core Engine API

Col | ecti on<Nodel nst anceDesc> get Processl nstanceFul | Hi story(long processlnstanceld,
Quer yCont ext queryCont ext);

Col | ect i on<Nodel nst anceDesc> get Processl nstanceFul | H st oryByType(l ong processl nstancel d,
EntryType type, QueryContext queryContext);

Col | ecti on<Vari abl eDesc> get Vari abl esCurrent St at e(l ong processl nstancel d);

Col | ecti on<Vari abl eDesc> get Vari abl eHi story(long processlnstanceld, String variableld,

Quer yCont ext queryCont ext);

/1 Process information

Col | ecti on<ProcessDefiniti on> getProcessesByDepl oynent1d(String depl oynentld, QueryContext
quer yCont ext) ;

Col | ecti on<ProcessDefinition> get ProcessesByFilter(String filter, QueryContext queryContext);

Col | ecti on<ProcessDefi ni ti on> get Processes(QueryCont ext queryContext);

Col | ection<String> getProcesslds(String deploynentld, QueryContext queryContext);

ProcessDefinition getProcessByld(String processld);

ProcessDefinition get ProcessesByDepl oynent | dProcessl d(String depl oynentld, String processld);

/1 user task query operations

User Taskl nst anceDesc get TaskByWorkltem d(Long workltenid);

User Taskl nst anceDesc get TaskByl d(Long taskl d);

Li st <TaskSunmar y> get TasksAssi gnedAsBusi nessAdm ni strator(String userld, QueryFilter filter);

Li st <TaskSummary> get TasksAssi gnedAsBusi nessAdmi ni stratorByStatus(String userld,
Li st<Status> statuses, QueryFilter filter);

Li st <TaskSummary> get TasksAssi gnedAsPot enti al Omer (String userld, QueryFilter filter);

Li st <TaskSunmary> get TasksAssi gnedAsPot enti al Omer (String userld, List<String> grouplds,
QueryFilter filter);

Li st <TaskSummary> get TasksAssi gnedAsPot enti al OmerByStatus(String userld, List<Status>
status, QueryFilter filter);

Li st <TaskSunmary> get TasksAssi gnedAsPotenti al Oaer (String userld, List<String> grouplds,
Li st<Status> status, QueryFilter filter);

Li st <TaskSunmar y> get TasksAssi gnedAsPot ent i al Osner ByExpi rat i onDat eOpti onal (String userld,
Li st<Status> status, Date from QueryFilter filter);

Li st <TaskSummary> get TasksOawnedByExpi rati onDat eOpti onal (String wuserld, List<Status>
strStatuses, Date from QueryFilter filter);

Li st <TaskSummary> get TasksOwmed(String userld, QueryFilter filter);

Li st <TaskSummary> get TasksOmnedByStatus(String userld, List<Status> status, QueryFilter
filter);

76

Core Engine API

Li st <Long> get TasksByProcessl nst ancel d(Long processl nstancel d);

Li st <TaskSummary> get TasksBySt at usByPr ocessl nst ancel d(Long processl nstancel d, List<Status>
status, QueryFilter filter);

Li st <Audi t Task> get Al | Audi t Task(String userld, QueryFilter filter);

5.5.5. User Task Service

User task service covers complete life cycle of individual task so it can be managed from start
to end. It explicitly eliminates queries from it to provide scoped execution and moves all query
operations into runtime data service. Besides lifecycle operations user task service allows:

« modification of selected properties
* access to task variables
* access to task attachments

 access to task comments

On top of that user task service is a command executor as well that allows to execute custom
task commands.

Complete example with start process and complete user task done by services:

| ong processlnstanceld =
processServi ce.start Process(deployUnit.getldentifier(), "org.jbpmwitedocurment");

Li st<Long> tasklds =
runti meDat aSer vi ce. get TasksByProcessl| nst ancel d(pr ocessl nst ancel d) ;

Long taskld = tasklds.get(0);

user TaskServi ce.start (taskld, "john");
User Taskl nst anceDesc task = runti neDat aServi ce. get TaskByl d(t askl d);

Map<String, Object> results = new HashMap<String, Object>();

results. put("Result", "some docunent data");
user TaskServi ce. conpl et e(taskld, "john", results);
Note

The most important thing when working with services is that there is no more need
to create your own implementations of Process service that simply wraps runtime

77

Core Engine API

manager, runtime engine, ksession usage. Services make use of RuntimeManager
API best practices and thus eliminate various risks when working with that API.

5.5.6. QueryService

QueryService provides advanced search capabilities that are based on Dashbuilder DataSets.
The concept behind it is that users are given control over how to retrieve data from underlying
data store. This includes complex joins with external tables such as JPA entities tables, custom
systems data base tables etc.

QueryService is build around two parts:

« Management operations
* register query definition

* replace query definition

unregister (remove) query definition

» get query definition

get all registered query definitions
¢ Runtime operations
* query - with two flavors
« simple based on QueryParam as filter provider
» advanced based on QueryParamBuilder as filter provider

DashBuilder DataSets provide support for multiple data sources (CSV, SQL, elastic search, etc)
while jBPM - since its backend is RDBMS based - focuses on SQL based data sets. So jBPM
QueryService is a subset of DashBuilder DataSets capabilities to allow efficient queries with sim-
ple API.

Terminology
» QueryDefinition - represents definion of the data set which consists of unique name, sql expres-
sion (the query) and source - JNDI name of the data source to use when performing queries

* QueryParam - basic structure that represents individual query parameter - condition - that con-
sists of: column name, operator, expected value(s)

« QueryResultMapper - responsible for mapping raw data set data (rows and columns) into object
representation

78

Core Engine API

» QueryParamBuilder - responsible for building query filters that will be applied on the query
definition for given query invocation

While QueryDefinition and QueryParam is rather straight forward, QueryParamBuilder and
QueryResultMapper is bit more advanced and require slightly more attention to make use of it in
right way, and by that take advantage of their capabilities.

QueryResultMapper

Mapper as the name suggest, maps data taken out from data base (from data set) into object
representation. Much like ORM providers such as hibernate maps tables to entities. Obviously
there might be many object types that could be used for representing data set results so it's almost
impossible to provide them out of the box. Mappers are rather powerful and thus are pluggable,
you can implement your own that will transform the result into whatever type you like. jBPM comes
with following mappers out of the box:

» org.jobpm.kie.services.impl.query.mapper.ProcessinstanceQueryMapper

* registered with name - Processinstances
 org.jbpm.kie.services.impl.query.mapper.ProcessinstanceWithVarsQueryMapper

* registered with name - ProcessinstancesWithVariables
 org.jobpm.kie.services.impl.query.mapper.ProcessinstanceWithCustomVarsQueryMapper

* registered with name - ProcessinstancesWithCustomVariables
« org.jbpm.kie.services.impl.query.mapper.UserTaskinstanceQueryMapper

« registered with name - UserTasks
 org.jbpm.kie.services.impl.query.mapper.UserTasklinstanceWithVarsQueryMapper

* registered with name - UserTasksWithVariables
 org.jbpm.kie.services.impl.query.mapper.UserTasklnstanceWithCustomVarsQueryMapper

* registered with name - UserTasksWithCustomVariables
 org.jbpm.kie.services.impl.query.mapper.TaskSummaryQueryMapper

* registered with name - TaskSummaries
« org.jbpm.kie.services.impl.query.mapper.RawListQueryMapper

* registered with name - RawList

Each QueryResultMapper is registered under given name to allow simple look up by name instead
of referencing its class name - especially important when using EJB remote flavor of services
where we want to reduce number of dependencies and thus not relying on implementation on

79

Core Engine API

client side. So to be able to reference QueryResultMapper by name, NamedQueryMapper should
be used which is part of joppm-services-api. That acts as delegate (lazy delegate) as it will look up
the actual mapper when the query is actually performed.

queryServi ce. query("my query def ", new
NanmedQuer yMapper <Col | ect i on<Pr ocessl nst anceDesc>>(" Processl nstances"), new QueryContext());

QueryParamBuilder

QueryParamBuilder that provides more advanced way of building filters for our data sets. By de-
fault when using query method of QueryService that accepts zero or more QueryParam instances
(as we have seen in above examples) all of these params will be joined with AND operator mean-
ing all of them must match. But that's not always the case so that's why QueryParamBuilder has
been introduced for users to build their on builders which will provide filters at the time the query
is issued.

There is one QueryParamBuilder available out of the box and it is used to cover default Query-
Params that are based on so called core functions. These core functions are SQL based condi-
tions and includes following

IS_NULL
« NOT_NULL

« EQUALS_TO

« NOT_EQUALS_TO

« LIKE_TO

« GREATER_THAN

« GREATER_OR_EQUALS_TO
« LOWER_THAN

« LOWER_OR_EQUALS_TO

« BETWEEN

* IN

NOT_IN

QueryParamBuilder is simple interface that is invoked as long as its build method returns non null
value before query is performed. So you can build up a complex filter options that could not be
simply expressed by list of QueryParams. Here is basic implementation of QueryParamBuilder to
give you a jump start to implement your own - note that it relies on DashBuilder Dataset API.

80

Core Engine API

public class Test QueryParanBuil der inplenments QueryParanBuil der <Col umFilter> {

private Map<String, Object> paraneters;

private bool ean built = false;

public Test QueryParanBuil der (Map<String, Object> paraneters) {
this. paraneters = paraneters;

}
@verride
public ColumFilter build() {
[/ return null if it was already invoked
if (built) {
return null;
}
String col umNanme = "processlnstancel d";
ColumFilter filter = FilterFactory. OR(
Fi | ter Factory. great er Or Equal sTo((Long) paraneters.get("mn")),
Fil terFactory. | ower Or Equal sTo((Long) par aneters. get ("nmax")));
filter.setCol umld(col umNane) ;
built = true;
return filter;
}

Once you have query param builder implemented you simply use its instance when performing
query via QueryService

queryService.query("my query def", ProcesslnstanceQueryMapper.get(), new QueryContext(),
par anBui | der) ;

Typical usage scenario

First thing user needs to do is to define data set - view of the data you want to work with - so
called QueryDefinition in services api.

Sgl QueryDefinition query = new Sqgl QueryDefinition("getAllProcesslnstances", "java:jboss/
dat asour ces/ Exanpl eDS") ;
query. set Expression("sel ect * from processi nstancel 0g");

This is the simplest possible query definition as it can be:

* constructor takes

81

Core Engine API

* aunique name that identifies it on runtime

» data source JNDI name used when performing queries on this definition - in other words
source of data

« expression - the most important part - is the sql statement that builds up the view to be filtered
when performing queries

Once we have the sql query definition we can register it so it can be used later for actual queries.

queryServi ce. regi ster Query(query);

From now on, this query definition can be used to perform actual queries (or data look ups to use
terminology from data sets). Following is the basic one that collects data as is, without any filtering

Col | ecti on<Processl nst anceDesc> i nstances = queryServi ce. query("get Al | Processl nstances",
Processl nst anceQuer yMapper . get (), new QueryContext());

Above query was very simple and used defaults from QueryContext - paging and sorting. So let's
take a look at one that changes the defaults of the paging and sorting

QueryCont ext ctx = new QueryContext (0, 100, "start_date", true);

Col | ecti on<Processl nst anceDesc> i nst ances = queryServi ce. query("get Al | Processl nstances",
Processl nst anceQuer yMapper. get (), ctx);

Now let's take a look at how to do data filtering

/1 single filter param
Col | ecti on<Processl nst anceDesc> i nst ances = queryServi ce. query("get Al | Processl nstances",
Processl nst anceQuer yMapper . get (), new QueryContext(), Quer yParam | i keTo(COLUWMN_PRCCESSI D,
true, "org.jbpnts));

/1l multiple filter parans (AND)

Col | ecti on<Processl nst anceDesc> i nstances = queryServi ce. query("get Al | Processl nstances",
Processl nst anceQuer yMapper. get (), new QueryContext (),
QueryParam | i keTo(COLUMN_PROCESSI D, true, "org.jbpnis),
QueryParam i n(COLUMN_STATUS, 1, 3));

With that end user is put in driver seat to define what data and how they should be fetched. Not
being limited by JPA provider nor anything else. Moreover this promotes use of tailored queries

82

Core Engine API

for your environment as in most of the case there will be single data base used and thus specific
features of that data base can be used to increase performance.

Further examples can be found here [http://mswiderski.blogspot.com/2016/01/advanced-queries-
in-jopm-64.htmil].

5.5.7. ProcessinstanceMigrationService

ProcessinstanceMigrationService provides administrative utility to move given process
instance(s) from one deployment to another or one process definition to another. It's main respon-
sibility is to allow basic upgrade of process definition behind given process instance. That might
include mapping of currently active nodes to other nodes in new definition.

Migration does not deal with process or task variables, they are not affected by migration. Essen-
tially process instance migration means a change of underlying process definition process engine
uses to move on with process instance.

Even though process instance migration is available it's recommended to let active process in-
stances finish and then start new instances with new version whenever possible. In case that ap-
proach can’t be used, migration of active process instance needs to be carefully planned before
its execution as it might lead to unexpected issues.Most important to take into account is:

* is new process definition backward compatible?

« are there any data changes (variables that could affect process instance decisions after migra-
tion)?

* is there need for node mapping?

Answers to these questions might save a lot of headache and production problems after migration.
Best is to always stick with backward compatible processes - like extending process definition
rather than removing nodes. Though that's not always possible and in some cases there is a need
to remove certain nodes from process definition. In that situation, migration needs to be instructed
how to map nodes that were removed in new definition in case active process instance is at the
moment in such a node.

Node mapping is given as a map of node ids (Uniquelds that are set in the definition) where key
is the source node id (from process definition used by process instance) to target node id (in new
process definition).

@ Note
Node mapping can only be used to map same type of nodes e.g. user task to user
task.

83

http://mswiderski.blogspot.com/2016/01/advanced-queries-in-jbpm-64.html
http://mswiderski.blogspot.com/2016/01/advanced-queries-in-jbpm-64.html
http://mswiderski.blogspot.com/2016/01/advanced-queries-in-jbpm-64.html

Core Engine API

Again, process or task variables are not affected by process instance migration at the moment.

ProcessinstanceMigrationService comes with several flavors of migrate operation:

public interface ProcesslnstanceM grationService {

/**

* Mgrates given process instance that belongs to source deploynment, into target process id
that bel ongs to target deploynent.

* Following rules are enforced:

*

* source deployment id nust be there

* <|i>process instance id nmust point to existing and active process instance

* <|i>target deploynent nust exist

* target process id nust exist in target deploynment

*

* Mgration returns mgration report regardless of mgration being successful or not that needs
to be exam ned for mgration outcone.

* @ar am sour ceDepl oynment | d depl oyment that process instance to be mgrated belongs to

* @aram processlnstanceld id of the process instance to be migrated

* @aramtargetDeploynentld id of deploynent that target process belongs to

* @aramtargetProcessld id of the process process instance should be migrated to

* @eturn returns conplete migration report

*/

M gr ati onReport mgrate(String sour ceDepl oyrent | d, Long processl nst ancel d, String
target Depl oynentld, String targetProcessld);

/**

* Mgrates given process instance (with node mapping) that belongs to source depl oynent, into
target process id that belongs to target depl oynent.

* Following rul es are enforced:

*

* source deploynment id nust be there</Ili>

* process instance id nust point to existing and active process instance

* target deployment nust exist

* target process id nust exist in target deploynment

* <ful>

* Mgration returns nigration report regardl ess of migration being successful or not that needs
to be examined for migration outcone.

* @ar am sour ceDepl oynent | d depl oynent that process instance to be mgrated belongs to

* @aram processlnstanceld id of the process instance to be migrated

* @aramtargetDepl oynentld id of deploynent that target process belongs to

* @aramtargetProcesslid id of the process process instance should be mgrated to

* @ar am nodeMappi ng node nmappi ng - source and target unique ids of nodes to be mapped - from
process instance active nodes to new process nodes

* @eturn returns conplete mgration report

*/

M gr ati onReport mgrate(String sour ceDepl oynent | d, Long processl nst ancel d, String
target Depl oynentld, String targetProcessld, Map<String, String> nodeMapping);

/**

* Mgrates given process instances that belong to source deploynment, into target process id
that belongs to target deployment.

* Following rules are enforced:

*

* <|i>source deploynent id nmust be there

* process instance id nust point to existing and active process instance

* target deployment nust exist

* target process id nust exist in target deploynment

*

84

Core Engine API

* Mgration returns list of migration report - one per process instance, regardl ess of migration
bei ng successful or not that needs to be exami ned for migration outcone.

* @ar am sour ceDepl oynent | d depl oynent that process instance to be migrated belongs to

* @aram processlnstancelds list of process instance id to be mgrated

* @aramtarget Depl oynentld id of deploynent that target process belongs to

* @aramtargetProcesslid id of the process process instance should be mgrated to

* @eturn returns conplete nigration report

*/

Li st<M grati onReport> mgrate(String sourceDepl oymentld, List<Long> processlnstancelds, String
target Depl oynentld, String targetProcessld);

/**

* Mgrates given process instances (with node mapping) that belong to source deploynent, into
target process id that belongs to target depl oynent.

* Follow ng rules are enforced:

*

* <|i>source deploynment id nust be there</Ili>

* <|i>process instance id nmust point to existing and active process instance

* <|i>target deploynent nust exist

* target process id nust exist in target deploynment</Ili>

* <ful >

* Mgration returns list of migration report - one per process instance, regardl ess of migration
bei ng successful or not that needs to be examined for migration outcone.

* @ar am sour ceDepl oynent | d depl oynment that process instance to be nmigrated belongs to

* @aram processlnstancelds |ist of process instance id to be mgrated

* @aramtargetDeploynentld id of deploynment that target process belongs to

* @aramtargetProcessld id of the process process instance should be migrated to

* @ar am nodeMappi ng node nmapping - source and target unique ids of nodes to be mapped - from
process instance active nodes to new process nodes

* @eturn returns list of migration reports one per each process instance

*/

Li st<M grati onReport> m grate(String sourceDeploynentld, List<Long> processlnstancelds, String
target Depl oynentld, String targetProcessld, Map<String, String> nodeMapping);

Migration can either be performed for single process instance or multiple process instances at
the same time. Multiple process instances migration is a utility method on top of single instance,
instead of calling it multiple times, users call it once and then service will take care of the migration
of individual process instances.

Note

Multi instance migration does migrate each instance in separation (transaction)
to secure that one won't affect the other and then produces dedicated migration
reports for each process instance

5.5.7.1. Migration report

Migration is always comcluded with migration report that is per each process instance. That mi-
gration report provides following information:

- start and end date of the migration

85

Core Engine API

« outcome of the migration - success or failure

« complete log entry - all steps performed during migration, entry can be INFO, WARN or ERROR
- in case of ERROR there will be at most one as they are causing migration to be immedietely
terminated.

5.5.7.2. Known limitations

« When a new or modified task requires inputs which are not available in the migrated v2 process
instance.

« Modifying the tasks prior to the active task where the changes have an impact on the further
processing.

« Removing a human task which is currently active (can only be replaced - requires to be mapped
to another human task)

« Adding a new task parallel to the single active task (all branches in AND gateway are not acti-
vated - process will stuck)

» Changing or removing the active recurring timer events (won’t be changed in DB)
 Fixing or updating inputs and outputs in an active task (task data aren’'t migrated)

* Node mapping updates only the task node name and description! (other task fields won't be
mapped including the TaskName variable)

5.5.7.3. Example

Following is an example of how to invoke the migration

protected static final String M GRATI ON_ARTI FACT_ID = "test-migration"; prot ected
static final String M GRATI ON_GROUP_I D = "org.jbpmtest”; prot ect ed static
final String M GRATI ON_VERSI ON_V1 = "1.0.0"; prot ect ed static final String
M GRATI ON_VERSION V2 = "2.0.0"; /1 first deploy both versions deploynentUnitVvl =
new KMbdul eDepl oyment Uni t (M GRATI ON_GROUP_I D, M GRATI ON_ARTI FACT_I D, M GRATI ON_VERSI ON V1) ;
depl oynent Ser vi ce. depl oy(depl oynent Uni t V1) ; 11 . version 2 depl oynent Uni t V2 =

new KModul eDepl oynment Uni t (M GRATI ON_GROUP_I D, M GRATI ON_ARTI FACT_I D, M GRATI ON_VERSI ON_V2) ;
depl oynent Servi ce. depl oy(depl oynent UnitV2); // next start process instance in version

1 long processinstanceld = processService.startProcess(deploynmentUnitVli.getldentifier(),
"processID-V1");// and once the instance is active it can be migratedMgrationReport
report = m grationService. mgrate(depl oynent Uni t V1. getldentifier(), processl nstancel d,

depl oynent Uni t V2. getl dentifier(), "processlD-V2");// as last step check if the mgration
fini shed successfullyreport.isSuccessful ()
= "test-migration"; protected static final

String M GRATION_ GROUP_ID = "org.jbpmtest"; protected static final

String M GRATION_VERSION V1 = "1.0.0"; protected static final

String M GRATION_VERSION V2 = "2.0.0"; //

first deploy both versions deploynentUnitVl

new

86

Core Engine API

KMobdul eDepl oynent Uni t (M GRATI ON_GROUP_I D, M GRATI ON_ARTI FACT_I D, M GRATI ON_VERSI ON_V1); depl oynent Servi ce. depl oy ((
Il ... version 2 deploynentUnitV2

new
KMbdul eDepl oynent Uni t (M GRATI ON_GROUP_I D, M GRATI ON_ARTI FACT_I D, M GRATI ON_VERSI ON_V2); depl oynent Servi ce. depl oy(¢
instance in version 1
I ong processlnstancel d

= processService. startProcess(depl oynment Unit V1. getldentifier(), "processID-V1");// and once the instance is acti\
it can be m grat ed
M grati onReport report = migrationService.m grate(depl oynment UnitV1l. getldentifier(),

processl nstancel d, depl oynent UnitV2.getldentifier(), "processlD-V2");// as last step check if
the

5.5.8. Working with deployments

Deployment Service provides convinient way to put business assets to an execution environment
but there are cases that requires some additional management to make them available in right
context.

Activation and Deactivation of deployments

Imagine situation where there are number of processes already running of given deployment and
then new version of these processes comes into the runtime environment. With that administrator
can decide that new instances of given process definition should be using new version only while
already active instances should continue with the previous version.

To help with that deployment service has been equipped with following methods:

* activate

allows to activate given deployment so it can be available for interaction meaning will show its
process definition and allow to start new process instances of that project's processes

» deactivate

allows to deactivate deployment which will disable option to see or start new process instances
of that project's processes but will allow to continue working with already active process in-
stances, e.g. signal, work with user task etc

This feature allows smooth transition between project versions whitout need of process instance
migration.

Deployment synchronization

Prior to jBPM 6.2, jbpm services did not have deployment store by default. When embedded in
jbpm-console/kie-wb they utilized sistem.git VFS repository to preserve deployed units across
server restarts. While that works fine, it comes with some drawbacks:

« not available for custom systems that use services

87

Core Engine API

* requires complex setup in cluster - zookeeper and helix

With version 6.2 jbpm services come with deployment synchronizer that stores available deploy-
ments into data base, including its deployment descriptor. At the same time it constantly monitors
that table to keep it in sync with other installations that might be using same data source. This is
especially important when running in cluster or when jbpm console runs next to custom application
and both should be able to operate on the same artifacts.

By default synchronization must be configured (when runing as core services while it is automat-
ically enabled for ejb and cdi extensions). To configure synchronization following needs to be
configured:

Transact i onal CoomandSer vi ce conmandServi ce = new Transacti onal ConmandSer vi ce(enf);

Depl oynment Store store = new Depl oynent Store();
st or e. set CommandSer vi ce(conmandSer vi ce) ;

Depl oynment Synchroni zer sync = new Depl oynent Synchroni zer () ;
sync. set Depl oynment Ser vi ce(depl oynent Servi ce) ;

sync. set Depl oynment St ore(store);

Depl oynment Syncl nvoker invoker = new Depl oynment Syncl nvoker (sync, 2L, 3L, Ti neUnit. SECONDS);
invoker.start();

i nvoker.stop();

With this, deployments will be synchronized every 3 seconds with initial delay of two seconds.
Invoking latest version of project's processes

In case there is a need to always work with latest version of project's process, services allow to
interact with various operations using deployment id with latest keyword. Let's go over an example
to better understand the feature.

Initially deployed unit is org.jopm:HR:1.0 which has the first version of an hiring process. After
several weeks, new version is developed and deployed to the execution server - org.jopm:HR.2.0
with version 2 of the hiring process.

To allow callers of the services to interact without being worried if they work with latest version,
they can use following deployment id:

org.j bpm HR | at est
this will alwyas find out latest available version of project that is identified by:

e groupld: org.jbpm

88

Core Engine API

 artifactld: HR

version comparizon is based on Maven version numbers and relies on Maen based algorithm to
find the latest one.

Here is a complete example with deployment of multiple versions and interacting always with the
latest:

KModul eDepl oynent Uni t depl oynent Uni t V1 = new KModul eDepl oynment Unit ("org.jbpni', "HR', "1.0");
depl oynent Ser vi ce. depl oy(depl oynent Uni t V1) ;

I ong processlnstancel d = processService. startProcess("org.jbpm HR LATEST", "custontask");
Processl nst anceDesc pi Desc = runti nmeDat aServi ce. get Processl nst anceByl d(processl nst ancel d);

/1l we have started process with project's version 1
assert Equal s(depl oynent Uni t V1. get I dentifier(), piDesc.getDeploynentld());

/1l next we deploy version 1
KMbdul eDepl oynent Uni t depl oynent Unit V2 = new KMbdul eDepl oynent Unit ("org. jbpni, "HR', "2.0");
depl oynent Ser vi ce. depl oy(depl oynent Uni t V2) ;

processlnstanceld = processService. startProcess("org.jbpm HR LATEST", "custontask");
pi Desc = runti neDat aServi ce. get Processl| nst anceByl d(processl nstancel d);

/1 this time we have started process with project's version 2
assert Equal s(depl oyment Uni t V2. getl dentifier(), piDesc.getDeploynentld());

As illustrated this provides very powerful feature when interacting with frequently chaning envi-
ronment that allows to always be up to date when it comes to use of process definitions.

5.6. Configuration

There are several control parameters available to alter engine default behavior. This allows to fine
tune the execution for the environment needs and actual requirements. All of these parameters
are set as JVM system properties, usually with -D when starting program e.g. application server.

89

Core Engine API

Table 5.1. Control parameters

Name

jbpm.enable.multi.

jbpm.overdue.time

jbpm.process.nam

jopm.loop.level.dis

Possible values

jopm.ut.jndi.lookup String

cione|false

jbpm.business.caleBtiamgproperties

rLabeigy

estongparator

ahlegfalse

Default value

false

/

Description

Alternative JNDI
name to be
used when there
iSs no access
to the default
one (java:comp/
UserTransaction)

Enables multi-
ple incoming/out-
going sequence
flows support for
activities

Allows to provide

jbpm.business.caleatlaratyertiess-

2000

true

path location of
business calen-
dar configuration
file

Specifies de-
lay for overdue
timers to allow
proper initializa-
tion, in millisec-
onds

Allows to pro-
vide alternative
comparator class
to empower start
process by name
feature, if not
set NumberVer-
sionComparator
is used

Allows to enable
or disable loop it-
eration tracking,
to allow ad-
vanced loop sup-
port when using
XOR gateways

90

Core Engine API

Name

org.kie.mail.sessiad

Possible values

rstring

jbpm.usergroup.cal®igicigproperties

jbpm.user.group.m&igimgy

jbpm.user.info.prop8itiag

org.jopm.ht.user.sepaiatpr

org.quartz.propert

jopm.data.dir

€String

String

Default value

mail/
jobpmMailSession

/

Description

Allows to provide
alternative JNDI
name for
session used by
Task Deadlines

mail

Allows to provide

jbpm.usergroup.calldterkatiopectess-

${jboss.server.configylidings

roles.properties

/

path location for
user group call-
back implemen-
tation (LDAP,
DB)

to pro-
vide alterna-
tive location of
roles.properties
for JBossUser-
GroupCallback-
Impl

Allows to provide

jbpm.user.info.propaltiesative class-

path location of
user info con-
figuration (used
by LDAPUserIn-

folmpl)

Allows to provide
alternative sepa-
rator of actors
and groups for
user tasks, de-
fault is comma (,)

Allows to provide
location of the
quartz config file
to activate quartz
based timer ser-
vice

${jboss.server.dataAdidws to provide

is available other-

location where
data files pro-

91

Core Engine API

Name

org.kie.executor.p

Possible values

obiteger

org.kie.executor.retigtegant

org.kie.executor.intémeger

org.kie.executor.d

dabdthlse

Default value
wise
${java.io.tmpdir}
1

true

Description

duced by jbpm
should be stored

Allows to provide
thread pool size
for jopm executor

Allows to pro-
vide number of
retries attempted
in case of error by
jbpm executor

Allows to pro-
vide frequency
used to check for
pending jobs by
jbpm executor, in
seconds

Enables or dis-
able jbpm execu-
tor

org.kie.store.servi

c&Rrotgss

org.drools.persistertadljpa. Kqoaliéidge

name of the
class that im-
plements KieS-
toreServices that
will be respon-
sible for boot-
straping KieSes-
sion instances

StoreServicelmpl

92

Chapter 6. Processes

6.1. What is BPMN 2.0

@ Note
"The primary goal of BPMN is to provide a notation that is readily understandable
by all business users, from the business analysts that create the initial drafts of the
processes, to the technical developers responsible for implementing the technolo-
gy that will perform those processes, and finally, to the business people who will
manage and monitor those processes."

The Business Process Model and Notation (BPMN) 2.0 specification is an OMG specification that
not only defines a standard on how to graphically represent a business process (like BPMN 1.x),
but now also includes execution semantics for the elements defined, and an XML format on how
to store (and share) process definitions.

jBPM6 allows you to execute processes defined using the BPMN 2.0 XML format. That means that
you can use all the different jBPM®6 tooling to model, execute, manage and monitor your business
processes using the BPMN 2.0 format for specifying your executable business processes. Actu-
ally, the full BPMN 2.0 specification also includes details on how to represent things like choreo-
graphies and collaboration. The jBPM project however focuses on that part of the specification
that can be used to specify executable processes.

Executable processes in BPMN consist of a different types of nodes being connected to each
other using sequence flows. The BPMN 2.0 specification defines three main types of nodes:

« Events: They are used to model the occurrence of a particular event. This could be a start event
(that is used to indicate the start of the process), end events (that define the end of the process,
or of that subflow) and intermediate events (that indicate events that might occur during the
execution of the process).

« Activities: These define the different actions that need to be performed during the execution of
the process. Different types of tasks exist, depending on the type of activity you are trying to
model (e.g. human task, service task, etc.) and activities could also be nested (using different
types of sub-processes).

« Gateways: Can be used to define multiple paths in the process. Depending on the type of
gateway, these might indicate parallel execution, choice, etc.

jBPM6 does not implement all elements and attributes as defined in the BPMN 2.0 specification.
We do however support a significant subset, including the most common node types that can be
used inside executable processes. This includes (almost) all elements and attributes as defined in
the "Common Executable" subclass of the BPMN 2.0 specification, extended with some additional

93

Processes

elements and attributes we believe are valuable in that context as well. The full set of elements
and attributes that are supported can be found below, but it includes elements like:

» Flow objects
* Events
« Start Event (None, Conditional, Signal, Message, Timer)
< End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)
« Intermediate Catch Event (Signal, Timer, Conditional, Message)
« Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)
< Non-interrupting Boundary Event (Escalation, Signal, Timer, Conditional, Message)

« Interrupting Boundary Event (Escalation, Error, Signal, Timer, Conditional, Message, Com-
pensation)

* Activities
e Script Task
e Task
» Service Task
» User Task
* Business Rule Task
e Manual Task
e Send Task
* Receive Task
¢ Reusable Sub-Process (Call Activity)
* Embedded Sub-Process
» Event Sub-Process
* Ad-Hoc Sub-Process
« Data-Object
» Gateways
« Diverging

* Exclusive

94

Processes

* Inclusive
» Parallel
» Event-Based
» Converging

» Exclusive
* Inclusive
» Parallel

* Lanes

* Data
» Java type language

 Process properties

Embedded Sub-Process properties

Activity properties
« Connecting objects
» Sequence flow

For example, consider the following "Hello World" BPMN 2.0 process, which does nothing more
that writing out a "Hello World" statement when the process is started.

An executable version of this process expressed using BPMN 2.0 XML would look something
like this:

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions id="Definition"
t ar get Nanespace="htt p: // ww. exanpl e. or g/ M ni mal Exanpl e"
t ypeLanguage="http://ww. j ava. conl j avaTypes"
expr essi onLanguage="http://ww. nmvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPM\N 20100524/ MODEL"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xs: schemaLocati on="htt p: //ww. ong. or g/ spec/ BPMV 20100524/ MODEL BPMN\20. xsd"
xm ns: bpmmdi =" ht t p: / / www. ong. or g/ spec/ BPMN 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC'
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/ DI "
xm ns:tns="http://ww.]jboss. org/drool s">

<process processType="Private" isExecutable="true" id="com sanple.HelloWrld" nane="Hello
Worl d" >

95

Processes

<!-- nodes -->
<start Event id="_1" name="StartProcess" />
<script Task id="_2" name="Hel | 0" >
<script>Systemout.println("Hello Wrld"); </script>
</ scri pt Task>
<endEvent id="_3" nane="EndProcess" >
<t er mi nat eEvent Defini tion/>
</ endEvent >

<l-- connections -->
<sequenceFl ow i d="_1- 2" sourceRef="_1" target Ref="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmdi : BPM\Di agr an®
<bpmdi : BPM\PI ane bpmeEl enent ="M ni mal " >
<bpmmdi : BPMNShape bpmeEl emrent ="_1" >
<dc: Bounds x="15" y="91" wi dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNShape bpmmEl erent ="_2" >
<dc: Bounds x="95" y="88" w dt h="83" hei ght="48" />
</ bpmmdi : BPM\Shape>
<bpmmdi : BPM\Shape bpmEl erent ="_3" >
<dc: Bounds x="258" y="86" wi dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNEdge bpmmEl emrent =" _1- 2" >
<di : waypoi nt x="39" y="115" />
<di : waypoi nt x="75" y="46" />
<di : waypoi nt x="136" y="112" />
</ bpmmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl ement ="_2-_3" >
<di : waypoi nt x="136" y="112" />
<di : waypoi nt x="240" y="240" />
<di : waypoi nt x="282" y="110" />
</ bprmmdi : BPMNEdge>
</ bpmmdi : BPM\PI ane>
</ bprmdi : BPM\Di agr an®>

</definitions>

To create your own process using BPMN 2.0 format, you can

« The jBPM Designer is an open-source web-based editor that supports the BPMN 2.0 format.
We have embedded it into jbpm console for BPMN 2.0 process visualization and editing. You
could use the Designer (either standalone or integrated) to create / edit BPMN 2.0 processes
and then export them to BPMN 2.0 format or save them into repository and import them so they
can be executed.

« A new BPMN2 Eclipse plugin is being created to support the full BPMN2 specification.

* You can always manually create your BPMN 2.0 process files by writing the XML directly. You
can validate the syntax of your processes against the BPMN 2.0 XSD, or use the validator in
the Eclipse plugin to check both syntax and completeness of your model.

96

Processes

@ Note

Drools Eclipse Process editor has been deprecated in favor of BPMN2 Modeler
for process modeling. It can still be used for limited humber of supported ele-
ments but should be faced out as it is not being developed any more.

Create a new Process file using the Drools Eclipse plugin wizard and in the last page of the
wizard, make sure you select Drools 5.1 code compatibility. This will create a new process using
the BPMN 2.0 XML format. Note however that this is not exactly a BPMN 2.0 editor, as it still
uses different attributes names etc. It does however save the process using valid BPMN 2.0
syntax. Also note that the editor does not support all node types and attributes that are already
supported in the execution engine.

The following code fragment shows you how to load a BPMN2 process into your knowledge
base ...

private static Know edgeBase creat eKnow edgeBase() throws Exception {
Ki eHel per ki eHel per = new Ki eHel per();
Ki eBase ki eBase = ki eHel per
. addResour ce(Resour ceFact ory. newd assPat hResour ce("sanpl e. bprm2"))
.build();

return ki eBase;

... and how to execute this process ...

Ki eBase kbase = creat eKnow edgeBase();
Ki eSessi on ksession = kbase. newKi eSessi on();
ksessi on. start Process("com sanpl e. Hel | oWor| d");

For more detail, check out the chapter on the API and the basics.

97

Processes

6.2. Process

HR Ewvaluation

P H}‘_ Salf Evaluation }_’é_»

Gatdyway =il o =
Start Gatdya PM Evaluation Catiivay End

Figure 6.1.

A business process is a graph that describes the order in which a series of steps need to be
executed, using a flow chart. A process consists of a collection of nodes that are linked to each
other using connections. Each of the nodes represents one step in the overall process while the
connections specify how to transition from one node to the other. A large selection of predefined
node types have been defined. This chapter describes how to define such processes and use
them in your application.

6.2.1. Creating a process

Processes can be created by using one of the following three methods:

1. Using the graphical process editor such as jBPM web designer or Eclipse BPMN2 modeler

2. As an XML file, according to the XML process format as defined in the XML Schema Definition
in the BPMN 2.0 specification.

3. By directly creating a process using the Process API.
6.2.1.1. Using the graphical BPMN2 Editor

The graphical BPMNZ2 editor is an editor that allows you to create a process by dragging and drop-
ping different nodes on a canvas and editing the properties of these nodes. The graphical BPMN2
modeler is an Eclipse plugin hosted on eclipse.org [http://www.eclipse.org/bpmn2-modeler/] that
provides number of contributors where one of them is jBPM project. Once you have set up a jBPM
project (see the installer for creating a working Eclipse environment where you can start), you can
start adding processes. When in a project, launch the "New" wizard (use Ctrl+N) or right-click the
directory you would like to put your process in and select "New", then "File". Give the file a name
and the extension bpmn (e.g. MyProcess.bpmn). This will open up the process editor (you can
safely ignore the warning that the file could not be read, this is just because the file is still empty).

First, ensure that you can see the Properties View down the bottom of the Eclipse window, as it
will be necessary to fill in the different properties of the elements in your process. If you cannot
see the properties view, open it using the menu "Window", then "Show View" and "Other...", and
under the "General" folder select the Properties View.

98

http://www.eclipse.org/bpmn2-modeler/
http://www.eclipse.org/bpmn2-modeler/

Processes

& procens) I € weine 11 | Tk List it ey

mdsaglag dee 1
fvaag Defmacay
o i By
R

Figure 6.2. New process

The process editor consists of a palette, a canvas and an outline view. To add new elements to
the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "End Event" icon in the
palette of the GUI. Clicking on an element in your process allows you to set the properties of that
element. You can connect the nodes (as long as it is permitted by the different types of nodes)
by using "Sequence Flow" from the palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify.

6.2.1.2. Defining processes using XML

It is also possible to specify processes using the underlying BPMN 2.0 XML directly. The syntax
of these XML processes is defined using the BPMN 2.0 XML Schema Definition. For example,
the following XML fragment shows a simple process that contains a sequence of a Start Event, a
Script Task that prints "Hello World" to the console, and an End Event.

<?xm version="1.0" encodi ng="UTF-8"?>
<definitions id="Definition"
tar get Nanespace="http://ww. j boss. or g/ dr ool s"
t ypeLanguage="http://ww. j ava. conl j avaTypes"
expr essi onLanguage="http://ww. mvel . org/ 2. 0"
xm ns="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL" Rul e Task
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schen®- i nst ance"
xsi : schemaLocati on="http://ww. ong. or g/ spec/ BPMV 20100524/ MODEL BPMN\20. xsd"
xm ns: g="http://ww.jboss. org/drool s/fl ow gpd"
xm ns: bpmdi ="htt p: / / www. ong. or g/ spec/ BPMV 20100524/ DI "
xm ns: dc="http://ww. ong. or g/ spec/ DD/ 20100524/ DC"
xm ns: di ="http://ww. ong. or g/ spec/ DD/ 20100524/ DI "
xm ns:tns="http://ww.]jboss. org/drool s">

<process processType="Private" i sExecutabl e="true" i d="com sanpl e. hel | 0" nane="Hel | o Process" >

99

Processes

<l-- nodes -->
<startEvent id="_1" name="Start" />
<script Task id="_2" name="Hel | 0" >
<script>Systemout.println("Hello Wrld"); </script>
</ scri pt Task>
<endEvent id="_3" name="End" >
<t er mi nat eEvent Defini tion/>
</ endEvent >

<l-- connections -->
<sequenceFl ow i d="_1-_2" sourceRef="_1" targetRef="_2" />
<sequenceFl ow i d="_2- 3" sourceRef="_2" targetRef="_3" />

</ process>

<bpmmdi : BPM\Di agr an®
<bpmmdi : BPM\PI ane bpmeEl enent =" com sanpl e. hel | 0" >
<bpmdi : BPMNShape bpmmeEl emrent =" _1" >
<dc: Bounds x="16" y="16" w dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNShape bpmmEl emrent ="_2" >
<dc: Bounds x="96" y="16" w dt h="80" hei ght="48" />
</ bpmmdi : BPM\Shape>
<bpmmdi : BPMNShape bpmEl ement ="_3" >
<dc: Bounds x="208" y="16" wi dt h="48" hei ght="48" />
</ bprmdi : BPM\Shape>
<bpmmdi : BPMNEdge bpmmEl emrent =" _1- 2" >
<di : waypoi nt x="40" y="40" />
<di : waypoi nt x="136" y="40" />
</ bpmmdi : BPMNEdge>
<bpmmdi : BPMNEdge bpmEl ement ="_2-_3" >
<di : waypoi nt x="136" y="40" />
<di : waypoi nt x="232" y="40" />
</ bprmmdi : BPM\Edge>
</ bprmdi : BPMNPI ane>
</ bprmdi : BPM\Di agr an®>

</ definitions>

The process XML file consists of two parts, the top part (the "process" element) contains the
definition of the different nodes and their properties, the lower part (the "BPMNDiagram" element)
contains all graphical information, like the location of the nodes. The process XML consist of
exactly one <process> element. This element contains parameters related to the process (its type,
name, id and package name), and consists of three subsections: a header section (where process-
level information like variables, globals, imports and lanes can be defined), a nodes section that
defines each of the nodes in the process, and a connections section that contains the connections
between all the nodes in the process. In the nodes section, there is a specific element for each
node, defining the various parameters and, possibly, sub-elements for that node type.

100

= End Events =~ Activities

@ Cancel " | Ad-Hoc Sub-Process
&) Compensation " 1 Sub-Process
() End Event L call Activity
(8 Error | Task
@A) Escalation W Manual Task
&) Message _'.'—"_ User Task
@ signal & Script Task
{2\ Torminate - 54 Business Rule Task
= Gateways . Service Task
= Intermediate Catch Events Send Task
Conditional EA Receive Task
@ Error = Artifacts
i Escalation = Connections
@ Message Association {undirected}
@ Signal Association {one-way)
@ Timer —+ Sequence Flow

= Data Objects
[Y Data Object

[Intermediate Throw Events

@ Escalation

{1 Throw Event (= End Events
&l Message (= Gateways
{ Signal {39- Exclusive Gateway

s . 2 Event-Based Gateway
tart Events

) o Inclusive Gateway
@ Compensation
Conditional

@ Error

@ Escalation

@ Parallel Gateway

Start Event
@ Message

@ Signal

€Ty Timer -

Figure 6.3. The different types of Figure 6.4. The different types of
BPMN2 events BPMNZ2 activities and gateways

101

Processes

6.2.1.3. Details: Process properties

A BPMN2 process is a flow chart where different types of nodes are linked using connections.
The process itself exposes the following properties:

Id: The unique id of the process.

* Name: The display name of the process.

Version: The version number of the process.

Package: The package (namespace) the process is defined in.

{7 humanTaskSample

Description + QAttributes
Process
Id | org.jbpm.writedocument
Interfaces
Mame |humanTaskSample
Definitions P
Data ltems Wersion | 1

Package Name | defaultPackage
Ad Hoc
Is Executable @I

Figure 6.5. BPMN2 process properties

In addition to that following can be defined as well:

» Variables: Variables can be defined to store data during the execution of your process. See
section “??7?” for details.

« Swimlanes: Specify the swimlanes used in this process for assigning human tasks. See chapter
“2??" for detalils.

102

Processes

{7 humanTaskSample

Description b Global List for Process "humanTaskSample™
Process
Interfaces

— = Variable List for Process "humanTaskSample"
Definitions
Data ltems

[Name
approval_document
approval_translatedDocument
approval_reviewComment

Figure 6.6. BPMN2 process variables

6.3. Activities

6.3.1. Script task

=1

script Task 1

Dara Type
String
String
String

Figure 6.7. Script task

Represents a script that should be executed in this process. A Script Task should have one in-
coming connection and one outgoing connection. The associated action specifies what should be
executed, the dialect used for coding the action (i.e., Java, JavaScript or MVEL), and the actual
action code. This code can access any variables and globals. There is also a predefined variable
kcont ext that references the ProcessCont ext [http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/

103

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

kie/api/runtime/process/ProcessContext.html] object (which can, for example, be used to access
the current Pr ocessl nst ance or Nodel nst ance, and to get and set variables, or get access to the
ksession using kcont ext . get Ki eRunti me()). When a Script Task is reached in the process, it
will execute the action and then continue with the next node. It contains the following properties:

* Id: The id of the node (which is unigue within one node container).
« Name: The display name of the node.
« Action: The action script associated with this action node.

Note that you can write any valid Java code inside a script node. This basically allows you to do
anything inside such a script node. There are some caveats however:

« When trying to create a higher-level business process, that should also be understood by busi-
ness users, it is probably wise to avoid low-level implementation details inside the process, in-
cluding inside these script tasks. A Script Task could still be used to quickly manipulate variables
etc. but other concepts like a Service Task could be used to model more complex behaviour
in a higher-level manner.

« Scripts should be immediate. They are using the engine thread to execute the script. Scripts
that could take some time to execute should probably be modeled as an asynchronous Service
Task.

« You should try to avoid contacting external services through a script node. Not only does this
usually violate the first two caveats, it is also interacting with external services without the knowl-
edge of the engine, which can be problematic, especially when using persistence and transac-
tions. In general, it is probably wiser to model communication with an external service using
a service task.

« Scripts should not throw exceptions. Runtime exceptions should be caught and for example
managed inside the script or transformed into signals or errors that can then be handled inside
the process.

104

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

6.3.2. Service task

Sarvice Task 1

Figure 6.8. Service task

Represents an (abstract) unit of work that should be executed in this process. All work that is
executed outside the process engine should be represented (in a declarative way) using a Service
Task. Different types of services are predefined, e.g., sending an email, logging a message, etc.
Users can define domain-specific services or work items, using a unique name and by defining
the parameters (input) and results (output) that are associated with this type of work. Check the
chapter on domain-specific processes for a detailed explanation and illustrative examples of how
to define and use work items in your processes. When a Service Task is reached in the process,
the associated work is executed. A Service Task should have one incoming connection and one
outgoing connection.

* |d: The id of the node (which is unigue within one node container).
* Name: The display name of the node.

« Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

« Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Fi | es. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied.

« On-entry and on-exit actions: Actions that are executed upon entry or exit of this node, respec-
tively.

105

Processes

» Additional parameters: Each type of work item can define additional parameters that are relevant
for that type of work. For example, the "Email" work item defines additional parameters such as
From To, Subj ect and Body. The user can either provide values for these parameters directly,
or define a parameter mapping that will copy the value of the given variable in this process to
the given parameter; if both are specified, the mapping will have precedence. Parameters of
type St ri ng can use #{ expr essi on} to embed a value in the string. The value will be retrieved
when creating the work item, and the substitution expression will be replaced by the result of
calling t oSt ri ng() on the variable. The expression could simply be the name of a variable (in
which case it resolves to the value of the variable), but more advanced MVEL expressions are
possible as well, e.g., #{ per son. nane. fi r st nane}.

6.3.3. User task

I bser Task 1

Figure 6.9. User task

Processes can also involve tasks that need to be executed by human actors. A User Task repre-
sents an atomic task to be executed by a human actor. It should have one incoming connection
and one outgoing connection. User Tasks can be used in combination with Swimlanes to assign
multiple human tasks to similar actors. Refer to the chapter on human tasks for more details. A
User Task is actually nothing more than a specific type of service node (of type "Human Task").
A User Task contains the following properties:

 Id: The id of the node (which is unique within one node container).
« Name: The display name of the node.
» TaskName: The name of the human task.

 Priority: An integer indicating the priority of the human task.

106

Processes

« Comment: A comment associated with the human task.

« Actorld: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

« Groupld: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

» Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

+ Content: The data associated with this task.

* Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how
to use swimlanes.

« On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

« Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

» Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. A human task has
a result variable "Result" that contains the data returned by the human actor. The variable
"Actorld" contains the id of the actor that actually executed the task.

A user task should define the type of task that needs to be executed (using properties like
TaskName, Comment, etc.) and who needs to perform it (using either actorld or groupld). Note
that if there is data related to this specific process instance that the end user needs when per-
forming the task, this data should be passed as the content of the task. The task for example does
not have access to process variables. Check out the chapter on human tasks to get more detail
on how to pass data between human tasks and the process instance.

107

Processes

6.3.4. Reusable sub-process

Call Activity 1

Figure 6.10. Reusable sub-process - Call activity

Represents the invocation of another process from within this process. A sub-process node should
have one incoming connection and one outgoing connection. When a Reusable Sub-Process
node is reached in the process, the engine will start the process with the given id. It contains the
following properties:

Id: The id of the node (which is unique within one node container).
Name: The display name of the node.
Processld: The id of the process that should be executed.

Wait for completion (by default true): If this property is true, this sub-process node will only
continue if the child process that was started has terminated its execution (completed or abort-
ed); otherwise it will continue immediately after starting the subprocess (so it will not wait for
its completion).

Independent (by default true): If this property is true, the child process is started as an indepen-
dent process, which means that the child process will not be terminated if this parent process is
completed (or this sub-process node is canceled for some other reason); otherwise the active
sub-process will be canceled on termination of the parent process (or cancellation of the sub-
process node). Note that you can only set independent to "false" only when "Wait for comple-
tion" is set to true.

On-entry and on-exit actions: Actions that are executed upon entry or exit of this node, respec-
tively.

108

Processes

« Parameter infout mapping: A sub-process node can also define in- and out-mappings for vari-
ables. The variables given in the "in" mapping will be used as parameters (with the associated
parameter name) when starting the process. The variables of the child process that are defined
for the "out" mappings will be copied to the variables of this process when the child process
has been completed. Note that you can use "out" mappings only when "Wait for completion"
is set to true.

6.3.5. Business rule task

=

Business Fule Task 1

Figure 6.11. Business rule task

A Business Rule Task Represents a set of rules that need to be evaluated. The rules are evaluated
when the node is reached. A Rule Task should have one incoming connection and one outgoing
connection. Rules are defined in separate files using the Drools rule format. Rules can become
part of a specific ruleflow group using the r ul ef | ow gr oup attribute in the header of the rule.

When a Rule Task is reached in the process, the engine will start executing rules that are part of
the corresponding ruleflow-group (if any). Execution will automatically continue to the next node
if there are no more active rules in this ruleflow group. As a result, during the execution of a
ruleflow group, new activations belonging to the currently active ruleflow group can be added
to the Agenda due to changes made to the facts by the other rules. Note that the process will
immediately continue with the next node if it encounters a ruleflow group where there are no active
rules at that time.

If the ruleflow group was already active, the ruleflow group will remain active and execution will
only continue if all active rules of the ruleflow group has been completed. It contains the following
properties:

 Id: The id of the node (which is unique within one node container).

109

Processes

* Name: The display name of the node.

* RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this Rule-
FlowGroup node.

6.3.6. Embedded sub-process

Sub Process 1

Usar Task 2

Figure 6.12. Embedded sub-process

A Sub-Process is a node that can contain other nodes so that it acts as a node container. This
allows not only the embedding of a part of the process within such a sub-process node, but also
the definition of additional variables that are accessible for all nodes inside this container. A sub-
process should have one incoming connection and one outgoing connection. It should also contain
one start node that defines where to start (inside the Sub-Process) when you reach the sub-
process. It should also contain one or more end events. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process. A sub-process ends when
there are no more active nodes inside the sub-process. It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

» Variables: Additional variables can be defined to store data during the execution of this node.
See section “??7?” for details.

110

Processes

6.3.7. Multi-instance sub-process

Sub Process 1

g, ..
i
Usar Task 2

Figure 6.13. Multi-instance sub-process

A Multiple Instance sub-process is a special kind of sub-process that allows you to execute the
contained process segment multiple times, once for each element in a collection. A multiple in-
stance sub-process should have one incoming connection and one outgoing connection. It waits
until the embedded process fragment is completed for each of the elements in the given collection
before continuing. It contains the following properties:

 Id: The id of the node (which is unique within one node container).
« Name: The display name of the node.

« CollectionExpression: The name of a variable that represents the collection of elements
that should be iterated over. The collection variable should be an array or of type
java.util.Coll ection. If the collection expression evaluates to null or an empty collection,
the multiple instances sub-process will be completed immediately and follow its outgoing con-
nection.

» VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

« CollectionOutput: The name of a variable that represents collection of elements that will gather
all output of the multi instance sub process

« OutputVariableName: The name of the variable to contain the currentl output from the multi
instance activitiy

» CompletionCondition: MVEL expression that will be evaluated on each instance completion to
check if given multi instance activity can already be completed. In case it evaluates to true all
other remaining instances within multi instance activity will be canceled.

111

Processes

6.4. Events

6.4.1. Start event

otart

Figure 6.14. Start event

The start of the process. A process should have exactly one start node (nhone start node which
does not have event definitions), which cannot have incoming connections and should have one
outgoing connection. Whenever a process is started, execution will start at this node and auto-
matically continue to the first node linked to this start event, and so on. It contains the following
properties:

* Id: The id of the node (which is unigque within one node container).

* Name: The display name of the node.

112

Processes

6.4.2. End events

6.4.2.1. End event

End

Figure 6.15. End event

The end of the process. A process should have one or more end events. The End Event should
have one incoming connection and cannot have any outgoing connections. It contains the follow-
ing properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

e Terminate: An End Event can terminate the entire process or just the path. When a process
instance is terminated, it means its state is set to completed and all other nodes that might still
be active (on parallel paths) in this process instance are canceled. Non-terminating end events
are simply end for this path (execution of this branch will end here), but other parallel paths can
still continue. A process instance will automatically complete if there are no more active paths
inside that process instance (for example, if a process instance reaches a non-terminating end
node but there are no more active branches inside the process instance, the process instance

113

Processes

will be completed anyway). Terminating end events are visualized using a full circle inside the
event node, non-terminating event nodes are empty. Note that, if you use a terminating event
node inside a sub-process, you are terminating just that sub-process and top level continues.

6.4.2.2. Throwing error event

Figure 6.16. Throwing error event

An Error Event can be used to signal an exceptional condition in the process. It should have
one incoming connection and no outgoing connections. When an Error Event is reached in the
process, it will throw an error with the given name. The process will search for an appropriate
error handler that is capable of handling this kind of fault. If no error handler is found, the process
instance will be aborted. An Error Event contains the following properties:

Id: The id of the node (which is unigue within one node container).

* Name: The display name of the node.

FaultName: The name of the fault. This name is used to search for appropriate exception han-
dlers that are capable of handling this kind of fault.

FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

114

Processes

Error handlers can be specified using boundary events.
6.4.3. Intermediate events

6.4.3.1. Catching timer event

Figure 6.17. Catching timer event

Represents a timer that can trigger one or multiple times after a given period of time. A Timer Event
should have one incoming connection and one outgoing connection. The timer delay specifies
how long the timer should wait before triggering the first time. When a Timer Event is reached in
the process, it will start the associated timer. The timer is canceled if the timer node is canceled
(e.g., by completing or aborting the enclosing process instance). Consult the section “???" for
more information. The Timer Event contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.

« Timer delay: The delay that the node should wait before triggering the first time. The expression
should be of the form [#d] [#h] [#m [#s][#[nms]]. This allows you to specify the number of
days, hours, minutes, seconds and milliseconds (which is the default if you don't specify any-
thing). For example, the expression "1h" will wait one hour before triggering the timer. The ex-
pression could also use #{expr} to dynamically derive the delay based on some process vari-

115

Processes

able. Expr in this case could be a process variable, or a more complex expression based on a
process variable (e.g. myVariable.getValue()). It does support CRON like expression as well.

« Timer period: The period between two subsequent triggers. If the period is 0, the timer should
only be triggered once. The expression should be of the form [#d] [#h] [#ni [#s] [#[ns]]. You
can specify the number of days, hours, minutes, seconds and milliseconds (which is the default if
you don't specify anything). For example, the expression "1h" will wait one hour before triggering
the timer again. The expression could also use #{expr} to dynamically derive the period based
on some process variable. Expr in this case could be a process variable, or a more complex
expression based on a process variable (e.g. myVariable.getValue()).

Timer events could also be specified as boundary events on sub-processes and tasks that are
not automatic tasks like script task that have no wait state as timer will not have a change to fire
before task completion.

6.4.3.2. Catching signal event

Figure 6.18. Catching signal event

A Signal Event can be used to respond to internal or external events during the execution of the
process. A Signal Event should have one incoming connections and one outgoing connection. It
specifies the type of event that is expected. Whenever that type of event is detected, the node
connected to this event node will be triggered. It contains the following properties:

116

Processes

Id: The id of the node (which is unigque within one node container).
« Name: The display name of the node.
» EventType: The type of event that is expected.

VariableName: The name of the variable that will contain the data associated with this event
(if any) when this event occurs.

A process instance can be signaled that a specific event occurred using

ksessi on. si gnal Event (event Type, data, processlnstanceld)

This will trigger all (active) signal event nodes in the given process instance that are waiting for
that event type. Data related to the event can be passed using the data parameter. If the event
node specifies a variable name, this data will be copied to that variable when the event occurs.

It is also possible to use event nodes inside sub-processes. These event nodes will however only
be active when the sub-process is active.

You can also generate a signal from inside a process instance. A script (in a script task or using
on entry or on exit actions) can use

kcont ext . get Ki eRunti me() . si gnal Event (event Type, data, kcontext.getProcesslnstance().getld());

A throwing signal event could also be used to model the signaling of an event.

117

Figure 6.19. Diverging gateway

Processes

Allows you to create branches in your process. A Diverging Gateway should have one incoming
connection and two or more outgoing connections. There are three types of gateway nodes cur-
rently supported:

« AND or parallel means that the control flow will continue in all outgoing connections simultane-
ously.

« XOR or exclusive means that exactly one of the outgoing connections will be chosen. The de-
cision is made by evaluating the constraints that are linked to each of the outgoing connections.
The constraint with the lowest priority number that evaluates to true is selected. Constraints can
be specified using different dialects. Note that you should always make sure that at least one
of the outgoing connections will evaluate to true at runtime (the engine will throw an exception
at runtime if it cannot find at least one outgoing connection).

« OR or inclusive means that all outgoing connections whose condition evaluates to true are
selected. Conditions are similar to the exclusive gateway, except that no priorities are taken
into account. Note that you should make sure that at least one of the outgoing connections will
evaluate to true at runtime because the engine will throw an exception at runtime if it cannot
determine an outgoing connection.

It contains the following properties:

 Id: The id of the node (which is unique within one node container).
* Name: The display name of the node.
» Type: The type of the split node, i.e., AND, XOR or OR (see above).

« Constraints: The constraints linked to each of the outgoing connections (in case of an exclusive
or inclusive gateway).

119

Figure 6.20. Converging gateway

Processes

Allows you to synchronize multiple branches. A Converging Gateway should have two or more
incoming connections and one outgoing connection. There are three types of splits currently sup-
ported:

« AND or parallel means that is will wait until all incoming branches are completed before con-
tinuing.

« XOR or exclusive means that it continues as soon as one of its incoming branches has been
completed. Ifitis triggered from more than one incoming connection, it will trigger the next node
for each of those triggers.

« OR orinclusive means that it continues as soon as all direct active paths of its incoming branch-
es has been completed. This is complex merge behaviour that is described in BPMN2 specifi-
cation but in most cases it means that OR join will wait for all active flows that started in OR
split. Some advanced cases (including other gateways in between or repeatable timers) will be
causing different "direct active path" calculation.

It contains the following properties:

* |d: The id of the node (which is unigue within one node container).
« Name: The display name of the node.

» Type: The type of the Join node, i.e. AND, OR or XOR.

6.6. Others

6.6.1. Variables

While the flow chart focuses on specifying the control flow of the process, it is usually also neces-
sary to look at the process from a data perspective. Throughout the execution of a process, data
can be retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, process variables can be used. A
variable is defined by a name and a data type. This could be a basic data type, such as boolean,
int, or String, or any kind of Object subclass (it must implement Serializable interface). Variables
can be defined inside a variable scope. The top-level scope is the variable scope of the process
itself. Subscopes can be defined using a Sub-Process. Variables that are defined in a subscope
are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable
in its parent container. If the variable cannot be found, it will look in that one's parent container,
and so on, until the process instance itself is reached. If the variable cannot be found, a read
access yields null, and a write access produces an error message, with the process continuing
its execution.

Variables can be used in various ways:

121

Processes

» Process-level variables can be set when starting a process by providing a map of parameters
to the invocation of the st art Process method. These parameters will be set as variables on
the process scope.

e Script actions can access variables directly, simply by using the name of the variable as
a local parameter in their script. For example, if the process defines a variable of type
"org.jopm.Person" in the process, a script in the process could access this directly:

[/ call nmethod on the process variable "person"
person. set Age(10) ;

Changing the value of a variable in a script can be done through the knowledge context:

kcont ext . set Vari abl e(vari abl eNane, val ue);

» Service tasks (and reusable sub-processes) can pass the value of process variables to the
outside world (or another process instance) by mapping the variable to an outgoing parameter.
For example, the parameter mapping of a service task could define that the value of the process
variable x should be mapped to a task parameter y right before the service is being invoked.
You can also inject the value of process variable into a hard-coded parameter String using
#{ expr essi on}. For example, the description of a human task could be defined as You need
to contact person #{person. getName()} (where person is a process variable), which will
replace this expression by the actual name of the person when the service needs to be invoked.
Similarly results of a service (or reusable sub-process) can also be copied back to a variable
using a result mapping.

« Various other nodes can also access data. Event nodes for example can store the data asso-
ciated to the event in a variable, etc. Check the properties of the different node types for more
information.

» Process variables can be accessed also from the Java code of your application. It is done by
casting of Processl nst ance to Wor kf | owPr ocessl nst ance. See the following example:

variabl e = ((Workfl owProcessl nstance) processlnstance). getVari abl e("vari abl eNanme") ;

To list all the process variables see the following code snippet:

org.j bpm process. i nstance. Processl nstance processlnstance = ...;
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processl nstance. get Cont ext | nstance(Vari abl eScope."

122

Processes

Map<String, Object> variables = variabl eScope. get Vari abl es();

Note that when you use persistence then you have to use a command based approach to get
all process variables:

Map<String, Object> variables = ksessi on. execut e(new Generi cCommand<Map<String, Object>>() {
public Map<String, Object> execute(Context context) {
Ki eSessi on ksessi on = ((Know edgeConmandCont ext) cont ext). get St at ef ul Know edgesessi on();

org. j bpm process. i nstance. Processl nstance processlnstance = (org.jbpm process.instance. Processl nstance)
Vari abl eScopel nst ance vari abl eScope = (Vari abl eScopel nst ance) processl nstance. get Cont ext | nstance(Vari ab

Map<String, Object> variables = variabl eScope. get Vari abl es();
return vari abl es;

1)

Finally, processes (and rules) all have access to globals, i.e. globally defined variables and data in
the Knowledge Session. Globals are directly accessible in actions just like variables. Globals need
to be defined as part of the process before they can be used. You can for example define globals
by clicking the globals button when specifying an action script in the Eclipse action property editor.
You can also set the value of a global from the outside using ksessi on. set d obal (name, val ue)
or from inside process scripts using kcont ext . get Ki eRunti me() . set G obal (nane, val ue) ; .

6.6.2. Scripts

Action scripts can be used in different ways:

» Within a Script Task,
* As entry or exit actions, with a number of nodes.

Actions have access to globals and the variables that are defined for the process and the pre-
defined variable kcont ext . This variable is of type ProcessCont ext [http://docs.jboss.org/jbpm/
v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html] and can be used for several
tasks:

» Getting the current node instance (if applicable). The node instance could be queried for data,
such as its name and type. You can also cancel the current node instance.

Nodel nst ance node = kcont ext. get Nodel nstance();
String name = node. get NodeNane();

» Getting the current process instance. A process instance can be queried for data (name, id,
processld, etc.), aborted or signaled an internal event.

Processl nstance proc = kcontext.get Processl nstance();

123

http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html
http://docs.jboss.org/jbpm/v6.0.1/javadocs/org/kie/api/runtime/process/ProcessContext.html

Processes

proc. si gnal Event (type, eventQbject);

» Getting or setting the value of variables.

» Accessing the Knowledge Runtime allows you do things like starting a process, signaling (ex-
ternal) events, inserting data, etc.

jBPM supports multiple dialects, like Java, JavaScript and MVEL. Java actions should be valid
Java code, same for JavaScript. MVEL actions can use the business scripting language MVEL
to express the action. MVEL accepts any valid Java code but additionally provides support for
nested accesses of parameters (e.g., per son. nane instead of per son. get Name()), and many
other scripting improvements. Thus, MVEL expressions are more convenient for the business
user. For example, an action that prints out the name of the person in the "requester” variable of
the process would look like this:

/1 Java dial ect Systemout. println(person.getName());// JavaScript dial ectprint(person.nane +
"\n);// MWEL dial ectSystemout.println(person.nanme);
di al ect System out. println(person. get Name()

);// JavaScri pt
di al ectprint (person. name +

“\n);// MEL
di al ect System out. println(person. name

)§

6.6.3. Constraints

Constraints can be used in various locations in your processes, for example in a diverging gate-
way. jBPM supports two types of constraints:

« Code constraints are boolean expressions, evaluated directly whenever they are reached. We
support multiple dialects for expressing these code constraints: Java, JavaScript and MVEL. All
code constraints have direct access to the globals and variables defined in the process. Here
is an example of a valid Java code constraint, per son being a variable in the process:

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:

return person. age > 20;

And for JavaScript:

124

Processes

person. age > 20

* Rule constraints are equals to normal Drools rule conditions. They use the Drools Rule Lan-
guage syntax to express possibly complex constraints. These rules can, like any other rule,
refer to data in the Working Memory. They can also refer to globals directly. Here is an example
of a valid rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is however
possible to refer to the current process instance inside a rule constraint, by adding the process
instance to the Working Memory and matching for the process instance in your rule constraint.
We have added special logic to make sure that a variable pr ocessl nst ance of type Wor kf | ow
Processl nst ance will only match to the current process instance and not to other process in-
stances in the Working Memory. Note that you are however responsible yourself to insert the
process instance into the session and, possibly, to update it, for example, using Java code or an
on-entry or on-exit or explicit action in your process. The following example of a rule constraint will
search for a person with the same name as the value stored in the variable "name" of the process:

processl nst ance : Wor kf | owPr ocessl nst ance() Per son(name ==
(processlnstance. get Vari abl e("name")))# add nore constraints here ..
Wor kf | owPr ocessl nst ance() Person(nanme == (processl nstance. get Vari abl e("nanme")

))# add nore constraints

6.6.4. Timers

Timers wait for a predefined amount of time, before triggering, once or repeatedly. They can be
used to trigger certain logic after a certain period, or to repeat some action at regular intervals.

6.6.4.1. Configure timer with delay and period

A Timer node is set up with a delay and a period. The delay specifies the amount of time to wait
after node activation before triggering the timer the first time. The period defines the time between
subsequent trigger activations. A period of O results in a one-shot timer.

The (period and delay) expression should be of the form [#d][#h][#m][#s][#[ms]]. You can specify
the amount of days, hours, minutes, seconds and milliseconds (which is the default if you don't
specify anything). For example, the expression "1h" will wait one hour before triggering the timer
(again).

125

Processes

6.6.4.2. Configure timer with CRON like expression

Timer events can be configured with CRON like expression when timeCycle is used as timer event
definition. Important is that the language attribute of timeCycle definition must be set to cron. With
that such cycle of a timer is controlled in the same way as CRON jobs. CRON like expression
is supported for:

» start event timers
* intermediate event timers
* boundary event timers

Following is an example of a definition of a boundary timer with CRON like expression

<bpm2: boundar yEvent id="1" nanme="Send Update Tinmer" attachedToRef="_77A94B54- 8B7C- 4F8A- 84EE-
C1D310A343A6" cancel Activity="fal se">

<bpm?2: out goi ng>2</ bpmm?2: out goi ng>

<bpm2: ti merEvent Definition id="_erlyi JZ7EeSDh8PHobj SSA" >

<bpm2: ti meCycle xsi:type="bpm2:tFormal Expressi on" id="_erlyi ZZ7EeSDh8PHobj SSA"
| anguage="cron">0/1 * * * * ?2</bpm2:tinmeCycl e>

</ bpm2:ti mer Event Defini ti on>

</ bpm2: boundar yEvent >

This timer will fire every second and will continue until activity this boundary event is attached
to is active.

6.6.4.3. Configure timer 1ISO-8601 date format

since version 6 timers can be configured with valid 1SO8601 [http://en.wikipedia.org/wi-
ki/ISO_8601] date format that supports both one shot timers and repeatable timers. Timers can
be defined as date and time representation, time duration or repeating intervals

« Date - 2013-12-24T20:00:00.000+02:00 - fires exactly at Christmas Eve at 8PM
e Duration - PT1S - fires once after 1 second

» Repeatable intervals - R/PT1S - fires every second, no limit, alternatively R5/PT1S will fire 5
times every second

6.6.4.4. Configure timer with process variables

In addition to two configuration options above timers can be specified using process variable that
can consists of string representation of ether delay and period or ISO8601 date format. By spec-
ifying #{variable} engine will dynamically extract process variable and use it as timer expression.

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be canceled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

126

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

Processes

* A Timer Event may be added to the process flow. Its activation starts the timer, and when it
triggers, once or repeatedly, it activates the Timer node's successor. Subsequently, the outgoing
connection of a timer with a positive period is triggered multiple times. Canceling a Timer node
also cancels the associated timer, after which no more triggers will occur.

« Timers can be associated with a Sub-Process or tasks as a boundary event.

6.6.4.5. Update timer within running process instance

In some cases timer that has been already scheduled should be rescheduled to accomodate new
requirements (prolong or shorten timer expiration time, change delay, period or repeat limit).

As this involves several low level steps, jBPM comes with a dedicated command to perform these
operations as atomic operation to make sure all is done within same transaction.

org. j bpm process. i nstance. coomand. Updat eTi ner Comrand

Following timer events are supported to be updated:

e boundary timer event
* intermediate timer event

Timers can be rescheduled by providing following information to the UpdateTimerCommand

» processlinstanceld - mandatory
* timer node name - mandatory

Next one of following three parameters set needs to be used:

 delay
 period and repeatLimit
« delay, period and repeatLimit

Example on how to updated timer event:

11 first start process i nstance and record its i dl ong id
= ki eSessi on. st art Process(BOUNDARY_PROCESS_NAME) . get 1 d(); // set tinmer del ay to
3ski eSessi on. execut e(new Updat eTi mer Cormand(i d, BOUNDARY_TI MER_ATTACHED_TO _NAME, 3));
idlong id =

ki eSessi on. start Process(BOUNDARY_PROCESS NAME) . get 1 d();//set timer delay to
3ski eSessi on. execut e(new Updat eTi mer Command(i d, BOUNDARY_TI MER_ATTACHED_TO_NAME,

Important is that the update command is executed via ksession executor to ensure it's done in
transaction (when persistence is used).

127

Processes

6.7. Process Fluent API

While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APIs), it is also possible to define a process using the
Process API directly. The most important process model elements are defined in the packages
org. j bpm wor kfl ow. core and or g. | bpm wor kf | ow. cor e. node. A "fluent API" is provided that
allows you to easily construct processes in a readable manner using factories. At the end, you
can validate the process that you were constructing manually.

6.7.1. Example

This is a simple example of a basic process with a script task only:

Rul eFl owPr ocessFactory factory =

Rul eFl owPr ocessFact ory. creat eProcess("org.j bpm Hel | oWorl d");
factory

/| Header

. name(" Hel | oWor | dProcess")

.version("1.0")

. packageNane("org. j bpnt)

/1 Nodes

.startNode(1).nanme("Start"). done()

.acti onNode(2).name("Action")

.action("java", "Systemout.printin(\"Hello Wrld\");").done()

. endNode(3) . narme(" End") . done()

/| Connecti ons

.connection(1, 2)

.connection(2, 3);
Rul eFl owPr ocess process = factory.validate().getProcess();

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();
Resource resource = ks. get Resources().newByt eArrayResour ce(
Xm BPMNPr ocessDunper . | NSTANCE. dunp(pr ocess) . get Bytes());
resour ce. set Sour cePat h("hel | owor | d. bprm2") ;
kfs.wite(resource);
Rel easel d rel easel d = ks. newRel easel d("org.jbpnt, "helloworld", "1.0");
kfs. generat eAndWit ePonXM_(r el easel d) ;
ks. newKi eBui | der (kfs). bui Il dAII ();
ks. newKi eCont ai ner (rel easel d) . newKi eSessi on().startProcess("org.jbpm Hel | oWrl d");

You can see that we start by calling the static cr eat eProcess() method from the Rul eFl ow
ProcessFact ory class. This method creates a new process with the given id and returns the
Rul eFl owPr ocessFact ory that can be used to create the process. A typical process consists of
three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package
name. After that, you can start adding nodes to the current process. If you have auto-completion

128

Processes

you can see that you have different methods to create each of the supported node types at your
disposal.

When you start adding nodes to the process, in this example by calling the st art Node(), ac-
ti onNode() and endNode() methods, you can see that these methods return a specific Node-
Fact ory, that allows you to set the properties of that node. Once you have finished configuring
that specific node, the done() method returns you to the current Rul eFl owPr ocessFact ory So
you can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between
them. This can be done by calling the method connect i on, which will link previously created
nodes.

Finally, you can validate the generated process by calling the val i dat e() method and retrieve
the created Rul eFl owPr ocess object.

6.8. Testing

Even though business processes aren't code (we even recommend you to make them as high-
level as possible and to avoid adding implementation details), they also have a life cycle like other
development artefacts. And since business processes can be updated dynamically, testing them
(so that you don't break any use cases when doing a modification) is really important as well.

6.8.1. Unit testing

When unit testing your process, you test whether the process behaves as expected in specific
use cases, for example test the output based on the existing input. To simplify unit testing, jBPM
includes a helper class called JbpmJUnitBaseTestCase (in the jopm-test module) that you can
use to greatly simplify your JUnit testing, by offering:

» helper methods to create a new RuntimeManager and RuntimeEngine for a given (set of)
process(es)

e you can select whether you want to use persistence or not

» assert statements to check

the state of a process instance (active, completed, aborted)

which node instances are currently active

» which nodes have been triggered (to check the path that has been followed)

get the value of variables

For example, consider the following "hello world" process containing a start event, a script task
and an end event. The following JUnit test will create a new session, start the process and then
verify whether the process instance completed successfully and whether these three nodes have
been executed.

129

Processes

B =S

Hallo

StartProcess EndProcess

Figure 6.21.

public class ProcessPersistenceTest extends JbpmJUnit BaseTest Case {

public ProcessPersistenceTest() {
/| setup data source, enable persistence
super (true, true);

@est

public void testProcess() {
/'l create runtime nmanager with single process - hello.bpm
creat eRunti meManager (" hel | o. bpmm") ;

/] take RuntineManager to work with process engine
Runt i mreEngi ne runti meEngi ne = get Runti neEngi ne();

/] get access to KieSession instance
Ki eSessi on ksession = runti neEngi ne. get Ki eSessi on();

/] start process
Processl nstance processlnstance = ksession. startProcess("com sanpl e. bpm. hel | 0");

/1 check whether the process instance has conpl eted successfully
assert Processl nst anceConpl et ed(processl nst ance. get1d(), ksession);

/| check what nodes have been triggered
assert NodeTri ggered(processlnstance. getld(), "StartProcess", "Hello", "EndProcess");

JbpmJUnitBaseTestCase acts as base test case class that shall be used for jBPM related tests.
It provides four usage areas:

« JUnit life cycle methods

» setUp: executed @Before and configures data source and EntityManagerFactory, cleans up
Singleton's session id

130

Processes

» tearDown: executed @After and clears out history, closes EntityManagerFactory and data
source, disposes RuntimeEngines and RuntimeManager

« Knowledge Base and KnowledgeSession management methods

» createRuntimeManager creates RuntimeManager for given set of assets and selected strat-
egy

+ disposeRuntimeManager disposes RuntimeManager currently active in the scope of test

» getRuntimeEngine creates new RuntimeEngine for given context
» Assertions

» assertProcessinstanceCompleted

» assertProcessinstanceAborted

» assertProcesslinstanceActive

» assertNodeActive

» assertNodeTriggered

» assertProcessVarExists

» assertNodeExists

* assertVersionEquals

» assertProcessNameEquals
» Helper methods

» getDs - returns currently configured data source

» getemf - returns currently configured EntityManagerFactory

» getTestWorkltemHandler - returns test work item handler that might be registered in addition
to what is registered by default

« clearHistory - clears history log
» setupPoolingDataSource - sets up data source

JbpmJUnitBaseTestCase supports all three predefined RuntimeManager strategies as part of the
unit testing. It's enough to specify which strategy shall be used whenever creating runtime man-
ager as part of single test:

public class ProcessHumanTaskTest extends JbpmJUnit BaseTest Case {

131

Processes

private static final Logger |ogger = LoggerFactory. getLogger(ProcessHunanTaskTest . cl ass);

public ProcessHumanTaskTest () {
super (true, false);

}
@est
public void testProcessProcesslnstanceStrategy() {
Runti meManager manager = createRunti neManager (Strat egy. PROCESS | NSTANCE, "nanager", "hunmantask.bpm");
Runti meEngi ne runti meEngi ne = get Runti neEngi ne(Processl nstancel dCont ext.get());
Ki eSessi on ksessi on = runti meEngi ne. get Ki eSessi on();
TaskServi ce taskService = runti meEngi ne. get TaskService();
int ksessionlD = ksession.getld();
Processl nstance processlnstance = ksession. startProcess("com sanpl e. bpm. hel | 0");
assert Processl nstanceActi ve(processl nstance. getld(), ksession);
assert NodeTri ggered(processlnstance.getld(), "Start", "Task 1");
manager . di sposeRunt i neEngi ne(runti neEngi ne) ;
runti meEngi ne = get Runti neEngi ne(Processl nst ancel dCont ext . get (processl nstance. getld()));
ksession = runti neEngi ne. get Ki eSessi on();
taskServi ce = runti meEngi ne. get TaskService();
assert Equal s(ksessi onl D, ksession.getld());
/1 let john execute Task 1
Li st <TaskSunmary> |ist = taskService. get TasksAssi gnedAsPot enti al Ower ("j ohn", "en-UK");
TaskSunmary task = list.get(0);
| ogger.info("John is executing task {}", task.getNanme());
taskService.start(task.getld(), "john");
taskService. conpl ete(task. getld(), "john", null);
assert NodeTri gger ed(processl nstance. getld(), "Task 2");
/] let mary execute Task 2
list = taskService. get TasksAssi gnedAsPot enti al Owmer ("mary", "en-UK");
task = list.get(0);
| ogger.info("Mary is executing task {}", task.getName());
taskService.start(task.getld(), "nmary");
taskService. conpl ete(task.getld(), "mary", null);
assert NodeTri gger ed(processl nstance. getld(), "End");
assert Processl nst anceConpl et ed(processl nst ance. get 1 d(), ksession);
}

Above is more complete example that uses PerProcessinstance runtime manager strategy and
uses task service to deal with user tasks.

6.8.1.1. Testing integration with external services

Real-life business processes typically include the invocation of external services (like for example
a human task service, an email server or your own domain-specific services). One of the advan-
tages of our domain-specific process approach is that you can specify yourself how to actually

132

Processes

execute your own domain-specific nodes, by registering a handler. And this handler can be differ-
ent depending on your context, allowing you to use testing handlers for unit testing your process.
When you are unit testing your business process, you can register test handlers that then verify
whether specific services are requested correctly, and provide test responses for those services.
For example, imagine you have an email node or a human task as part of your process. When
unit testing, you don't want to send out an actual email but rather test whether the email that is re-
guested contains the correct information (for example the right to email, a personalized body, etc.).

A TestWorkltemHandler is provided by default that can be registered to collect all work items (a
work item represents one unit of work, like for example sending one specific email or invoking one
specific service and contains all the data related to that task) for a given type. This test handler
can then be queried during unit testing to check whether specific work was actually requested
during the execution of the process and that the data associated with the work was correct.

The following example describes how a process that sends out an email could be tested. This
test case in particular will test whether an exception is raised when the email could not be sent
(which is simulated by notifying the engine that the sending the email could not be completed).
The test case uses a test handler that simply registers when an email was requested (and allows
you to test the data related to the email like from, to, etc.). Once the engine has been notified the
email could not be sent (using abortWorkltem(..)), the unit test verifies that the process handles
this case successfully by logging this and generating an error, which aborts the process instance
in this case.

Og{ e J_>®5ent

failed

i=| Failed

Figure 6.22.

public void testProcess2() {

/] create runtine manager with single process - hello.bpm
creat eRunt i mreManager (" sanpl e- process. bpm") ;

/] take RuntineManager to work with process engine
Runt i meEngi ne runti meEngi ne = get Runti neEngi ne()

/] get access to KieSession instance
Ki eSessi on ksessi on = runti meEngi ne. get Ki eSessi on();

/] register a test handler for "Email"

133

Processes

Test Wr ki t emHandl er testHandl er = get Test Wor ki t enHandl er () ;
ksessi on. get Wor kI t emVlnager () . regi st er Wrkl t enHandl er ("Enai | ", testHandl er);

/] start the process
Processl nstance processlnstance = ksession.startProcess("com sanpl e. bpm. hel | 02");

assert Processl nstanceActi ve(processlnstance. getld(), ksession);
assert NodeTri ggered(processlnstance. getld(), "StartProcess", "Email");

/| check whether the email has been requested

Workltem workltem = testHandl er. get Wrklten();

assert Not Nul | (worklten);

assert Equal s("Emai | ", workltem get Nanme());

assert Equal s("ne@mi | . cont’, workltem get Paraneter("Froni));
assert Equal s("you@mi |l . cont, workltem getParaneter("To"));

/1 notify the engine the email has been sent

ksessi on. get Wor kI t emVlnager () . abort Wor kI t en{ wor kl tem get 1d());

assert Processl nst anceAbort ed(processl nst ance. getld(), ksession);

assert NodeTri gger ed(processl nstance. getld(), "Gateway", "Failed", "Error");

6.8.1.2. Configuring persistence

You can configure whether you want to execute the JUnit tests using persistence or not. By default,
the JUnit tests will use persistence, meaning that the state of all process instances will be stored
in a (in-memory H2) database (which is started by the JUnit test during setup) and a history log will
be used to check assertions related to execution history. When persistence is not used, process
instances will only live in memory and an in-memory logger is used for history assertions.

Persistence (and setup of data source) is controlled by the super constructor and allows following
« default, no arg constructor - the most simple test case configuration (does NOT initialize da-

ta source and does NOT configure session persistence) - this is usually used for in memory
process management, without human task interaction

» super(boolean, boolean) - allows to explicitly configure persistence and data source. This is the
most common way of bootstrapping test cases for jBPM

 super(true, false) - to execute with in memory process management with human tasks per-
sistence

» super(true, true) - to execute with persistent process management with human tasks persis-
tence

» super(boolean, boolean, string) - same as super(boolean, boolean) but allows to use another
persistence unit name than default (org.jopm.persistence.jpa)

public class ProcessHumanTaskTest extends JbpmlUnit BaseTest Case {

134

Processes

private static final Logger |ogger =

public ProcessHumanTaskTest () {
/1 configure this tests to not
for human tasks
super(true, false);

Logger Fact ory. get Logger (ProcessHumanTaskTest . cl ass) ;

use persistence for

process engi ne but

still

use it

135

Chapter 7. Human Tasks

7.1. Introduction

An important aspect of business processes is human task management. While some of the work
performed in a process can be executed automatically, some tasks need to be executed by human
actors.

jBPM supports a special human task node inside processes for modeling this interaction with
human users. This human task node allows process designers to define the properties related to
the task that the human actor needs to execute, like for example the type of task, the actor(s),
or the data associated with the task.

jBPM also includes a so-called human task service, a back-end service that manages the life cycle
of these tasks at runtime. The jBPM implementation is based on the WS-HumanTask specification.
Note however that this implementation is fully pluggable, meaning that users can integrate their
own human task solution if necessary.

In order to have human actors participate in your processes, you first need to (1) include human
task nodes inside your process to model the interaction with human actors, (2) integrate a task
management component (like for example the WS-HumanTask based implementation provided
by jBPM) and (3) have end users interact with a human task client to request their task list and
claim and complete the tasks assigned to them. Each of these three elements will be discussed
in more detail in the next sections.

7.2. Using User Tasks in our Processes

jBPM supports the use of human tasks inside processes using a special User Task node defined
by the BPMN2 Specification(as shown in the figure above). A User Task node represents an
atomic task that needs to be executed by a human actor.

S

HE Interview

[Although jBPM has a special user task node for including human tasks inside a process, human
tasks are considered the same as any other kind of external service that needs to be invoked and
are therefore simply implemented as a domain-specific service. See the chapter on domain-spe-
cific processes to learn more about this.]

A User Task node contains the following core properties:

136

Human Tasks

» Actors: The actors that are responsible for executing the human task. A list of actor id's can be
specified using a comma (',") as separator.

» Group: The group id that is responsible for executing the human task. A list of group id's can
be specified using a comma (',") as separator.

* Name: The display name of the node.

« TaskName: The name of the human task. This name is used to link the task to a Form. It also
represent the internal name of the Task that can be used for other purposes.

« DatalnputSet: all the input variables that the task will receive to work on. Usually you will be
interested in copying variables from the scope of the process to the scope of the task. (Look at
the data mappings section for an example)

» DataOutputSet: all the output variables that will be generated by the execution of the task. Here
you specify all the name of the variables in the context of the task that you are interested to
copy to the context of the process. (Look at the data mappings section for an example)

« Assignments: here you specify which process variable will be linked to each Data Input and
Data Output mapping. (Look at the data mappings section for an example)

You can edit these variables in the properties view (see below) when selecting the User Task node.
Properties (User) w

Mame Value

=l Core Properties

Actors

Assignments name=&giin_name,out_age->age,outl_mail->mail. ..
DatalnputSet Groupld:Object, Comment: Object,in_name:String

DataOutputSet out_name:3tringout_age:Integer,out_mail:String,out_s. ..

Groups HRE

Name HR Interview
Task Name HRInterview
TaskType & User

H Extra Properties
H Graphical Settings

4 Simulation Properties

A User Task node also contains the following extra properties:

137

Human Tasks

* Comment: A comment associated with the human task. Here you can use expressions.
+ Content: The data associated with this task.
* Priority: An integer indicating the priority of the human task.

» Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

< On entry and on exit actions: Action scripts that are executed upon entry and exit of this node,
respectively.

= Extra Properties
Comment Candidate: #name}
Content
| Created by
Documentation
* Locale
Multiple Inst... falze
 Notifications
On Entry Act...
On Exit Acti...
Priority
Reassignment

An integer indicating the priority of the human
Script Langu... java task

Skippable

7.2.1. Swimlanes

User tasks can be used in combination with swimlanes to assign multiple human tasks to the same
actor. Whenever the first task in a swimlane is created, and that task has an actorld specified,
that actorld will be assigned to (all other tasks of) that swimlane as well. Note that this would
override the actorld of subsequent tasks in that swimlane (if specified), so only the actorld of the
first human task in a swimlane will be taken into account, all others will then take the actorld as
assigned in the first one.

138

Human Tasks

Warning

Actorld assignment will work only when there is single actor specified. Since Ac-
torld field can contain multiple actors (john,mary,peter) auto assignment for the
first task will not be performed when multiple values are found.

Whenever a human task that is part of a swimlane is completed, the actorld of that swimlane is
set to the actorld that executed that human task. This allows for example to assign a human task
to a group of users, and to assign future tasks of that swimlame to the user that claimed the first
task. This will also automatically change the assignment of tasks if at some point one of the tasks
is reassigned to another user.

7.3. Data Mappings

Human tasks typically present some data related to the task that needs to be performed to the
actor that is executing the task and usually also request the actor to provide some result data
related to the execution of the task. Task forms are typically used to present this data to the actor
and request results.

The data that will be used by the Task needs to be specified when we define the User Task in
our Process. In order to do that we need to define which data will be copied from the process
context to the task context. Notice that the data is copied, so it can be modified inside the Task
context but it will not affect the process variables unless we decide to copy back the value from
the task to the process context.

Most of the times Forms are used to display data to the end user. Allowing them to generate/create
new data that will be propagated to the process context to be used by future activities. In order
to decide how the information flow from the process to a particular task and from the task to the
process we need to define which pieces of information will be automatically copied by the process
engine. The following sections shows how to do these mappings by configuring the DatalnputSet,
DataOutputSet and the Assignments properties of a User Task.

Let's start defining the Task DatalnputSet:

Editor for Data Input

Add Data Input
MName Standard Type Cusiom Type
1 Groupld Object @
2 Comment Object @
3 in_name String @

139

Human Tasks

Both Groupld and Comment are automatically generated, so you don't need to worry about that.
In this case the only user defined Data Input is called: in_name. This means that the task will be
receiving information from the process context and internally this variable will be called in_name.
The type is also specified here.

In the Data Outputs represent the data that will be generated by the tasks. In this case we have
two variables of type String called: out_name and out_mail and two Integer variables called:
out_age and out_score are defined. This means that inside the task context we will need to set
the value to these variables.

Editor for Data Output

Add Data Output
Mame Standard Type Cusiom Type
out_name String @
out_age Integer @
out_mail String @
out_score Integer @

Finally all the connections with the process context needs to be done in the Data Assignments.
The main idea here is to define how Data Inputs and Data Outputs will be associated with process
variables.

Editor for Data Assignments

Add Assignment
From Object Mssignment Type To Object To Value
1 name is mapped o in_name
2 out_age is mapped o age
3 out_mail is mapped to mail
4 out_score is mapped o hr_score

As shown in the previous screenshot, the assignments between the process variables (in this
case (name, age, mail and hr_score)) and the Data Inputs and Outputs are done in the Data
Assignments screen. Notice that the example uses a convention that makes it easy to know which
is an internal Task variables (Data Input/Output) using the "in_" and "out_" prefix to the variable
names. Using this convention you can quickly understand the Assignments screen. The first row
maps the process variable called name to the data input called in_name. The second row maps
the data output called out_mail to the process variable called mail, and so on.

140

O8O

Human Tasks

These mappings at runtime will automatically copy the variables content from one context (process
and task) to the other automatically for us.

7.4. Task Lifecycle

From the perspective of a process, when a user task node is encountered during the execution, a
human task is created. The process will then only leave the user task node when the associated
human task has been completed or aborted.

The human task itself usually has a complete life cycle itself as well. For details beyond what is
described below, please check out the WS-HumanTask specification. The following diagram is
from the WS-HumanTask specification and describes the human task life cycle.

Created

Suspended
Ready
Reserved
InProgress
COVErabke S [WS-HT exi] | [Skip &8 ESKippabie]
1T fauit” Exil Fask Send WS-HT skippe
_F
™ - e N
Completed Failed Error Exited Obsolete
. L AR A

i
\..

A newly created task starts in the "Created" stage. Usually, it will then automatically become
"Ready", after which the task will show up on the task list of all the actors that are allowed to
execute the task. The task will stay "Ready" until one of these actors claims the task, indicating
that he or she will be executing it.

When a user then eventually claims the task, the status will change to "Reserved". Note that a
task that only has one potential (specific) actor will automatically be assigned to that actor upon
creation of the task. When the user who has claimed the task starts executing it, the task status
will change from "Reserved" to "InProgress".

141

Human Tasks

Lastly, once the user has performed and completed the task, the task status will change to "Com-
pleted”. In this step, the user can optionally specify the result data related to the task. If the task
could not be completed, the user could also indicate this by using a fault response, possibly in-
cluding fault data, in which case the status would change to "Failed".

While the life cycle explained above is the normal life cycle, the specification also describes a
number of other life cycle methods, including:

« Delegating or forwarding a task, so that the task is assigned to another actor

» Revoking a task, so that it is no longer claimed by one specific actor but is (re)available to all
actors allowed to take it

» Temporarly suspending and resuming a task
» Stopping a task in progress

» Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed

7.5. Task Permissions

Only users associated with a specific task are allowed to modify or retrieve information about the
task. This allows users to create a jBPM workflow with multiple tasks and yet still be assured of
both the confidentiality and integrity of the task status and information associated with a task.

Some task operations will end up throwing a
org. j bpm servi ces. t ask. excepti on. Per i ssi onDeni edExcept i on when used with informa-
tion about an unauthorized user. For example, when a user is trying to directly modify the task
(for example, by trying to claim or complete the task), the Per ni ssi onDeni edExcept i on will be
thrown if that user does not have the correct role for that operation. Furthermore, a user will not
be able to view or retrieve tasks that the user is not involved with, especially if this is via the BPM
Console or KIE Workbench applications.

User 'Administrator' and group 'Administrators' are automatically added to each Human Task.

7.5.1. Task Permissions Matrix

The permisions matrix below summarizes the actions that specific user roles are allowed to do. On
the left side, possible operations are listed while user roles are listed across the top of the matrix.

The cells of the permissions matrix contain one of three possible characters, each of which indicate
the user role permissions for that operation:

e a "+ indicates that the user role CAN do the specified operation
* a"-"indicates that the user role MAY NOT do the specified operation

e a" "indicates that the user role MAY NOT do the specified operation, and that it is also not an
operation that matches the user's role ("not applicable™)

142

Human Tasks

Furthermore, the following words or abbreviations in the table header refer to the following roles:

Table 7.1. Task roles in the permissions table

Word

Role

Description

Initiator

Stakeholder

Potential

Task Initiator

Task Stakeholder

Potential Owner

The user who creates the task
instance

The user involved in the task:
this user can influence the
progress of a task, by perform-
ing administrative actions on
the task instance

The user who can claim

the task before it has been
claimed, or after it has been
released or forward: only tasks
that have the status "Ready"
may be claimed; a potential
owner becomes the actual
owner of a task by claiming
the task

Actual

Actual Owner

The user who has claimed the
task and will progress the task
to completion or failure

Administrator

Business Adminstrator

A "super user" who may mod-
ify the status or progress of

a task at any point in a task's
lifecycle

User roles are assigned to users by the definition of the task in

finition.

Permissions Matrices.
which modify a task:

The following matrix describes the

Table 7.2. Main operations permissions matrix

the jBPM (BPMN2) process de-

authorizations for all operations

Opera- Initiator Stakeholder Potential Actual Administra-
tion\Role tor
activate + + _ _ +

claim - + + _ +

conpl ete - + _ + +

del egat e + + + + +

143

Human Tasks

Opera- Initiator Stakeholder Potential Actual Administra-
tion\Role tor
fail - + _ + +
forward + + + + +
nom nat e + + + + +
rel ease + + + + +
renmove - _ _ _ +
resune + + + + +
ski p + + + + +
start - + + + +
stop - + _ + +
suspend + + + + +

The matrix below describes the authorizations used when retrieving task information. In short, it
says that all users which have any role with regards to the specific task, are allowed to see the
task. This applies to all operations that are used to retrieve any type of information about the task.

Table 7.3. Retrieval operations permissions matrix

Opera- Initiator Stakeholder Potential Actual Administra-
tion\Role tor
get + + + + +

7.6. Task Service and The Process Engine

As far as the |BPM engine is concerned, human tasks are similar to any other external service
that needs to be invoked and are implemented as a domain-specific service. (For more on do-
main-specific services, see the chapter on them here.) Because a human task is an example of
such a domain-specific service, the process itself only contains a high-level, abstract description
of the human task to be executed and a work item handler that is responsible for binding this
(abstract) task to a specific implementation.

Users can plug in any human task service implementation, such as the one that's provided by
jBPM, or they may register their own implementation. In the next paragraphs, we will describe the
human task service implementation provided by jBPM.

The jBPM project provides a default implementation of a human task service based on the WS-
HumanTask specification. If you do not need to integrate jBPM with another existing implementa-
tion of a human task service, you can use this service. The jBPM implementation manages the life
cycle of the tasks (creation, claiming, completion, etc.) and stores the state of all the tasks, task
lists, and other associated information. It also supports features like internationalization, calendar
integration, different types of assignments, delegation, escalation and deadlines. The code for the
implementation itself can be found in the joppm-human-task module.

144

Human Tasks

The jBPM task service implementation is based on the WS-HumanTask (WS-HT) specification.
This specification defines (in detail) the model of the tasks, the life cycle, and many other features.
It is very comprehensive and the first version can be found here.

7.7. Task Service API

The human task service exposes a Java API for managing the life cycle of tasks. This allows clients
to integrate (at a low level) with the human task service. Note that end users should probably
not interact with this low-level API directly, but use one of the more user-friendly task clients
(see below) instead. These clients offer a graphical user interface to request task lists, claim and
complete tasks, and manage tasks in general. The task clients listed below use the Java API to
internally interact with the human task service. Of course, the low-level API is also available so
that developers can use it in their code to interact with the human task service directly.

A task service (interface org.kie.api.task.TaskService) offers the following methods (among oth-
ers) for managing the life cycle of human tasks:

void start(long taskld, String userld);

void stop(long taskld, String userld);

void rel ease(long taskld, String userlid);

voi d suspend(|ong taskld, String userld);

void resune(long taskld, String userld);

void skip(long taskld, String userld);

voi d del egate(long taskld, String userld, String targetUserld);

void conplete(long taskld, String userld, Map<String, Object> results);

If you take a look at the method signatures you will notice that almost all of these methods take
the following arguments:

« taskld: The id of the task that we are working with. This is usually extracted from the currently
selected task in the user task list in the user interface.

« userld: The id of the user that is executing the action. This is usually the id of the user that is
logged in into the application.

There is also an internal interface that you should check for more methods to interact with the
Task Service, this interface is internal until it gets tested. Future version of the External (public)

145

Human Tasks

interface can include some of the methods proposed in the InternalTaskService interface. If you
want to make use of the methods provided by this interface you need to manually cast to Internal-
TaskService. One method that can be useful from this interface is getTaskContent():

Map<String, Object> getTaskContent(long taskld);

This method saves you from doing all the boiler plate of getting the ContentMarshallerContext
to unmarshall the serialized version of the task content. If you only want to use the stable/public
API's you can just copy what this method does:

Task taskByld = taskQueryService. get Taskl nst anceByl d(t askl d);
Cont ent content Byl d =
t askCont ent Ser vi ce. get Cont ent Byl d(t askByl d. get TaskDat a() . get Docunent Content 1 d());
Cont ent Mar shal | er Cont ext context = get Marshal | er Cont ext (t askByl d) ;
oj ect unmar shal | edbj ect
= Cont ent Mar shal | er Hel per . unmar shal | (cont ent Byl d. get Content (), cont ext. get Envi ronnent (),
cont ext . get G assl oader ());
if (!'(unnarshal |l ed®oj ect instanceof Map)) {
throw new |11 egal St at eException(" The Task Content Needs to be a Map in order
to use this nethod and it was: "+unnarshal |l edObject.getC ass());

}
Map<String, Object> content = (Map<String, Object>) unnarshal |l edject;
return content;

Because the content of the Task can be any Object, the previous method assume that you are
storing a Map of objects to work. If you are storing other than a Map you should do the correspon-
dent checks.

7.7.1. Task event listener

Task service supports task listeners to be invoked upon various life cycle events happening on
given task instance. In majority of cases task event listeners are used to intercept certain operation
to perform additional logic - like storing task information in separate tables for business activity
monitoring needs.

Task event listeners are pluggable and users can provide their own implementation of
org.kie.api.task.TaskLifeCycleEventListener interface. There are beforeTask* and afterTask*
methods that are invoked upon given event occured on a task instance.

TaskEvent (org.kie.api.task. TaskEvent) is the only argument available to the listener that provides
access to:

» Task instance that the event correspond to

146

Human Tasks

» TaskContext that provides access to services for further processing needs such as TaskPer-
sistenceContext

In many cases implementors of task event listener need to have access to task variables (either
input or output or both) to perform required operations. It can be done as described above (using
various services and content marshaller helper) though that in many cases leads to code dupli-
cation in multiple listeners thus an extended support was added in 6.5 to simply use TaskContext
to obtain that information.

| oadTaskVari abl es(Task task);

Method loadTaskVariables can be used to populate both input and output variables of a given
task by simple and single method call. That method is "no op" in case task variables are already
set on a task.

To improve performance task variables are automatically set when they are available - usually
given by caller on task service:

« when task is created it usually has input variables, these variables are then set on Task instance
so there is no need to use loadTaskVariables method as only task input variables are available
when task is being created - applies to beforeTaskAdded and afterTaskAdded events handling

« when task is completed it usually has output variables, these variables are set on a task so
there is no need to use loadTaskVariables method if only task output variables are required.

Other than that loadTaskVariables should be used to populate task variables.

@ Note

It's enough to call it once (like in beforeTask) method of the listener as they will be
available to both beforeTask* and afterTask* methods then.

7.7.2. Data model of task service

Below is the data base model used by task service with all tables and their relationship illustrated.

147

Human Tasks

¥ i BGINTI20)

2 nguage VARCHAR(255)

> shoATaat VARCHARESS)
 tat LONGTEXT

O Task_Subjects_kd BIGINT(20)

@tk id BIGINTEO) _rdmﬂlm 1 & Task_Descripiors_ld BIGINT(20)
 entity_id VARCHAR[2SS) > archived SMALLINTIS) | . > Reassignment_Documentation_id G INTI20)

 siowedTeDelsgate VARGHAR255)

s diription VARCHARIER HO-————————— —— 4 o Heblootin, oo A NG
. i e e E o it Diciilins, A BKIRTIN
-1 i -+ . m- I BIGINT 20
i | @ peorty NT(1 1) Deacie,_Dooumes
| I 2 wubTask Strategy VARCHAR[2S) |
: : 2 sugect VARCHARSS) =, N O e S 1
| | e | D
!) crmatndOn DATETIME | ¥ i BGHTI20)
I I > daploymentid VARCHAR(255) [ded At DATETIIE
1 I o documentAccess Typs INT{11) LENEE RN < et LONGTEXT
OamesTipn MR 11) |-+ i [» documenitontent BIGHTRD) [0~ —————— ===~~~ | & addedily_d VARCHAR[255)
SR DATETIE et et e st documentType VARCHARSS) ! ! & TaskData_Comments |4 BIGINTIZD)
| & dmachmentConbentid BXINT 20) -——: ________ 'l ________________ 41| expratonTime DATETIME : | =
o oouieriType VARCHAR 2SS 1 I > tudthccessType INT(11) | é
o bt = S i Toeam o
3 amachenent,_szo WT(11) Pl ——————— === —————— - tntiarme VARCHAR|255)
O amachedEly_id VARCHARIS5) | : (P ||y I 0) S] Ty VARCHAR 258 RERRRER ¥ i BIGINTL0) |
 TaskData Asachments |aBGRTIZ0) | | & MM aATyEE BT) r deadia_date DATETWME
1 5 escalated SMALLNT(E)
Q

& outputCentans BICINT(20) I |
1 ot O Doadi StasDeadLine_|d BIGINTI20) |
> outputTyps VARCHAR(255] O — g === =g ¥ Doninea. =

& parentid BIGINT(20)

S prmacusStata INT(UT) 1
3 processid VARCHARIZSS) ! [+]
3 processinstanceid BIGINT(20) REERREE iSRRG AR e REEREEE T
& process Sessionid BAGINTE o———=l =T rI=crasrImeTs
& skipable TROVINT(1)

 status VARCHAR(2SS)

= Doadines_EndDeadiine_id BIGINT20) |
& DTYPE VARCHARDY)
] | v mamman
_____________ ! 3 pricety INT(11)

o Escalation_Notfications_id BIGINT 200

| ¥ Noatcation_id BIGINT R0}

o hi : 1o | @ emaibiaaden_d BIGHTI)

AI—H—‘ fl_n__' _______________________ 06 | & Doadine_Escalaton_id BIGINTI20) ¥ magkey VARCHAR(255)
I

= = TiH s oTveE vamcHaRan

¥ BGINTE
2 by LONGTEXT

o WomAddress VARCHAR(255)
anguage VARCHAR255)

o roply ToAddress VARCHAR(255)
5 subject

L4
| 4 task_jd BSGINT 20}
@ ocdity_id VARCHARS5)

7.8. Interacting with the Task Service

In order to get access to the Task Service API it is recommended to let the Runtime Manager
to make sure that everything is setup correctly. Look at the Runtime Manager section for more
information. From the API perspective you should be doing something like this:

Runt i meEngi ne engi ne = runti neManager . get Runti meEngi ne(Enpt yContext. get());

Ki eSessi on ki eSessi on = engi ne. get Ki eSessi on();

/] Start a process

ki eSessi on. start Process(" Cust oner sRel ati onshi p. custoners", parans);

/1 Do Task Operations

TaskServi ce taskService = engi ne. get TaskService();

Li st <TaskSummary> tasksAssi gnedAsPot enti al Omner =

taskServi ce. get TasksAssi gnedAsPot ent i al Oamner ("mary", "en-UK");

/1 d ai m Task
taskService. clai n{taskSumary.getld(), "mary");
/1 Start Task
taskService.start(taskSummary. getld(), "mary");

148

Human Tasks

If you use this approach, there is no need to register the Task Service with the Process Engine.
The Runtime Manager will do that for you automatically. If you don't use the Runtime Manager,
you will be responsible for setting the LocalHTWorkltemHandler in the session in order to get
the Task Service notifying the Process Engine when a task is completed, or the Process Engine
notifying that a task has been created.

In jBPM 6.x the Task Service runs locally to the Process and Rule Engine and for that reason
multiple light clients can be created for different Process and Rule Engine's instances. All the
clients will be sharing the same database (backend storage for the tasks).

149

Chapter 8. Persistence and
Transactions

8.1. Process Instance State

jBPM allows the persistent storage of certain information. This chapter describes these different
types of persistence, and how to configure them. An example of the information stored is the
process runtime state. Storing the process runtime state is hecessary in order to be able to con-
tinue execution of a process instance at any point, if something goes wrong. Also, the process
definitions themselves, and the history information (logs of current and previous process states
already) can also be persisted.

8.1.1. Runtime State

Whenever a process is started, a process instance is created, which represents the execution of
the process in that specific context. For example, when executing a process that specifies how
to process a sales order, one process instance is created for each sales request. The process
instance represents the current execution state in that specific context, and contains all the in-
formation related to that process instance. Note that it only contains the (minimal) runtime state
that is needed to continue the execution of that process instance at some later time, but it does
not include information about the history of that process instance if that information is no longer
needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database.
This allows to restore the state of execution of all running processes in case of unexpected failure,
or to temporarily remove running instances from memory and restore them at some later time.
jBPM allows you to plug in different persistence strategies. By default, if you do not configure the
process engine otherwise, process instances are not made persistent.

If you configure the engine to use persistence, it will automatically store the runtime state into the
database. You do not have to trigger persistence yourself, the engine will take care of this when
persistence is enabled. Whenever you invoke the engine, it will make sure that any changes are
stored at the end of that invocation, at so-called safe points. Whenever something goes wrong
and you restore the engine from the database, you also should not reload the process instances
and trigger them manually to resume execution, as process instances will automatically resume
execution if they are triggered, like for example by a timer expiring, the completion of a task that
was requested by that process instance, or a signal being sent to the process instance. The engine
will automatically reload process instances on demand.

The runtime persistence data should in general be considered internal, meaning that you probably
should not try to access these database tables directly and especially not try to modify these
directly (as changing the runtime state of process instances without the engine knowing might
have unexpected side-effects). In most cases where information about the current execution state

150

Persistence and Transactions

of process instances is required, the use of a history log is mostly recommended (see below). In
some cases, it might still be useful to for example query the internal database tables directly, but
you should only do this if you know what you are doing.

8.1.1.1. Binary Persistence

jBPM uses a binary persistence mechanism, otherwise known as marshalling, which converts the
state of the process instance into a binary dataset. When you use persistence with jBPM, this
mechanism is used to save or retrieve the process instance state from the database. The same
mechanism is also applied to the session state and any work item states.

When the process instance state is persisted, two things happen:

« First, the process instance information is transformed into a binary blob. For performance rea-
sons, a custom serialization mechanism is used and not normal Java serialization.

« This blob is then stored, alongside other metadata about this process instance. This metadata
includes, among other things, the process instance id, process id, and the process start date.

Apart from the process instance state, the session itself can also store some state, such as the
state of timer jobs, or the session data that any business rules would be evaluated over. This
session state is stored separately as a binary blob, along with the id of the session and some
metadata. You can always restore session state by reloading the session with the given id. The
session id can be retrieved using ksessi on. get 1 d() .

Note that the process instance binary datasets are usually relatively small, as they only contain
the minimal execution state of the process instance. For a simple process instance, this usually
contains one or a few node instances, i.e., any node that is currently executing, and any existing
variable values.

As a result of jBPM using marshalling, the data model is both simple and small:

151

Persistence and Transactions

= Sessioninto v] Processinstanceinio ¥] WorkRtembnto v R v
BIGINT(20) Inatance id BIGINTE20) workdiem id BIGINT 20) :l = j v
[EpT— . ida DATET i DATET) magpingid BIGINT(20) eyt BIGAT20)
pRE—— = e i VARCIARZS) CONTEXT 1D VARCHARZSS) s citinges
- il dams VARCHARGR o NT_1D VARCHARE55)
whilialy [ATETRE procnsald VARCHARZSS) proc s nstanceid BIGINT(20) A LOHTENT MSESSION_ID BIGT: peccs s atans eid BIGINT(20)
OPTLOCK IT(11) ul ancofytaAiray LONGBLOR state BIGINTE0) state INT(11) OWNER 10 VARGHAR(255) GFTLOCK INTI11)
» DeTiOoERM 4 s 255 OPTLOCK INTI11) -
LpcateDate DATETIME 5 5 :
ko ByteArry LONGEL OB 5)
>
A
>] CormlationPropertyinta ¥
propectyid BIGINTI20)
nama VARCHAR{255)
vtk VARCHAR(258y
OPTLOCK INT(11)
comslationK ey kaykd BKNTIZ0)
»
] Requestinto v] .
o BGINT|20) o BAGINT{20)
commandiame VARCHAR 255) message VARCHAR255)
o 13 VARCHAR(255) 1 o s
axecasions INTTH1) tmestam DATETIME
busnassKey VARCHAR{258) REQUEST_ID BIGINT{20)
massage VARCHAR(2SS) »
owner 255) -
) Taskevent v
b - v = v - ; h = = . :-Ienscur::c- Ll @ BGNTIED)

gTime DATETIME
assage VARCHAR(2SS)

I BGINTIR0) modfcatonOate DATETIME

o DATETIME
VARCHARI255)
comte By VARCHARL2SS) andDate DATETIME Proce 51 VARCHARESS)

name VARCHAR(2S5)

s AR conatedCn BATETIME process instanceid BIGINT(20) procesalnstanceld BIGINT(20) P

= " e takid BIGINT(20) s
user_ideriity VARCHAR(255) ‘Caplopmentl VARCHANEES) P userkd VARCHAR(2S5)
stz VARCHAR(255) deseription VARCHARI255) e INT()

. OPTLOCK INT[11)
. valia VARCHAR[4000)
parentP mc essinstance d BIGINTIZ0) variable ki VARCHARRSS) S TR = workitom'd BIGINT 20}

prcce ssid VARCHARCSS) einie e VARCHARGSE name VARCHAR(255) =
rcce s FuanceDescription Y ARCHARI255) . parentid BIGINT(20)

proce s nstanc ekd BIGINT[20) priority #T(11)

pccs ssName VARCHMARIZS5) workdtern i BIGINT(R0) procesaid VARCHARRSS) »

cces3Version VARCHAREZSS) » process watanc s BIGINT[20)

TETIME

tasidg B)
weoridiom’d BIGINT ()
>

Figure 8.1. JBPM data model
[images/Chapter-Persistence/jbpm_schema.png]

The sessi oni nf o entity contains the state of the (knowledge) session in which the jBPM process
instance is running.

Table 8.1. SessionInfo

Field Description Nullable
id The primary key. NOT NULL

| ast nodi fi cati ondate The last time that the entity
was saved to the database

rul eshyt earray The binary dataset containing | NOT NULL
the state of the session

startdate The start time of the session

opt | ock The version field that serves
as its optimistic lock value

The pr ocessi nst ancei nf o entity contains the state of the jBPM process instance.

152

images/Chapter-Persistence/jbpm_schema.png

Persistence and Transactions

Table 8.2. ProcessInstancelnfo

Field Description Nullable
i nstancei d The primary key NOT NULL
| ast nodi fi cati ondate The last time that the entity
was saved to the database
| astreaddat e The last time that the entity
was retrieved (read) from the
database
processid The name (id) of the process
processi nst ancebyt earray | This is the binary dataset NOT NULL
containing the state of the
process instance
startdate The start time of the process
state An integer representing the NOT NULL
state of the process instance
opt | ock The version field that serves

as its optimistic lock value

The event t ypes entity contains information about events that a process instance will undergo

or has undergone.

Table 8.3. EventTypes

Field Description Nullable
i nstancei d This references the pr o- NOT NULL
cessi nst ancei nf o primary
key and there is a foreign key
constraint on this column.
event Types A text field related to an
event that the process has
undergone.
The wor ki t eni nf o entity contains the state of a work item.
Table 8.4. WorkltemInfo
Field Description Nullable
wor ki t eni d The primary key NOT NULL

creationDate

namne

The name of the work item

The name of the work item

153

Persistence and Transactions

Field Description Nullable
processi nst ancei d The (primary key) id of the NOT NULL
process: there is no foreign
key constraint on this field.
state An integer representing the NOT NULL
state of the work item
opt | ock The version field that serves
as its optimistic lock value
wor Ki t enbyt ear ay This is the binary dataset NOT NULL

containing the state of the
work item

The Correl ati onKeyl nf o entity contains information about correlation keys assigned to given
process instance - loose relationship as this table is considered optional used only when correla-

tion capabilities are required.

Table 8.5. CorrelationKeylInfo

opt | ock

stance which is assigned to
this correlation key

The version field that serves
as its optimistic lock value

Field Description Nullable
keyi d The primary key NOT NULL
nane assigned name of the corre-

lation key
processi nstancei d The id of the process in- NOT NULL

The Corr el ati onPropertyl nf o entity contains information about correlation properties for given
correlation key that is assigned to given process instance.

Table 8.6. CorrelationPropertyinfo

lation key

Field Description Nullable
propertyid The primary key NOT NULL
nane The name of the property
val ue The value of the property NOT NULL
opt | ock The version field that serves

as its optimistic lock value
correl ati onKey- keyi d Foregin key to map to corre- | NOT NULL

154

Persistence and Transactions

The Cont ext Mappi ngl nf o entity contains information about contextual information mapped to
ksession. This is an internal part of RuntimeManager and can be considered optional when Run-
timeManager is not used.

Table 8.7. ContextMappingInfo

Field Description Nullable

mappi ngi d The primary key NOT NULL
context_id Identifier of the context NOT NULL
ksession_id Identifier of the ksession NOT NULL

mapped to this context

opt | ock The version field that serves
as its optimistic lock value

8.1.1.2. Safe Points

The state of a process instance is stored at so-called "safe points" during the execution of the
process engine. Whenever a process instance is executing (for example when it started or con-
tinuing from a previous wait state, the engine executes the process instance until no more actions
can be performed (meaning that the process instance either has completed (or was aborted), or
that it has reached a wait state in all of its parallel paths). At that point, the engine has reached
the next safe state, and the state of the process instance (and all other process instances that
might have been affected) is stored persistently.

8.2. Audit Log

In many cases it will be useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards. For example, sometimes we want to
verify which actions have been executed for a particular process instance, or in general, we want
to be able to monitor and analyze the efficiency of a particular process.

However, storing history information in the runtime database can result in the database rapidly
increasing in size, not to mention the fact that monitoring and analysis queries might influence
the performance of your runtime engine. This is why process execution history information can
be stored separately.

This history log of execution information is created based on events that the process engine gen-
erates during execution. This is possible because the jBPM runtime engine provides a generic
mechanism to listen to events. The necessary information can easily be extracted from these
events and then persisted to a database. Filters can also be used to limit the scope of the logged
information.

155

Persistence and Transactions

8.2.1. The jBPM Audit data model

The jbpm-audit module contains an event listener that stores process-related information in a
database using JPA. The data model itself contains three entities, one for process instance infor-
mation, one for node instance information, and one for (process) variable instance information.

The Processl nst ancelLog table contains the basic log information about a process instance.

Table 8.8. ProcessinstancelLog

Field

Description

Nullable

id

duration

end_date

external I d

user identity

The primary key and id of the
log entity
Actual duration of this

process instance since its
start date

When applicable, the end
date of the process instance

Optional external identifier
used to correlate to some el-
ements - e.g. deployment id

Optional identifier of the user
who started the process in-
stance

NOT NULL

out conme

The outcome of the process
instance, for instance error
code in case of process in-
stance was finished with error
event

par ent Processl nstancel d

The process instance id of
the parent process instance if
any

processi d
processi nst ancei d

processnane

The id of the process
The process instance id

The name of the process

NOT NULL

processversi on

The version of the process

start_date

The start date of the process
instance

st at us

The status of process in-
stance that maps to process
instance state

156

Persistence and Transactions

The Nodel nst anceLog table contains more information about which nodes were actually executed
inside each process instance. Whenever a node instance is entered from one of its incoming
connections or is exited through one of its outgoing connections, that information is stored in this

table.

Table 8.9. NodelnstancelLog

Field Description Nullable
id The primary key and id of the | NOT NULL
log entity
connecti on Actual identifier of the se-
guence flow that led to this
node instance
| og_date The date of the event
external I d Optional external identifier
used to correlate to some el-
ements - e.g. deployment id
nodei d The node id of the corre-
sponding node in the process
definition
nodei nst ancei d The node instance id
nodenarne The name of the node
nodet ype The type of the node
processid The id of the process that the
process instance is executing
processi nstancei d The process instance id NOT NULL
type The type of the event (0 = en- | NOT NULL
ter, 1 = exit)
wor kl tem d Optional - only for certain
node types - The identifier of
work item

The Vari abl el nst anceLog table contains information about changes in variable instances. The
default is to only generate log entries when (after) a variable changes. It's also possible to log

entries before the variable (value) changes.

Table 8.10. VariablelnstancelLog

Field
id

Description

The primary key and id of the
log entity

Nullable
NOT NULL

157

Persistence and Transactions

Field Description Nullable

external I d Optional external identifier
used to correlate to some el-
ements - e.g. deployment id

| og_date The date of the event

processid The id of the process that the
process instance is executing

processi nstancei d The process instance id NOT NULL
ol dval ue The previous value of the

variable at the time that the

log is made
val ue The value of the variable at

the time that the log is made

vari abl ei d The variable id in the process
definition

vari abl ei nst ancei d The id of the variable in-
stance

The Audi t Taskl npl table contains information about tasks that can be used for queries.

Table 8.11. AuditTaskimpl

Field Description Nullable

id The primary key and id of the
task log entity

activationTi ne Time when this task was acti-
vated

act ual Omner Actual owner assigned to this
task - only set when task is
claimed

cr eat edBy User who created this task

createdOn Date when task was created

depl oynent | d Deployment id this task is
part of

description Description of the task

dueDat e Due date set on this task

name Name of the task

parentld Parent task id

priority Priority of the task

158

Persistence and Transactions

Field Description Nullable

processld Process definition id that this
task belongs to

processl nst ancel d Process instance id that this
task is associated with

processSessi onld KieSession id used to create
this task

st at us Current status of the task

taskl d Identifier of task

wor kI t emd d Identifier of work item as-
signed on process side to this
task id

The BAMraskSummar y table that collects information about tasks that is used by BAM engine to
build charts and dashboards.

Table 8.12. BAMTaskSummary

Field Description Nullable
id The primary key and id of the | NOT NULL
log entity
creat edDat e Date whentask was created
duration Duration since task was cre-
ated
endDat e Date when task reached end
state (complete, exit, fall,
skip)
processi nstancei d The process instance id
startDate Date when task was started
st at us Current status of the task
taskl d Identifier of the task
t askName Name of the task
userld User id assigned to the task

The TaskVari abl el npl table contains information about task variable instances.

Table 8.13. TaskVariablelmpl

Field Description Nullable
id The primary key and id of the | NOT NULL
log entity

159

Persistence and Transactions

Field Description Nullable

nodi fi cati onDat e Date when the variable was
modified last time

name Name of the task

processid The id of the process that the
process instance is executing

processi nstancei d The process instance id
taskl d Identifier of the task
type Type of the variable - either

input or output of the task

val ue Variable value

The TaskEvent table contains information about changes in task instances. Operations such as
claim, start, stop etc are stored here to provide time line view of events that happened to given task.

Table 8.14. TaskEvent

Field Description Nullable
id The primary key and id of the | NOT NULL
log entity
| ogTi me LDate when this event was
saved
nmessage Log event message
processi nstancei d The process instance id
taskld Identifier of the task
type Type of the event - corre-
sponds to life cycle phases of
the task
userld User id assigned to the task
wor kl tem d Identifier of work item that the
task is assigned to

8.2.2. Storing Process Events in a Database

To log process history information in a database like this, you need to register the logger on your
session like this:

Enti tyManager Factory enf = ...;

St at ef ul Knowl edgeSessi on ksession = ...;

Abstract Audi t Logger audit Logger = AuditLogger Fact ory. newJPAI nst ance(enf);
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

160

Persistence and Transactions

/'l invoke met hods one your session here

To specify the database where the information should be stored, modify the file per si st ence. xni
file to include the audit log classes as well (ProcessinstancelLog, NodelnstanceLog and Vari-
ablelnstancelLog), as shown below.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<persi st ence
versi on="2.0"
xsi : schemaLocation="http://java. sun. com xni / ns/ per si st ence http://java. sun. com xni / ns/
persi st ence/ persi stence_2_0. xsd
http://java. sun. com xnl / ns/ per si st ence/ orm http://java. sun. com xnl / ns/ persi st ence/
orm2_0. xsd"
xm ns="http://java. sun. com xm / ns/ per si st ence"
xm ns: orm="http://java. sun. com xm / ns/ per si st ence/ or ni
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance>

<persi stence-unit nane="org.jbpm persistence.jpa" transaction-type="JTA">
<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/j bpm ds</j t a- dat a- sour ce>
<mappi ng-fil e>META- | NF/ JBPMor m xm </ mappi ng-fil e>
<cl ass>or g. drool s. persi st ence. i nf 0. Sessi onl nf o</ cl ass>
<cl ass>org. j bpm per si st ence. processi nst ance. Processl nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkl tem nfo</cl ass>
<cl ass>org.j bpm persi stence. correl ati on. Correl ati onKeyl nf o</ cl ass>
<cl ass>org.j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org.j bpm runti ne. manager. i npl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<cl ass>org.j bpm process. audi t. Processl nst anceLog</ cl ass>
<cl ass>org.j bpm process. audi t . Nodel nst anceLog</ cl ass>
<cl ass>org.j bpm process. audi t. Vari abl el nst anceLog</ cl ass>

<properties>
<property nanme="hi bernate. dial ect" val ue="org. hi bernate.dial ect. H2Di al ect"/ >
<property name="hi bernate. max_fetch_depth" val ue="3"/>
<property name="hi bernate. hbnRddl . aut 0" val ue="update"/>
<property name="hi bernate.show sql" val ue="true"/>
<property name="hi bernate.transaction.jta.platfornt
val ue="org. hi bernate. service.jta.platforminternal.Bitroni xJtaPl atformn'/>

</ properties>

</ per si st ence- uni t >
</ persi st ence>

All this information can easily be queried and used in a lot of different use cases, ranging from cre-
ating a history log for one specific process instance to analyzing the performance of all instances
of a specific process.

161

Persistence and Transactions

This audit log should only be considered a default implementation. We don't know what information
you need to store for analysis afterwards, and for performance reasons it is recommended to only
store the relevant data. Depending on your use cases, you might define your own data model for
storing the information you need, and use the process event listeners to extract that information.

8.2.3. Storing Process Events in a JMS queue for further pro-
cessing

Process events are stored in the database synchronously and within the same transaction as
actual process instance execution. That obviously takes some time especially in highly loaded
systems and might have some impact on the database when both history log and runtime data
are kept in the same database. To provide an alternative option for storing process events, a JIMS
based logger has been provided. It can be configured to submit messages to JMS queue instead
of directly persisting them in the database. It can be configured to be transactional as well to avoid
issues with inconsistent data in case of process engine transaction is rolled back.

ConnectionFactory factory = ...;

Queue queue = ...;

St at ef ul Knowl edgeSessi on ksession = ... ;

Map<String, Object> jnmsProps = new HashMap<String, Object>();

jmeProps. put ("jbpm audit.jns.transacted", true);

jmsProps. put ("j bpm audit.jns.connection.factory", factory);

jmeProps. put ("j bpm audi t.j nms. queue", queue);

Abstract Audi t Logger audi t Logger = AuditLoggerFactory. new nstance(Type. JMS, session, jnsProps);
ksessi on. addPr ocessEvent Li st ener (audi t Logger) ;

/] invoke methods one your session here

This is just one of possible ways to configure JMS audit logger, see javadocs for AuditLoggerFac-
tory for more details.

8.2.4. Variables auditing

Process and task variables are stored in autdit tables by default although there are stored in
simplest possible way - by creating string representation of the variable - variable.toString(). In
many cases this is enough as even for custom classes used as variables users can implement
custom toString() method that produces expected "view" of the variable.

Though this might not cover all needs, especially when there is a need for efficient queries by
variables (both task and process). Let's take as an example a Person object that has following
structure:

public class Person inplenents Serializable{ private static final long serialVersionUD =
-5172443495317321032L; private String nang; private int age; public Person(String

162

Persistence and Transactions

nane, int age) { thi s. name = naneg; this.age = age; } public String getNane()
{ return nane; } public void setNane(String nanme) { this. nane = nane;
} public int getAge() { return age; } public void setAge(int
age) { this.age = age; } @verride public String toString() { return
"Person [nanme=" + nanme + ", age=" + age + "]"; } }
pl ements Serializabl e{ private static final

I ong serial Versi onUl D = -5172443495317321032L;
private String nane;
private int
age,; public Person(String
nane, int age) {
t hi s. nane = nane;
t hi s. age

= age; }
public String getName() {

return nang;
} public

voi d set Name(String name) {
t hi s. nanme

= nang;
}

public int getAge() {

return age;

} public
voi d set Age(int age) {
t his. age
= age;
} @verride
public String toString() { return "Person [name=" + nane + ", age="
+ age + "]"; }

while at first look this seems to be sufficient as the toString() methods provide human readable
format it does not make it easy to be searched by. As searching through strings like "Person
[name="john", age="34"] to find people with age 34 would make data base query very inefficient.

To solve the problem variable audit has been based on Variablelndexers that are responsible for
extracting relevant parts of the variable that will be stored in audit log.

/**
* Vari abl e i ndexer that allows to transformvariable instance into other representation (usually

string)

* to be able to use it for queries.
*

* @aram <V> type of the object that will represent indexed variable
*/
public interface Variabl el ndexer <V> {

| **

163

Persistence and Transactions

* Tests if given variable shall be indexed by this indexer
* NOTE: only one indexer can be used for given variable

* @aramvariable variable to be indexed
* @eturn true if variable should be indexed with this indexer
*/

bool ean accept (Cbj ect vari abl e);

* Perfornms index/transformoperation of the variable. Result of this operation can be
* either single value or list of values to support conplex type separation.

* For exanple when variable is of type Person that has nane, address phone indexer could
* build three entries out of it to represent individual fields:

* person = person. nanme

* address = person. address. street

* phone = person. phone

* that will allow nore advanced queries to be used to find relevant entries.

* @aram nane nane of the variable

* @aram vari abl e actual variabl e val ue

* @eturn

*/

Li st <V> index(String nane, Object variable);

By default (indexer that takes the toString()) will prodce single audit entry for single variable, so it's
one to one relationship. But that's not the only option. Indexers (as can be seen in the interface)
returns list of objects that are the outcome of single variable indexation. To make our person
queries more efficient we could build custom indexer that would take Person instance and index
it into separate audit entries one representing name and the other representing age.

public class PersonTaskVari abl esl ndexer inplenents TaskVari abl el ndexer {

@verride
publ i c bool ean accept (Object variable) {
if (variable instanceof Person) {
return true;

}

return false;
}
@verride

public List<TaskVariabl e> index(String name, Object variable) {

Person person = (Person) variabl e;
Li st <TaskVari abl e> i ndexed = new ArraylLi st <TaskVari abl e>();

TaskVari abl el npl personNaneVar = new TaskVari abl el npl ();
per sonNaneVar . set Nane(" per son. nane") ;
per sonNaneVar . set Val ue(per son. get Nane());

i ndexed. add(per sonNaneVar) ;

TaskVari abl el npl personAgeVar = new TaskVari abl el npl () ;

164

Persistence and Transactions

per sonAgeVar . set Nane(" per son. age") ;
per sonAgeVar . set Val ue(per son. get Age() +"");

i ndexed. add(per sonAgeVar) ;

return i ndexed;

That indexer will then be used to index Person class only and rest of variables will be indexed
with default (toString()) indexer. Now when we want to find process instances or tasks that have
person with age 34 we simple refer to it as

« variable name: person.age
- variable value: 34

there is not even need to use like based queries so data base can optimize the query and make
it efficient even with big set of data.

Building and registering custom indexers

Indexers are supported for both process and task variables. though they are supported by different
interfaces as they do produce different type of objects representing audit view of the variable.
Following are the interfaces to be implemented to build custom indexers:

» process variables: org.kie.internal.process.ProcessVariableIndexer
* task variables: org.kie.internal.task.api.TaskVariableIndexer

Implementation is rather simple, just two methods to be implemented

» accept - indicates what types are handled by given indexer - note that only one indexer can
index given variable - so the first that accepts it will perform the work

* index - actually does the work to index variables depending on custom requirements

Once the implementation is done, it should be packaged as jar file and following file needs to be
included:

- for process variables: META-INF/services/org.kie.internal.process.ProcessVariableindexer
with list of FQCN that represent the process variable indexers (single class name per line in
that file)

« for task variables: META-INF/services/org.kie.internal.task.api. TaskVariableIndexer with list of
FQCN that represent the task variable indexers (single class name per line in that file)

Indexers are discovered by ServiceLoader mechanism and thus the META-INF/services files
need. All found indexers will be examined whenever process or task variable is about to be in-

165

Persistence and Transactions

dexed. Only the default (toString() based) indexer is not discovered but added explicitly as last
indexer to allow custom ones to take the precedence over it.

8.3. Transactions

The jBPM engine supports JTA transactions. It also supports local transactions only when using
Spring. It does not support pure local transactions at the moment. For more information about
using Spring to set up persistence, please see the Spring chapter in the Drools integration guide.

Whenever you do not provide transaction boundaries inside your application, the engine will auto-
matically execute each method invocation on the engine in a separate transaction. If this behavior
is acceptable, you don't need to do anything else. You can, however, also specify the transac-
tion boundaries yourself. This allows you, for example, to combine multiple commands into one
transaction.

You need to register a transaction manager at the environment before using user-defined trans-
actions. The following sample code uses the Bitronix transaction manager. Next, we use the Java
Transaction API (JTA) to specify transaction boundaries, as shown below:

/] create the entity manager factory
Enti tyManager Factory enf = EntityManager Fact oryManager.get().getO Create("org.jbpm persistence.jpa");
Transacti onManager tm = Transacti onManager Servi ces. get Transact i onManager () ;

/] setup the runtine environnent

Runt i meEnvi ronnment environnment = Runti meEnvironnent Buil der. Factory. get ()

. newDef aul t Bui | der ()

. addAsset (Resour ceFact ory. newd assPat hResour ce(" MyProcessDefi ni ti on. bprm2"), ResourceType. BPM\2)
.addEnvi ronnent Ent r y(Envi r onnment Name. TRANSACTI ON_MANAGER, tm)
-get();

/] get the kie session

Runt i reManager manager = Runti meManager Factory. Factory. get (). newPer Request Runti meManager (envi ronnent);
Runt i mreEngi ne runtime = nanager. get Runti meEngi ne(Processl nst ancel dContext.get());

Ki eSessi on ksession = runtine. get Ki eSession();

/] start the transaction
User Transaction ut = Initial Context.doLookup("java: conp/ User Tr ansacti on");
ut . begin();

/] performmultiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksessi on. start Process("M/Process");

/1 conmit the transaction
ut.commit();

Note that, if you use Bitronix as the transaction manager, you should also add a simple
j ndi . properti es file in you root classpath to register the Bitronix transaction manager in JNDI. If

166

Persistence and Transactions

you are using the jppm-test module, this is already included by default. If not, create a file named
j ndi . properti es with the following content:

java.nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

If you would like to use a different JTA transaction manager, you can change the
persi stence. xn file to use your own transaction manager. For example, when running inside
JBoss Application Server v5.x or v7.x, you can use the JBoss transaction manager. You need to
change the transaction manager property in per si st ence. xn to:

<property nane="hi bernate.transaction.jta.platfornt
val ue="org. hi bernate. transacti on. JBossTr ansact i onManager Lookup" />

Warning

Using the (runtime manager) Singleton strategy with JTA transactions (User -
Transact i on or CMT) is not recommended because there is a race condition when
using this. This race condition can result in an 111 egal St at eExcept i on with a
message similar to "Process instance XXX is disconnected.".

This race conditation can be avoided by explicitly synchronizing around the
Ki eSessi on instance when invoking the transaction in the user application code.

synchroni zed (ksession) {

try {
t x. begin();

/] use ksession
/] application |ogic

tx.commt();
} catch (Exception e) {
/...

}

8.3.1. Container managed transactions

Special consideration need to be taken when embedding jBPM inside an application that executes
in Container Managed Transaction (CMT) mode, for instance EJB beans. This especially applies

167

Persistence and Transactions

to application servers that does not allow accessing UserTransaction instance from JNDI when
being part of container managed transaction, e.g. WebSphere Application Server. Since default
implementation of transaction manager in jBPM is based on UserTransaction to get transaction
status which is used to decide if transaction should be started or not, in environments that prevent
accessing UserTrancation it won't do its job. To secure proper execution in CMT environments a
dedicated transaction manager implementation is provided:

org.j bpm persi stence. jta. Contai ner ManagedTr ansact i onManager

This transaction manager expects that transaction is active and thus will always return ACTIVE
when invoking getStatus method. Operations like begin, commit, rollback are no-op methods as
transaction manager runs under managed transaction and can't affect it.

Note

To make sure that container is aware of any exceptions that happened during
process instance execution, user needs to ensure that exceptions thrown by the
engine are propagated up to the container to properly rollback transaction.

To configure this transaction manager following must be done:

« Insert transaction manager and persistence context manager into environment prior to creat-
ing/loading session

Envi ronment env = Envi ronnent Fact ory. newEnvi r onnent () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER_FACTORY, enf);
env. set (Envi ronnent Name. TRANSACTI ON_MANAGER, new Cont ai ner ManagedTr ansact i onManager ()) ;

env. set (Envi r onnent Nanme. PERSI STENCE_CONTEXT_MANAGER, new
JpaPr ocessPer si st enceCont ext Manager (env)) ;
env. set (Envi ronment Name. TASK_PERSI STENCE_CONTEXT_MANAGER, new

JPATaskPer si st enceCont ext Manager (env)) ;

« configure JPA provider (example hibernate and WebSphere)

<property name="hi bernate. transaction. factory_cl ass"
val ue="org. hi bernat e. transacti on. CMI'Tr ansact i onFact ory"/ >
<property nane="hi bernate.transaction.jta.platfornt

val ue="org. hi bernate. service.jta.platforminternal. WbSphereJtaPl atforni/>

With following configuration jBPM should run properly in CMT environment.

168

Persistence and Transactions

8.3.1.1. CMT dispose ksession command

Usually when running within container managed transaction disposing ksession di-
rectly will cause exceptions on transaction completion as there are some trans-
action synchronization registered by jBPM to clean up the state after invoca-
tion is finished. To overcome this problem specialized command has been provided
org. j bpm persi stence. j ta. Cont ai ner ManagedTr ansact i onDi sposeCommand which allows to
simply execute this command instead of regular ksessi on. di spose which will ensure that kses-
sion will be disposed at the transaction completion.

8.4. Configuration

By default, the engine does not save runtime data persistently. This means you can use the engine
completely without persistence (so not even requiring an in memory database) if necessary, for
example for performance reasons, or when you would like to manage persistence yourself. It is,
however, possible to configure the engine to do use persistence by configuring it to do so. This
usually requires adding the necessary dependencies, configuring a datasource and creating the
engine with persistence configured.

8.4.1. Adding dependencies

You need to make sure the necessary dependencies are available in the classpath of your appli-
cation if you want to user persistence. By default, persistence is based on the Java Persistence
API (JPA) and can thus work with several persistence mechanisms. We are using Hibernate by
default.

If you're using the Eclipse IDE and the jBPM Eclipse plugin, you should make sure the necessary
JARs are added to your jBPM runtime directory. You don't really need to do anything (as the nec-
essary dependencies should already be there) if you are using the jBPM runtime that is configured
by default when using the jBPM installer, or if you downloaded and unzipped the jBPM runtime
artifact (from the downloads) and pointed the jBPM plugin to that directory.

If you would like to manually add the necessary dependencies to your project, first of all, you
need the JAR file j bpm per si st ence-j pa. j ar, as that contains code for saving the runtime state
whenever necessary. Next, you also need various other dependencies, depending on the persis-
tence solution and database you are using. For the default combination with Hibernate as the JPA
persistence provider and using an H2 in-memory database and Bitronix for JTA-based transaction
management, the following list of additional dependencies is needed:

 jbpm-persistence-jpa (org.jopm)
- drools-persistence-jpa (org.drools)

 persistence-api (javax.persistence)

« hibernate-entitymanager (org.hibernate)

169

Persistence and Transactions

« hibernate-annotations (org.hibernate)

« hibernate-commons-annotations (org.hibernate)
« hibernate-core (org.hibernate)

« commons-collections (commons-collections)

e dom4j (dom4))

* jta (javax.transaction)

e btm (org.codehaus.btm)

* javassist (javassist)

« slf4j-api (org.slf4))

* slf4j-jdk14 (org.slf4j)

h2 (com.h2database)

jbpm-test (org.jopm) for testing only, do not include it in the actual application

8.4.2. Manually configuring the engine to use persistence

You can use the JPAKnow edgeSer vi ce to create your knowledge session. This is slightly more
complex, but gives you full access to the underlying configurations. You can create a new knowl-
edge session using JPAKnow edgeSer vi ce based on a knowledge base, a knowledge session
configuration (if necessary) and an environment. The environment needs to contain a reference
to your Entity Manager Factory. For example:

/] create the entity nmanager factory and register it in the environnent
Enti tyManager Factory enf =

Per si st ence. creat eEnti t yManager Factory("org.j bpm persi stence. jpa");
Envi ronment env = Know edgeBaseFact ory. newEnvi ronnent () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER FACTCRY, enf);

/] create a new know edge session that uses JPA to store the runtine state
St at ef ul Knowl edgeSessi on ksessi on = JPAKnow edgeSer vi ce. newsSt at ef ul Knowl edgeSessi on(kbase, null, env);
int sessionld = ksession.getld();

/'l invoke nmethods on your nethod here

ksessi on. start Process("M/Process");
ksessi on. di spose();

You can also use the JPAKnow edgeSer vi ce to recreate a session based on a specific session id:

170

Persistence and Transactions

/'l recreate the session from database using the sessionld
ksessi on = JPAKnow edgeSer vi ce. | oadSt at ef ul Know edgeSessi on(sessi onld, kbase, null, env)

Note that we only save the minimal state that is needed to continue execution of the process
instance at some later point. This means, for example, that it does not contain information about
already executed nodes if that information is no longer relevant, or that process instances that
have been completed or aborted are removed from the database. If you want to search for histo-
ry-related information, you should use the history log, as explained later.

You need to add a persistence configuration to your classpath to configure JPA to use Hibernate
and the H2 database (or your own preference), called per si st ence. xn in the META-INF direc-
tory, as shown below. For more details on how to change this for your own configuration, we refer
to the JPA and Hibernate documentation for more information.

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<persi st ence
version="2.0"
xsi : schemaLocati on="http://java. sun. com xm / ns/ persi stence http://java.sun.conm xm /ns/
persi stence/ persi stence_2_0. xsd
http://java. sun. com xm / ns/ persi stence/orm http://java.sun.com xm /ns/ persi stence/
orm2_0.xsd"
xm ns="http://java. sun. com xnl / ns/ per si st ence"
xm ns:orme"http://java. sun. com xm / ns/ persi st ence/ or nf
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance>

<persi stence-unit nanme="org.jbpm persistence.jpa" transaction-type="JTA">
<provi der>org. hi bernat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/j bpm ds</ | t a- dat a- sour ce>
<mappi ng-fil e>META- 1 NF/ JBPMor m xml </ mappi ng-fil e>
<cl ass>or g. drool s. persi stence. i nfo. Sessi onl nfo</cl ass>
<cl ass>org. j bpm persi stence. processi nst ance. Processl| nst ancel nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkltem nfo</cl ass>
<cl ass>org.j bpm persi st ence. correl ati on. Correl ati onKeyl nf o</ cl ass>
<cl ass>org.j bpm persi stence. correl ati on. Correl ati onPropertyl nfo</cl ass>
<cl ass>org.j bpm runti me. manager . i npl . j pa. Cont ext Mappi ngl nf o</ cl ass>

<properties>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. dial ect. H2Di al ect"/ >
<property nanme="hi bernate. max_fetch_depth" val ue="3"/>
<property name="hi bernate. hbnRddl . aut 0" val ue="update"/>
<property nane="hi bernate. show_sql" val ue="true"/>
<property nane="hi bernate.transaction.jta.platfornt

val ue="org. hi bernate.service.jta.platforminternal.Bitroni xJtaPl atforni/>
</ properties>
</ persi st ence-uni t >
</ persi st ence>

This configuration file refers to a data source called "jdbc/jbpm-ds". If you run your application in
an application server (like for example JBoss AS), these containers typically allow you to easily set
up data sources using some configuration (like for example dropping a datasource configuration

171

Persistence and Transactions

file in the deploy directory). Please refer to your application server documentation to know how
to do this.

For example, if you're deploying to JBoss Application Server v5.x, you can create a datasource
by dropping a configuration file in the deploy directory, for example:

<?xm version="1.0" encodi ng="UTF-8"?>
<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - name>j dbc/ j bpm ds</j ndi - name>
<connection-url>jdbc: h2:tcp://local host/~/test</connection-url>
<driver-cl ass>org. h2. j dbcx. JdbcDat aSour ce</ dri ver-cl ass>
<user - nane>sa</ user - name>
<passwor d></ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

If you are however executing in a simple Java environment, you can use the JBPMHel per class
to do this for you (see below for tests only) or the following code fragment could be used to set
up a data source (where we are using the H2 in-memory database in combination with Bitronix
in this case).

Pool i ngDat aSource ds = new Pool i ngDat aSour ce()

ds. set Uni queNane("j dbc/j bpm ds")

ds. set C assNane("bi troni x.tmresource.jdbc.|rc.LrcXADat aSource")
ds. set MaxPool Si ze(3);

ds. set Al l owLocal Transacti ons(true)

ds. getDriverProperties().put("user", "sa")

ds. getDriverProperties().put("passwrd", "sasa")

ds. getDriverProperties().put("URL", "jdbc:h2: memjbpm db")

ds. getDriverProperties().put("driverC assNane", "org.h2.Driver")
ds.init();

8.4.3. Configuring the engine to use persistence using Jspvel per
- for tests only

You need to configure the jBPM engine to use persistence, usually simply by using the appropriate
constructor when creating your session. There are various ways to create a session (as we have
tried to make this as easy as possible for you and have several utility classes for you, depending
for example if you are trying to write a process JUnit test).

The easiest way to do this is to use the j bpm t est module that allows you to easily create and test
your processes. The JBPMHel per class has a method to create a session, and uses a configuration
file to configure this session, like whether you want to use persistence, the datasource to use, etc.
The helper class will then do all the setup and configuration for you.

172

Persistence and Transactions

To configure persistence, create a j BPM properti es file and configure the following properties
(note that the example below are the default properties, using an H2 in-memory database with
persistence enabled, if you are fine with all of these properties, you don't need to add new prop-
erties file, as it will then use these properties by default):

for creating a datasource

persi st ence. dat asour ce. nane=j dbc/j bpm ds

per si st ence. dat asour ce. user =sa

per si st ence. dat asour ce. passwor d=

persi stence. dat asour ce. url =j dbc: h2: tcp: //1 ocal host/ ~/j bpm db
persi st ence. dat asour ce. dri ver C assNane=or g. h2. Dri ver

for configuring persistence of the session

persi st ence. enabl ed=true

persi st ence. persi st enceuni t. nane=or g. j bpm per si st ence. j pa

persi stence. persi stenceuni t. di al ect =or g. hi ber nat e. di al ect. H2Di al ect

for configuring the hunan task service

taskservi ce. enabl ed=true

taskservi ce. dat asour ce. nane=or g. j bpm t ask

taskservi ce. usergroupcal | back=org. j bpm servi ces. task.identity.JBossUser G oupCal | backl np
taskservi ce. user gr oupnmappi ng=cl asspat h: / user gr oups. properties

If you want to use persistence, you must make sure that the datasource (that you specified in
the j BPM properti es file) is initialized correctly. This means that the database itself must be up
and running, and the datasource should be registered using the correct name. If you would like
to use an H2 in-memory database (which is usually very easy to do some testing), you can use
the JBPMHel per class to start up this database, using:

JBPMHel per. start H2Server ()

To register the datasource (this is something you always need to do, even if you're not using H2
as your database, check below for more options on how to configure your datasource), use:

JBPMHel per . set upDat aSour ce() ;

Next, you can use the JBPM-el per class to create your session (after creating your knowledge
base, which is identical to the case when you are not using persistence):

173

Persistence and Transactions

St at ef ul Know edgeSessi on ksessi on = JBPMHel per. newst at ef ul Know edgeSessi on(kbase) ;

Once you have done that, you can just call methods on this ksession (like st ar t Pr ocess) and the
engine will persist all runtime state in the created datasource.

You can also use the JBPMHel per class to recreate your session (by restoring its state from the
database, by passing in the session id (that you can retrieve using ksessi on. get 1 d())):

St at ef ul Knowl edgeSessi on ksessi on = JBPMHel per. | oadSt at ef ul Know edgeSessi on(kbase, sessionld);

174

Part Ill. Workbench

How to use the web-based Workbench

Chapter 9. Workbench (General)

9.1. Installation

9.1.1. War installation

Use the war from the workbench distribution zip that corrsponds to your application server. The
differences between these war files are mainly superficial. For example, some JARs might be
excluded if the application server already supplies them.

» eap6_4: tailored for Red Hat JBoss Enterprise Application Platform 6.4

e tontat 7: tailored for Apache Tomcat 7

» was8: tailored for IBM WebSphere Application Server 8

« webl ogi c12: tailored for Oracle WebLogic Server 12¢

« wi | df | y8: tailored for Red Hat JBoss Wildfly 8

9.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKI NG_DI RECTORY/ . ni ogi t, for
example wi | df | y-8. 0. 0. Fi nal / bi n/ . ni ogi t, but it can be overridden with the system property
-Dorg.uberfire.nio.git.dir.

176

Workbench (General)

9.1.3. System properties

Here's a list of all system properties:

org. uberfire.nio.git.dir:Location of the directory . ni ogi t . Default: working directory
org. uberfire.nio.git.daenon. enabl ed: Enables/disables git daemon. Default: t r ue

org. uberfire.nio.git.daenon. host : If git daemon enabled, uses this property as local host
identifier. Default: | ocal host

org. uberfire.nio.git.daenon. port: If git daemon enabled, uses this property as port num-
ber. Default: 9418

org. uberfire.nio.git.ssh. enabl ed: Enables/disables ssh daemon. Default: t r ue

org. uberfire.nio.git.ssh. host: If ssh daemon enabled, uses this property as local host
identifier. Default: | ocal host

org. uberfire.nio.git.ssh. port:If sshdaemon enabled, uses this property as port number.
Default: 8001

org.uberfire.nio.git.ssh.cert.dir:Location of the directory . securi ty where local cer-
tificates will be stored. Default: working directory

org. uberfire.nio.git.hooks: Location of the directory that contains Git hook scripts that are
installed into each repository created (or cloned) in the Workbench. Default: N/A

org. uberfire.nio.git.ssh. passphrase: Passphrase to access your Operating Systems
public keystore when cloning gi t repositories with scp style URLS; e.g. gi t @i t hub. com user/
repository.git.

org. uberfire. metadata.index. di r: Place where Lucene . i ndex folder will be stored. De-
fault: working directory

org. uberfire.cluster.id: Name of the helix cluster, for example: ki e- cl ust er

org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form
host 1: port 1, host 2: port 2, host 3: port 3, for example: | ocal host : 2188

org.uberfire.cluster.|ocal.id:Unique id of the helix cluster node, note that": ' is replaced
with '_", for example: nodel_12345

org. uberfire.cluster.vfs.| ock: Name of the resource defined on helix cluster, for example:
ki e-vfs

org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully initial-
ized to avoid conflicts when all cluster members create local clones. Default: f al se

org. uberfire.sys.repo. nonitor.di sabl ed: Disable configuration monitor (do not disable
unless you know what you're doing). Default: f al se

177

Workbench (General)

org. uberfire.secure. key: Secret password used by password encryption. Default:
org. uberfire.admn

org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:
PBEW t hMD5AndDES

or g. uberfire. donai n: security-domain name used by uberfire. Default: Appl i cati onReal m

or g. guvnor . n2repo. di r : Place where Maven repository folder will be stored. Default: work-
ing-directory/repositories/kie

or g. guvnor. proj ect. gav. check. di sabl ed: Disable GAV checks. Default: f al se

org. ki e. exanpl e. reposi tori es: Folder from where demo repositories will be cloned. The
demo repositories need to have been obtained and placed in this folder. Demo repositories can
be obtained from the kie-wb-6.2.0-SNAPSHOT-example-repositories.zip artifact. This System
Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

org. ki e. deno: Enables external clone of a demo application from GitHub. This System Prop-
erty takes precedence over org.kie.example. Default: t r ue

or g. ki e. exanpl e: Enables example structure composed by Repository, Organization Unit and
Project. Default: f al se

org. ki e. bui | d. di sabl e- proj ect - expl or er: Disable automatic build of selected Project in
Project Explorer. Default: f al se

To change one of these system properties in a WildFly or JBoss EAP cluster:

1.

2.

Edit the file $JBOSS_HOMVE/ domai n/ confi gur ati on/ host . xni .

Locate the XML elements server that belong to the mai n-server-group and add a system
property, for example:

<system properties>
<property nanme="org.uberfire.nio.git.dir" value="..." boot-tinme="fal se"/>

</ system properties>

9.1.4. Trouble shooting

9.1.4.1. Loading.. does not disappear and Workbench fails to show

There have been reports that Firewalls in between the server and the browser can interfere with
Server Sent Events (SSE) used by the Workbench.

The issue results in the "Loading..." spinner remaining visible and the Workbench failing to ma-
terialize.

178

Workbench (General)

The workaround is to disable the Workbench's use of Server Sent Events by adding file
/ VEEB- | NF/ cl asses/ Errai Service. properties to the exploded WAR containing the value
errai . bus. enabl e_sse_support =f al se. Re-package the WAR and re-deploy.

9.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

9.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Authoring ~

Project Authoring

The Knowledge

Figure 9.1. Selecting Administration perspective

Select the "New repository" option from the menu.

Organizational Units - -

File Explorer List isitorieskEditor
Clone repository

Figure 9.2. Creating new repository

& Repositories

179

Workbench (General)

Enter the required information.

New Repository

+ Basic Settings
Managed Repository Settings Repository Name
myExampleRepository

* In Organizational Unit

demo v

¥ Managed Repository

A managed repository provides project-level version control and project branches for managing the release cycle.

< Previous Next > Cancel & Finish

Figure 9.3. Entering repository information step 1/2

180

Workbench (General)

New Repository

+ Basic Settings

+/ Managed Repository
Settings

Repository Type:

Single-project Repository
Create a single managed project in this repository. Use this option for simple or self-contained projects.
® Multi-project Repository

Integrate multiple projects to create a larger application. The projects in this repository will be managed

together, and will all increment version numbers together.

Project Branches:

¥ Automatically Configure Branches (master/dev/release)

Project Settings:

* Name

myExampleRepository

Description

* Group

demo
* Artifact
myExampleRepository
* Version

1.0.0-SNAPSHOT

< Previous Next > Cancel [Finish

Figure 9.4. Entering repository information step 2/2 (only for managed

repositories)

9.2.2. Add project

Select the Authoring Perspective to create a new project.

181

Workbench (General)

Authoring -

Organiz Project Authoring Wiories ~
Administration

File Explorer

& Repositories
&= myExampleRepository
& readme.md

Figure 9.5. Selecting Authoring perspective

Select "Project” from the "New ltem" menu.

182

Workbench (General)

Explore Fepository -

Business Process
demo = myl
Diata Object
Decizion Table (Spreadsheet)
: . DEL file
OUpen Project E
1 DSL definition

Enumeration

Form
| Global Variable(s)

Guided Decision Table

Guided Decision Tree

Guided Rule

Guided Fule Template

Guided Score Card

Fackage

Score Card (Spreadsheet)

Test Scenario

Uploaded file

Waork ltem definition

Figure 9.6. Creating new project

Enter a project name first.

183

Workbench (General)

Create new Project

*Froject myFroject

Figure 9.7. Entering project name

Enter the project details next.

» Group ID follows Maven conventions.
« Artifact ID is pre-populated from the project name.

» Version is set as 1.0 by default.

184

Workbench (General)

New Project

N Project Wizard . :
e Troject Al Project General Settings
Project Name | myProject
Project Description Insert a project description for documentation purposes ...

Group artifact version

Group ID [Enter Group ID...] Example: com.myorganization.myprojects @

Invalid Group 1D format
Artifact ID | myProject | Example: MyProject @

\ersion | 10 | 1.00 @

< Previous [Mext > | Cancel | ™ Finish

Figure 9.8. Entering project details

9.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Object" from the "New Item" menu.

185

Workbench (General)

Explore « m Fepository «

Project Explol project (&

Business Process

Decision Table (Spreadsheet)
Open Project E. DRLfile
- DSL definition
Enumeration
Form
Global Variable(s)
Guided Decision Table

Guided Decision Tree
Guided Rule

Guided Fule Template
Guided Score Card
Fackage

Score Card (Spreadsheet)
Test Scenario

Uploaded file

Worlk ltem definition

Figure 9.9. Creating "Data Object"

Set the name and select a package for the new type.

186

Workbench (General)

Create new Data Object
* Data Object MyExampleType|

Fackage org.anstis.myproject v

Q Ok Cancel

Figure 9.10. Creating a new type

Set field name and type and click on "Create" to create a field for the type.

187

Workbench (General)

MyExample Type.java - Data Objects Say

Create new field

*ld myField Label | st o label
*Tf&"'F'E |ﬂteger v L LlSt
org.anstis.myproject. MyExampleType
Position Identifier i Label Type

Figure 9.11. Click "Create" and add the field

Click "Save" to update the model.

MyExampIeType.java - Data Objects S;e Delete Remame = Copy Validate Latest Version ™ x (| (|
Create new field Data Object Field
“ld Insert a valid Java identifier Label |cart 5 jabel
ldentifier myField
*Type v [List © Create
Label
org.anstis.myproject.MyExampleType Description
Position Identifier & Label Type
: Type Integer \
myField Integer
Equals J
Fosition 0 -

Figure 9.12. Clicking "Save"

9.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

188

Workbench (General)

- m Froject = Fepository

o __I Froject EI—
‘ Data Object |
[amp

Decision Table (Spreadsheet)
DSL definition
Enumeration
Global Variable(s)
Guided Decision Table
Guided Decision Tree

Suided Fule

Guided Rule Template
Guided Score Card
Fackage

Score Card (Spreadsheet)
Test Scenario

Uploaded file

Woarl ltem definition

Figure 9.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

189

Workbench (General)

Create new DRL file

*DEL file myDRELFile

Fackage org.anstis.myproject v

Use Domain Specific Language (DSL)

O Ok Cancel

[
Figure 9.14. Entering file name for rule
Enter a definition for the rule.
The definition process differs from asset type to asset type.
The full documentation has details about the different editors.
myDRLFile.drl - DRL Save Delete | Rename | Copy | Validale || LaestVersion™ | x| ¥ A

Facttypes:(hide)

ackage org.anstis.myproject;
® (B lorg.anstis myproject MyExampleType P 9 9 YRrol

import org.antis. myproject MyExampleType;
rule "one"

when

MyExampleType{ myField == "hello")

then
end|

Figure 9.15. Defining a rule

Once the rule has been defined it will need to be saved.

190

Workbench (General)

MyExampIeType.java - Data Objects Sie Delete Pename Copy Validate | Latest Version ™ ®

Figure 9.16. Saving the rule

9.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the
Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Project” menu.

Explore = MNew - m FRepository -

B 2] [Project Editqr

. Repository Structure ackage org.anst
“roject - P Y ImpleType P d d

Import org.antis.n

Figure 9.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Artifact
Repository.

When you select Build & Deploy the workbench will deploy to any repositories defined in the De-
pendency Management section of the pom in your workbench project. You can edit the pom.xml
file associated with your workbench project under the Repository View of the project explorer. De-
tails on dependency management in maven can be found here : http://maven.apache.org/guides/
introduction/introduction-to-dependency-mechanism.html

If there are errors during the build process they will be reported in the "Problems Panel".

Project: [myProject:org.anstis: 1.0] Save | Delste Rename | Copy | |Buld™ | | ®

Project Settings: Project General Settings ~

Figure 9.18. Building and deploying a project

191

Workbench (General)

Now the project has been built and deployed; it can be referenced from your own projects as any
other Maven Artifact.

The full documentation contains details about integrating projects with your own applications.
9.3. Administration

9.3.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

Workbench structure overview

Car insurance

Home insurance

Car loans

9.3.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

192

Workbench (General)

Organizational Unit Manager

Organizational Units Associated repositories Available repositories

Accounting department =l [nsurances . -- No Repositories available --
Business department Loans
Human Resources department

L4

>

o [Nl

9.3.3. Repositories

Repositories are the place where assets are stored and each repository is organized by projects
and belongs to a single organization unit.

Repositories are in fact a Virtual File System based storage, that by default uses GIT as backend.
Such setup allows workbench to work with multiple backends and, in the same time, take full
advantage of backend specifics features like in GIT case versioning, branching and even external
access.

193

Workbench (General)

RepositoryEditor x

& jbpm-playground
General Information

[empty]

git:Mlocalhost:9418/jbpm-playground b Available protocol(s):git ssh

‘master Bl [0 Update @ Cielete

& uf-playground

General Information

[empty]

git:flocalhost:94 18/uf-playground Iy Awailable protocol(s):git ssh

master j [0 Update @ [elete

A new repository can be created from scratch or cloned from an existing repository.

One of the biggest advantages of using GIT as backend is the ability to clone a repository from
external and use your preferred tools to edit and build your assets.

A Warning

Never clone your repositories directly from .niogit directory. Use always the avail-

able protocol(s) displayed in repositories editor.

9.3.3.1. Repository Editor

One additional advantage to use GIT as backend is the possibility to revert your repository to a
previous state. You can do it directly from the repository editor by browsing its commit history and
clicking the Revert button.

194

Workbench (General)

RepositoryEditor [Insurances] x

& financial / Insurances

General Information

[empty]

git://localhost:9418/Insurances I | Available protocol(s): git ssh

Commit History

removing unnecessary files - those were added due a vfs bug, already fixed
Alexandre Porcelli - 2013-10-24 1:03 AM

kie-commons merge into uberfire forces package renaming
David Gutierrez - 2013-10-16 1:35 PM

moved test related projects to a new repo: https://github.com/guvnorngtestuseri/guvnorng-testground
jervisliu - 2013-09-29 8:24 AM

package org.mortgages was removed from <type></type> tags of test scenarios
Walter Medvedeo - 2013-09-25 12:23 PM

package org.mortgages was removed from <type></type= tags
Walter Medvedeo - 2013-09-25 11:56 AM

DOO0E

9.4. Configuration

9.4.1. Basic user management

The workbench authenticates its users against the application server's authentication and autho-
rization (JAAS).

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOVE/ bi n/ add- user . sh (or. bat):

$./add-user.sh

/1 Type: Application User

/Il Realm enpty (defaults to ApplicationReal m
/1 Role: admn

There is no need to restart the application server.

9.4.2. Roles

The Workbench uses the following roles:

e admin

195

Workbench (General)

e analyst
 developer
e manager

e user

9.4.2.1. Admin

Administrates the BPMS system.

* Manages users
* Manages VFS Repositories

» Has full access to make any changes necessary
9.4.2.2. Developer

Developer can do almost everything admin can do, except clone repositories.

« Manages rules, models, process flows, forms and dashboards

Manages the asset repository

« Can create, build and deploy projects

Can use the JBDS connection to view processes

9.4.2.3. Analyst

Analyst is a weaker version of developer and does not have access to the asset repository or the
ability to deploy projects.

9.4.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to
continue forward. Works primarily with the task lists.

« Does process management
» Handles tasks and dashboards
9.4.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their per-
formance, business indicators, and other reporting of the system and people who interact with
the system.

196

Workbench (General)

* Only has access to dashboards

9.4.3. Restricting access to repositories

It is possible to restrict access to repositories using roles and organizational groups. To let an
user access a repository.

The user either has to belong into a role that has access to the repository or to a role that belongs
into an organizational group that has access to the repository. These restrictions can be managed
with the command line config tool.

9.4.4. Command line config tool

Provides capabilities to manage the system repository from command line. System repository
contains the data about general workbench settings: how editors behave, organizational groups,
security and other settings that are not editable by the user. System repository exists in the .niogit
folder, next to all the repositories that have been created or cloned into the workbench.

9.4.4.1. Config Tool Modes

« Online (default and recommended) - Connects to the Git repository on startup, using Git server
provided by the KIE Workbench. All changes are made locally and published to upstream when:

» "push-changes" command is explicitly executed
» "exit" is used to close the tool

« Offline - Creates and manipulates system repository directly on the server (no discard option)

9.4.4.2. Available Commands

Table 9.1. Available Commands

exit Publishes local changes, cleans up temporary
directories and quits the command line tool

discard Discards local changes without publishing
them, cleans up temporary directories and
quits the command line tool

help Prints a list of available commands
list-repo List available repositories
list-org-units List available organizational units
list-deployment List available deployments
create-org-unit Creates new organizational unit
remove-org-unit Removes existing organizational unit

197

Workbench (General)

add-deployment

Adds new deployment unit

remove-deployment

Removes existing deployment

create-repo

remove-repo

Creates new git repository

Removes existing repository (only from con-
fig)

add-repo-org-unit

Adds repository to the organizational unit

remove-repo-org-unit

Removes repository from the organizational
unit

add-role-repo

Adds role(s) to repository

remove-role-repo
add-role-org-unit

remove-role-org-unit

Removes role(s) from repository
Adds role(s) to organizational unit

Removes role(s) from organizational unit

add-role-project

Adds role(s) to project

remove-role-project

Removes role(s) from project

push-changes

Pushes changes to upstream repository (only

in online mode)

9.4.4.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script
and by default it will start in online mode asking for a Git url to connect to (the default value is
ssh://localhost/system). To connect to a remote server, replace the host and port with appropriate
values, e.g. ssh://kie-wb-host/system.

./kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This
will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit
does not yet exist, the folder value can be left empty and a brand new setup is created.

./kie-config-cli.sh offline

9.5. Introduction

9.5.1. Log in and log out

Create a user with the role adni n and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to
review the roles of the current account.

198

Workbench (General)

9.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the
workbench variant (Drools, jBPM, ...).

The Knowledge Life Cycle

Authoring Deploy Process Management Tasks Dashboards

Project Authoring Process Deployments Process Definitions Tasks List Process & Task Dashboard
Contributars Rule Deployments Process Instances Business Dashboards
Asset Management Jobs

Artifact repository
Administration

e

The Business Knowledge to drive your company

9.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

* Part
A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer"”, "Project Editor", "Guided Rule Editor" etc. Parts can be
repositioned.

» Panel
A Panel is a container for one or more Parts.
Panels can be resized.
« Perspective
A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such
as "Home", "Authoring", "Deploy" etc.

9.5.4. Initial layout

The Workbench consists of three main sections to begin; however its layout and content can be
changed.

199

Workbench (General)

KIE Workbench

Home = Authoring ¥ Deploy ~
Explore v Mewltem v Repository = Q
Project Explorer 8|2 -~
demo ¥ uf-playground * - mortgages * =]
B <default
B org
B mortgages

Open Project Editor

EDRLV

L DATA OBJECTS ~
g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
E ENUMERATION DEFINITIONS =

@ GUIDED DECISION TABLES ~ -
Messages Refresh Clear | % ¥ A

@ GUIDED RULES ~
Bankruptcy history
checks Level Text File Column Line

@ GUIDED RULES [WITHDSL) +

@ TEST SCENARIOS ~

Figure 9.19. The Workbench

The initial Workbench shows the following components:-

» Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in
the above "example" is the Organizational Unit), Repositories (in the above "uf-playground"” is
the Repository) and Project (in the above "mortgages” is the Project).

* Problems
This provides the user with real-time feedback about errors in the active Project.
* Empty space
This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

9.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or repo-
sitioned.

This, for example, could be useful when running tests; as the test defintion and rule can be repo-
sitioned side-by-side.

200

Workbench (General)

9.6.1. Resizing

The following screenshot shows a Panel being resized.

Move the mouse pointer over the panel splitter (a grey horizontal or vertical line in between panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the
left mouse button and drag the splitter to the required position; then release the left mouse button.

KIE Werkbench

Home = Authoring ~ eploy 5 Tasks » Dashboards ~ Extensions ~
Explore v Newltem » Repository «
Project Explorer 8|z |~ Bankruptcy history.rdrl - Guided Rules
EXTENDS Mone selected o
demo ~ . uf-playground ~ -+ mortgages ~
WHEN
B <default 1. Thereis aLoanApplication [a]
E o The following exists

e There is a Bankruptcy with
& mortgages any of the following;

2. yearofoccurmence greater than nggo
amountOwed greater than j 10000
Open Project Editor
THEN
Setvalue of LoanApplication [a] approved
1
Setvalue of LoanApplication [a] explanation
DRL ~
2 delete LoanApplication [a]
E DATA OBJECTS = - (show
options..)
F= DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
i
EHUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~
Editor Overview Source Config
@ GUIDED RULES ~
Bankn) Messages
Level Text File

Find

Save | Delete | Rename Copy Validate | Latest Version ™

talse

has been bankrupt

Column

Refresh Clear

Line

»®

=g

F0H

B vty

@ GUIDED RULES [WITHDSL) ~ —

@ TEST SCENARIOS ~

Figure 9.20. Resizing

9.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this ex-

ample).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the
left mouse button. Drag the mouse to the required location. The target position is indicated with
a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the

different blue arrows.

201

Workbench (General)

KIE Workbench - Mozilla Firefox

E | [@ | ©@ | ©@ | Mehilsinen Kouvola | Toi.. % | M Bug List * [© KIE Workbench % | New Tab x|+

€ redhat.com

vc||Bv ms-disease bjj QB & #

KIE Workbench

Home « Authoring ¥

Extensions Find User: admin «

Exple Mew Item + Q
Project Explorer & = ~ Bankruptcy history.rdrl - Guided Rules Save Deletz Rename Copy | Validars | LaestVersin™ % T A
demo ~ . uf-playground ~ - mortgages ~ 2
B <default>
& org

B mortgages

Open Project Editor

DRL ~

B DATA OBJECTS ~ S

g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
B ENUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~

) cupeoruLes ~

Messages Refresh | Clear | | % T A
Level Text File Column Line
@ GUIDED RULES (WITHDSL) - @ Build of project 'mortgages' (re.. . (1] (1]

@ TEST SCENARIOS ~

Figure 9.21. Repositioning - dragging

202

Workbench (General)

KIE Workbench - Mozilla Firefox
E | [@ | ©@ | ©@ | Mehilsinen Kouvola | Toi.. % | M Bug List * | @ KIE Workbench x | New Tab x|+
€ redhat.com v | B> ms-disease bjj QwBe ¥ #

KIE Workbench

Home « Authoring ¥ Jep rocess Management ¥ as ards v Extensions Find

Explore = Mew ltem Repository = a
Project Explorer ellz| |a Save | Delete | Rename | Copy | Validare LaestVersion™ | % Bankruptcy history.rdrl ... save Deiets | Rename | Copy | Vaidae LasstversionY | x Y A
EXTENDS Mone selected o EXTENDS None selected o
demo ~ . uf-playground ~ - mortgages ~ 2
WHEN WHEN
B <defaults 1 There is a LoanApplication [app] 1 There is a LoanApplication [a]
. Any of the following are true: The following exists:
&= org There is an Applicant with There is a Bankruptey with
& mortgages) creditRating equal to i any of the following -
g There Is an Applicantwith 2 yearOfOccurrence greater than j
creditRating equal to B amountOwed greater than jWOOOO
Open Project Editor THEN
THEN
Setvalue of LoanApplication [app] approved a
1 ot [2ppl £t '3 Setvalue of LoanApplication [a] approved false j:
. i
Setvalue of LoanApplication [app] explanation On 1
oL o) " Setvalie of LoanApy n[al has been bankrupt o
= 2 delete LoanApplicaton [app] N
2 delete LoanApplication [a]
(show
g DATA OBJECTS ~ options..) (show
options..)
g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~ &
i
B ENUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~
Editor Overview Source Config Editor Overview Source Config
) cupeoruLes ~
i Bankruptecy history Messages Refresh Clear x T A
No checks
no NIMNJAs =
Uikt Level Text File Column Line
(5] GuiDED RULES (WITHDSL) ~ ® Build of project mortgages' fre... - o o

@ TEST SCENARIOS ~

Figure 9.22. Repositioning - complete

9.7. Authoring (General)

9.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain
model JARs. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote
repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKI NG_DI RECTORY/ r eposi t ori es/ ki e, but it
can be overridden with the system property - Dor g. guvnor . n2repo. di r. There is only 1 Maven
repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

203

Workbench (General)

Iploa Refres Q

Name Path LastModified Open Downlead

mortgages-0.0.1.jar 2013 Nov 16 15:46:40 Open Diownioad

example-1,0 jar 2013 Nov 16 15:08:26 pen iy

jboss-modules-1.1.1.GA jar orglibossimodulesiboss-modules 2013 Nov 16 15:07:18 en Diowrion

M.1.1.GAjjboss-modules-1.1.1.GA jar
async-examples-1.0 jar 2013 Nov 16 16:14:33 en Dawrion
HR-1.0.jar org/ibpm/HRM . WHR-1.0 jar 2013 Nov 16 16:14:13 Gpen i
M H M B 15of5

To add a new artifact to that Maven repository, either:

» Use the upload button and select a JAR. If the JAR contains a POM file under META- | NF/ maven
(which every JAR build by Maven has), no further information is needed. Otherwise, a groupld,

artifactld and version need be given too.

ane KIE Workbench
§ KIE Workbeneh Lt

o | & 127.0.0.1:8888 org kie.workbench. KIEWebapp KIEWebapp. htmifgwt

Artifact Upload

DataTypes jar Choose File..

Upload

« Using Maven, nvn depl oy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

204

l

Workbench (General)

9.7.2. Asset Editor

The Asset Editor is the principle component of the workbench User-Interface. It consists of two
main views Editor and Overview.

* The views

Bankruptcy history|rdrl - Guided Rules « Save | Delete | Rename | Copy | Validate | Latest Version ~ + x

Editor Overview Source Data Objects

/ WHEN \

=
1. Thereis a LoanApplication [a] =] 5“: L4y |
The following exists:
There is a Bankruptcy with: =]
any of the following:
= yearOfOccurrence| greater than ¥ 1990 = = o =5“=@ T
amountOwed greater than ¥ 10000 ==
THEN o
Set value of LoanApplication [a] approved false v |@ =] &
1 =]
Set value of LoanApplication [a] explanation has been bankrupt =] =] Al
2. delete LoanApplication [a] gl |

.\ (show /
. options...) -

Figure 9.23. The Asset Editor - Editor tab

» A: The editing area - exactly what form the editor takes depends on the Asset type. An asset
can only be edited by one user at a time to avoid conflicts. When a user begins to edit an
asset, a lock will automatically be acquired. This is indicated by a lock symbol appearing on
the asset title bar as well as in the project explorer view (see Section 9.7.4, “Project Explorer”
for details). If a user starts editing an already locked asset a pop-up notification will appear
to inform the user that the asset can't currently be edited, as it is being worked on by another
user. Changes will be prevented until the editing user saves or closes the asset, or logs out
of the workbench. Session timeouts will also cause locks to be released. Every user further
has the option to force a lock release, if required (see the Metadata section below).

» B : This menu bar contains various actions for the Asset; such as Save, Rename, Copy etc.
Note that saving, renaming and deleting are deactivated if the asset is locked by a different
user.

« C : Different views for asset content or asset information.

« Editor shows the main editor for the asset

205

Workbench (General)

» Overview contains the metadata and conversation views for this editor. Explained in more
detail below.

» Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can
be generated into DRL.

« Data Objects contains the model available for authoring. By default only Data Objects that
reside within the same package as the asset are available for authoring. Data Objects
outside of this package can be imported to become available for authoring the asset.

Editor Overview Source Data Objects

o By default only Data Objects within the same package as the asset are available
for authoring. Additional Data Objects can be imported from other packages.

Type Remove

org.mortgages. Applicant
org.mortgages.Bankruptcy
org.mortgages.iIncomeSource

org.mortgages.LoanApplication

java.lang.5tring

Figure 9.24. The Asset Editor - Data Objects tab
* Overview

» A: General information about the asset and the asset's description.
"Type:" The format name of the type of Asset.
"Description:" Description for the asset.
"Used in projects:" Names the projects where this rule is used.
"Last Modified:" Who made the last change and when.
"Created on:" Who created the asset and when.

» B: Version history for the asset. Selecting a version loads the selected version into this editor.

206

Workbench (General)

* C: Meta data (from the "Dublin Core" standard)

« D : Comments regarding the development of the Asset can be recorded here.

Bankmptcy hiStﬂlY.ldr' - Guided Rules Save Delste Rename Copy Validate || Latest Version™ X
Type Guided Rules Comments
Description
) ‘ arte P admin:
Used im projects mortgages -
"This is an example "
Last mpdified Byfadmin on 2015-01-15 17:12
0L6-10-15 1740
Createfl on By/Walter Medvedeo on 2013-09-18 16:54

| Vergion history |l

Date Commit Message Author

Current Thursday, 2015 Jan One more commit{/... admin
Belect Wednesday, 2013 project refactoring t. Walter Madveden
{4 4 120f2 » 2
Editar Owverview| Caonfig

A B Cc D

Figure 9.25. The Asset Editor - Overview tab
* Metadata
* A: Meta data:-
"Tags:" A tagging system for grouping the assets.
"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"URI:" URI to the asset inside the Git repository.

207

Workbench (General)

"Subject/Type/External link/Source" : Other miscellaneous meta data for the Asset.

"Lock status" : Shows the lock status of the asset and, if locked, allows to force unlocking
the asset.

G Metadata
Tags Add a new tagls

MNote: project refactoring to use mortgages package

URI:
git:fmaster@@uf-playground/mortgages/src/main/resources/org/mortgages/Dummy “e20rule.drl
Subject:

Type:
External link:
Source:
Lock status: Locked by admin | Ty Force unlock asset
Figure 9.26. The Metadata tab
» Locking

The Workbench supports pessimistic locking of assets. When one User starts editing an asset
it is locked to change by other Users. The lock is held until a period of inactivity lapses, the
Editor is closed or the application stopped and restarted. Locks can also be forcibly removed
on the MetaData section of the Overview tab.

A "padlock” icon is shown in the Editor's title bar and beside the asset in the Project Explorer
when an asset is locked.

208

Workbench (General)

a PriCing |Oan5.gd5t = GUIdEd Decision Tab|ES Save | Delete Remame | Copy | Validate | Latest Version ™ x| | v A
4|l the rules inherit:Mone selected,

Decisiont; 1his asset is currently being edited by admin. Once they commit their changes, you will be able to edit the asset.

Add row... | Otherwise | Audit log

| amount min amaunt max period deposit max income Loan approved LMI
i
g om| 1 131000 200000 = 30 | 20000 Asset true 0
& om| 2 10000 100000 20 2000 Job true 0
&= =3 . 100001 130000 20 3000 Job true 10

Editor Overview Source Config

Figure 9.27. The Asset Editor - Locked assets cannot be edited by other
users

9.7.3. Tags Editor

Tags allow assets to be labelled with any number of tags that you define. These tags can be used
to filter assets on the Project Explorer enabling "Tag filtering".

9.7.3.1. Creating Tags

To create tags you simply have to write them on the Tags input and press the "Add new Tag/s"
button. The Tag Editor allows creating tags one by one or writing more than one separated with
a white space.

209

Workbench (General)

Tags tag1 tag2 Add new tag/s

Mote: Update Applicant.java

URL: git.//masterguf-playground/mortgages/src/main/java/org/mortgages/Applicant. java
Subject:

Type:

External link:

Source:

Lock status: Not locked gy Force unlock asset

Figure 9.28. Creating Tags

Once you created new Tags they will appear over the Editor allowing you to remove them by
pressing on them if you want.

VLGN G Metadata
Add new tag/s

Mote: Update Applicant.java

URI: git:{imastern@uf-playground/mortgages/src/main/javalorg/mortgages/Applicant.java
Subject:

Type:

External link:

Source:

Lock status: Not locked Gy Force unlock asset

Figure 9.29. Existing Tags

210

Workbench (General)

9.7.4. Project Explorer

The Project Explorer provides the ability to browse different Organizational Units, Repositories,
Projects and their files.

9.7.4.1. Initial view

The initial view could be empty when first opened.

Project Explorer 8 o A

demo « kie-repository = --- =

Cpen Project Editor

Figure 9.30. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down
boxes.

211

Workbench (General)

Project Explorer g2 (A

demo « kie-repository v --- =

jbpm-playaround

Cpen Frojec

Kie-repfsitory

uf-playground

o ioms [A

Figure 9.31. Selecting a repository
The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

Project Explorer 8 = A
demo = uf-playground = = mortgages -

B= <default=
& org
@ morigages

Figure 9.32. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been
selected the Project Explorer will show the contents. The exact combination of selections depends
wholly on the structures defined within the Workbench installation and projects. Each section
contains groups of related files. If a file is currently being edited by another user, a lock symbol will
be displayed in front of the file name. The symbol is blue in case the lock is owned by the currently
authenticated user, otherwise black. Moving the mouse pointer over the lock symbol will display
a tooltip providing the name of the user who is currently editing the file (and therefore owning the
lock). To learn more about locking see Section 9.7.2, “Asset Editor” for details.

212

Workbench (General)

Project Explorer = 8 L
demo ~ ' uf-playground = ' mortgages ~ =
& <default>

& org
& mortgages

Open Project Editor

DRL =

DATA CBJECTS -

&)

DOMAIN SPECIFIC LANGUAGE DEFINITIONS -

ENUMERATION DEFINITIONS =

GUIDED DECISICN TABLES -

L

GUIDED RULES -

&)

Bankruptcy history
i Mo bad credit checks
no NINJAs

Underage
Figure 9.33. Expanded asset group

GUIDED RULES (WITHDSL) -

@ TEST SCENARIOS +

Workbench (General)

9.7.4.2. Different views

Project Explorer supports multiple views.

* Project View
A simplified view of the underlying project structure. Certain system files are hidden from view.
* Repository View

A complete view of the underlying project structure including all files; either user-defined or
system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project and Repository Views can be further refined by selecting either "Show as Folders"
or "Show as Links".

[
>

Project Explorer o

demo « uf-pla % Project View
Fepository View
B <default>

& org Show as Links [

= MOME s Show as Folders

& Download Project

Open Project Edit == Download Repository

Figure 9.34. Switching view

214

Workbench (General)

9.7.4.2.1. Project View examples

Project Explorer & o
demo « uf-playground = = mortgages -
B= <=default=

s org
B mortgages

Figure 9.35. Project View - Folders

Project Explorer & o
demo = uf-playground = morgages -

<default> ' org ' mortgages

Figure 9.36. Project View - Links

215

Workbench

(General)

9.7.4.2.2. Repository View examples

Project Explorer
Cpen Froject Editor

demo = uf-playground -

B mortgages
B src
B= main
m ava
B resources
B fest
4 pom.xml
[4 projectimports

Figure 9.37. Repository View - Folders

Project Explorer
OUpen Project Editor

demo = uf-playground -

Figure 9.38. Repository View - Links

mortgages ~

mortgages ~

mortgages ' src main resources

[META-INF A @ &

] arg h A @ B

[

0

216

Workbench (General)

9.7.4.3. Download Project or Repository

Download Project and Download Repository make it possible to download the project or repository
as a zip file.

Project Explorer &

0
>

demo ~ uf-pla * Froject View g
Fepository View
<default> ' org

Sh Link
= mortgages * Show as Links

Show as Folders

& Download Project I

Cpen Project Edit
P] . & Download Repository

Figure 9.39. Repository and Project Downloads

9.7.4.4. Branch selector

A branch selector will be visible if the repository has more than a single branch.

217

Workbench (General)

Project Explorer 8| A
demo -~ uf-playground ~ mortgages ~ &
Open Froject Editor testBranch -

master | _|'|.,_I

Figure 9.40. Branch selector

9.7.4.5. Filtering by Tag

To make easy view the elements on packages that contain a lot of assets, is possible to enabling
the Tag filter, which allows you to filter the assets by their tags.

To see how to add tags to an asset look at: Section 9.7.3, “Tags Editor”

218

Workbench (General)

Project Explorer & o x
Open Project Editor Project View i
% Repository View
demo ~ = uf-playgroy ¥ Show as Links
Show as Folders
<default> ' org = mort
O Applicant.java & Download Project A @
- P & Download Repository M A B
| IncomeSource.java AW
0y LoanApplication java A @
0y ApplicantDsl.dsl A @
0y Bankruptcy history.rdri A @
| credit ratings.enumeration A @
0y CreditApproval rdsir A @
0y Dummy rule.dri A @
O Mo bad credit checks.rdrl B A®

Figure 9.41. Enabling Filter by Tag

219

Workbench (General)

Project Explorer oo | x
Open Project Editor
Filter by Tag | -- none -- ~
-- none -
demo - tagl tgages -
<default> tag2
tag3
tag4
03 applic tgd> M A®
[Bankruptcy.java AW
O IncomeSource.java AW
[LoanApplication java AW
™ AnnlicantNel dsl fh A T

Figure 9.42. Filter by Tag

220

Workbench (General)

Project Explorer & o x
Open Project Editor
Filter by Tag | tag2 -
demo ~ ' uf-playground ~ mortgages ~
<default> ' org = mortgages
O Applicant java A @
O Bankruptcy java AW
O Dummy rule.dri AW

Figure 9.43. Filtering by Tag

9.7.4.6. Copy, Rename, Delete and Download Actions

Copy, rename and delete actions are available on Links mode, for packages (in of Project View)
and for files and directories as well (in Repository View). Download action is available for directo-
ries. Download downloads the selected directory as a zip file.

 A:Copy
« B: Rename
e C: Delete

* D : Download

221

Workbench (General)

Project Explorer ¢ C

demo = uf-playground = mortgages -

1
Al
B

<default> org

] mortgages

iy

]
A

0

L

D]

Figure 9.44. Project View - Package actions

222

Workbench (General)

Project Explorer 8 = A
Cpen Project Editor
demo « uf-playground = mortgages « =

mortgages ' src main @ java @ org

= mortgages A= &

Figure 9.45. Repository View - Files and directories actions

Warning

Workbench roadmap includes a refactoring and an impact analyses tools, but cur-
rently doesn't have it. Until both tools are provided make sure that your changes
(copy/rename/delete) on packages, files or directories don't have a major impact
on your project.

In cases that your change had an unexpected impact, Workbench allows you to
restore your repository using the Repository editor.

Important

Files locked by other users as well as directories that contain such files cannot be
renamed or deleted until the corresponding locks are released. If that is the case
the rename and delete symbols will be deactivated. To learn more about locking
see Section 9.7.2, “Asset Editor” for details.

mortgages £ @ @ [

223

Workbench (General)

9.7.5. Project Editor

The Project Editor screen can be accessed from Project Explorer. Project Editor shows the settings
for the currently active project.

Unlike most of the workbench editors, project editor edits more than one file. Showing everything
that is needed for configuring the KIE project in one place.

Project: [mortgages:mortgages:0.0.1] ~ Save | Delete | Rename | Copy | Build ~ || | x

Project Settings: Project General Settings ~

Project General Settings
: : gs
Dependencies

Metadata it Name

Knowledge bases and sessions Tiption
Metadata P
External Data Objects
Metadata plD © mortgages

Example: com.myorganization.myprojects
Persistence descriptor

Artifact ID & mortgages
Example: MyProject
Version & 0.01

Example: 1.0.0

Figure 9.46. Project Screen and the different views

9.7.5.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven
repository.

9.7.5.2. Project Settings
Project Settings edits the pom.xml file used by Maven.

9.7.5.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV
values are used as identifiers to differentiate projects and versions of the same project.

224

Workbench (General)

Project: [mortgages:mortgages:0.0.1] Save | Delete | Rename | Copy | Build ~ || ,* | %

Project Settings: Project General Settings ~

Project General Settings
Project Name

Project Description

Group artifact version

Group 1D @ mortgages

Example: com.myorganization. myprojects

Artifact ID @ morgages

Example: MyProject

Version @ 0.0.1

Example: 1.0.0

Figure 9.47. Project Settings

9.7.5.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a
project that has been built and deployed to a Maven repository. Internal dependencies are projects
built and deployed in the same workbench as the project. External dependencies are retrieved
from repositories outside of the current workbench. Each dependency uses the GAV-values to
specify the project name and version that is used by the project.

Dependencies: Dependencies list ~

Add | Add from repository

Group 1D Artifact ID Version Package white list Delete
mortgages mortgages 0.01 Fackages notincluded

Figure 9.48. Dependencies

225

Workbench (General)

9.7.5.2.2.1. Package Name White List

Classes and declared types in white listed packages show up as Data Objects that can be imported
in assets. The full list is stored in package-name-white-list file that is stored in each project root.

Package white list has three modes:

 All packages included: Every package defined in this jar is white listed.

» Packages not included: None of the packages listed in this jar are white listed.

« Some packages included: Only part of the packages in the jar are white listed.
9.7.5.2.3. Metadata

Metadata for the pom.xml file.

9.7.5.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

226

Workbench (General)

Knowledge Base Settings: Knowledge bases and sessions ~

Add Rename Make Default

default -

default

Included Knowledge Bases

kbasel -
kbase?

Packages

Add =i
Figure 9.49. Knowledge Base Settings "

Workbench (General)

@ Note

For more information about the Knowledge Base properties, check the Drools Ex-
pert documentation for kmodule.xml.

9.7.5.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified
for the project.

9.7.5.3.1.1. Knowledge base list
Lists all the knowledge bases by name. Only one knowledge base can be set as default.
9.7.5.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in
the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are
included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.
Event processing mode is explained in the Drools Fusion part of the documentation.
9.7.5.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one
default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup
that shows more properties for the knowledge session.

9.7.5.3.2. Metadata
Metadata for the kmodule.xml
9.7.5.4. Imports

Settings edits the project.imports file used by the workbench editors.

228

Workbench (General)

Imports: External Data Objects

o External Data Objects are Data Objects not explicitly defined within a Project or Project's dependencies that a rule author may need
available. They are usually provided by the Java runtime. For example java.util.List.

Type Remove

java.util. List
java.lang.String

Figure 9.50. Imports

9.7.5.4.1. External Data Objects

Data Objects provided by the Java Runtime environment may need to be registered to be available
to rule authoring where such Data Objects are not implicitly available as part of an existing Data
Object defined within the Workbench or a Project dependency. For example an Author may want to
define a rule that checks for j ava. util . ArrayLi st in Working Memory. If a domain Data Object
has a field of type j ava. uti |l . ArrayLi st there is no need create a registration.

9.7.5.4.2. Metadata

Metadata for the project.imports file.

9.7.5.5. Duplicate GAV detection

When performing any of the following operations a check is now made against all Maven Reposi-
tories, resolved for the Project, for whether the Project's Groupld, Artifactld and Version pre-exist.
If a clash is found the operation is prevented; although this can be overridden by Users with the
adni n role.

@ Note
The feature can be disabled by setting the System Property
or g. guvnor. proj ect. gav. check. di sabl ed tot rue.

Resolved repositories are those discovered in:-

» The Project's POM<r eposi t or i es> section (or any parent POM).
» The Project's POM<di st ri but i onManagenent > section.
* Maven's global set ti ngs. xnl configuration file.

Affected operations:-

229

Workbench (General)

» Creation of new Managed Repositories.

« Saving a Project defintion with the Project Editor.

* Adding new Modules to a Managed Multi-Module Repository.

e Saving the pom xni file.

 Build & installing a Project with the Project Editor.

 Build & deploying a Project with the Project Editor.

» Asset Management operations building, installing or deploying Projects.
» REST operations creating, installing or deploying Projects.

Users with the Adni n role can override the list of Repositories checked using the "Repositories”
settings in the Project Editor.

Project Settings: Project General Settings ~

Project General Settings
J 9 1gS
Dependencies

Metadata

Knowledge bases and sessions

Metadata

External Data Objects
Metadata

Resolved repositories

¥

Persistence descriptor

Figure 9.51. Project Editor - Viewing resolved Repositories

230

Workbench (General)

Repositories: Resolved repositories -

o These are the Maven Repositories resolved for the Project from the Project's pom, the Project's Distribution

Management configuration and Maven's global settings.

Include Id URL

o local /home/manstis/.m2frepository

4 jboss-developer-repository-group hitps:irepository. jboss.org/nexus/content/groups/developer/
o jbass-origin-repository-group https:fiorigin-repository.jboss.org/nexus/contentigroupsiea/
4 jboss-public-repository-group hitp:firepository.jboss.org/nexus/content/groups/public/

Figure 9.52. Project Editor - The list of resolved Repositories

Conflicting Repositories

A The following Repositories already contain Artifact
"mortgages:mortgages:0.0.1".

Id URL Source
local /home/manstis/.m2repositony Local
+ Ok

Figure 9.53. Duplicate GAV detected

9.7.6. Validation

The Workbench provides a common and consistent service for users to understand whether files

authored within the environment are valid.

9.7.6.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

Source

Local
Maven settings
Maven settings

Maven settings

Override

231

Workbench (General)

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation
results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either
new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

DRL Editor[DummyruIe] Save | Delete | Rename | Copy | Validate x
Show fact types
package org.mortgages

Some invalid DRL

DRL Metadata

Problems x

Level Text File Column Line

[ERR 107] Line 3:0
mismatched input 'Some’
expecting one of the
%] P i g Dummy rule.drl 0 3
following tokens: [package,
import, global, declare,

function, rule, query]-

Parser returned a null
%] Dummy rule.drl 0 0
Package

Figure 9.54. The Problems Panel

9.7.6.2. On demand validation
It is not always desirable to save a file in order to determine whether it is in a valid state.
All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

232

Workbench (General)

Validation errors

€@ [ERR 107] Line 3:0 mismatched input 'Some’ expecting one of the following
tokens: Tpackage, import, global, declare, function, rule, query]".

@ Parser retumed a null Package

9.7.7. Data Modeller

9.7.7.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of
this tutorial, we will assume that a correctly configured project already exists and the authoring
perspective is open.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective and use the project explorer to browse
to the given project.

233

Workbench (General)

KIE Workbench

Explore ~ New Item ~ Repository ~ 2a Q
Project Explorer B NES

demo ~ | Purchases ~ | purchases ~ =]
& <default>

& org

& jbpm
& examples
& purchases

Open Project Editor

6 DATA OBJECTS ~
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 9.55. Go to authoring perspective and select a project

2. Open the Data Modeller tool by clicking on a Data Obiject file, or using the "New Item -> Data
Object" menu option.

H DATA OBJECTS ~

PurchaseQrder

PurchaseOrderHeader

PurchaseOrderLine

Figure 9.56. Click on a Data Object

This will start up the Data Modeller tool, which has the following general aspect:

234

Workbench (General)

PurchaseOrder.java - Data Objects

Save Delete

Purchase Order (PurchaseQrder) © add field 'description’ - general properties

Identifier Label Type Identifier description
descripti Descripti Stri

header Header @ Purchase Order Header x

Description

lines Lines (6] Purchase Order Line [List] x

requiresCFOApproval Boolean x Type String
total Total Double *

Editor Overview Source

Figure 9.57. Data modeller overview

The "Editor" tab is divided into the following sections:

Copy | Validate | Latest Version ¥

List

» The new field section is dedicated to the creation of new fields, and is opened when the "add

field" button is pressed.

| New field

"Id nsert a valid Java identifier Label | |nsert a label

wied L

*Type v List

Create Create and continue Cancel

Figure 9.58. New field creation

» The Data Object's "field browser" section displays a list with the data object fields.

235

L -3

Workbench (General)

Purchase Order (PurchaseOrder) © add field
Identifier Label
II
header Header Purchase Order Header
lines Lines (€3] Purchase Order Line [List] b
requiresCFOApproval Boolean x
total Total Double o

Figure 9.59. The Data Object's field browser

« The "Data Object / Field general properties" section. This is the rightmost section of the Data
Modeller editor and visualizes the "Data Object" or "Field" general properties, depending on
user selection.

Data Object general properties can be selected by clicking on the Data Object Selector.

Purchase Order (PurchaseOrder) © add field
Identifier Label Type
description Description String b 4
header Header @ Purchase Order o
Header

Figure 9.60. Data Object selector

236

Workbench (General)

'Purchase Order (PurchaseOrder)' - general properties

Identifier PurchaseOrder

Label Furchase Order

Description

Package org.jbppm.examples.purc v @
Superclass java.lang.Object v

Figure 9.61. Data Object general properties

Field general properties can be selected by clicking on a field.

Purchase Order (PurchaseOrder) © add field
Identifier Label Type
description Description String x

Header

header Header ‘ (i) ‘ Purchase Order

Figure 9.62. Field selector

237

Workbench (General)

'description’ - general properties

Identifier description

Label Description

Description

Type String v —=

Figure 9.63. Field general properties

« On workbench's right side a new "Tool Bar" is provided that enables the selection of different
context sensitive tool windows that will let the user do domain specific configurations. Current-
ly four tool windows are provided for the following domains "Drools & jBPM", "OptaPlanner”,
"Persistence" and "Advanced" configurations.

"

o

Figure 9.64. Data modeller Tool Bar

238

Workbench (General)

> Drools & JBPM

TypeSafe ¥

ClassReactive

PropertyReactive

Role v
Timestamp v
Dwuration v
Expires

Remotable

Figure 9.65. Drools & jBPM tool window

OptaPlanner
Planner Entity Settings

Planning Variable v

valueRangeld computerRange

Figure 9.66. OptaPlanner tool window

@ © © © O ©

(v R

239

Workbench (General)

e

E] Persistence ®
Entity Properties o
Persistable O e
Table name ' I,

Figure 9.67. Persistence tool window

240

Workbench (General)

> | Advanced

© add annotation

« K

i@org.kie.api.definition.type.Label delete
{@org.kie.api.definition.type.Position delete
[@javax.persistence.OneToMany delete

cascade:

{ edit clear

mappedBy:

{value not set) edit clear

fetch:
javax persistence.FetchType EAGER = adit clear

targetEntity:
(value not set) edit clear
orphanRemoval:
false edit clear

Figure 9.68. Advanced tool window

The "Source" tab shows an editor that allows the visualization and modification of the generated
java code.

* Round trip between the "Editor" and "Source" tabs is possible, and also source code preser-
vation is provided. It means that no matter where the Java code was generated (e.g. Eclipse,
Data modeller), the data modeller will only update the necessary code blocks to maintain the
model updated.

241

Workbench (General)

PurchaseOrder.java - Data Objects Save | Delete | Rename | Copy | Validate | latestVerson™ | x Y A
1 package org.jbpm.examples.purchases;
2

B
4+ This class was automatically generated by the data modeler tool.
5

6 (@org.kie.api.definition.type.label(value = "Purchase Order")
7+ public class PurchaseOrder inplements java.io.Serializable {
E

9 static final long serialVersionUID = 1L;
10

1 Borg.kie.api.definition.type.Label(value - "Total")

12 @org.kie.api.definition.type.Position(value = 3)

13 private java.lang.Double total;

14

15 @org.kie.apl.definition.type.Label(value = "Description”)

16 gorg.kie.api.definition.type.Position(value = B)

17 private java.lang.String description;

18

19 @org.kie.api.definition.type.Label(value = “Lines")

20 Porg.kie.api.definition.type.Position(value - 2)

21 private java.util.listcorg.jbpm.examples.purchases.PurchaseOrderLine> lines;
22

23 Borg.kie.api.definition.type.Label(value - “"Header")

24 @org.kie.api.definition.type.Position(value = 1)

25 private org.jbpm.examples.purchases. PurchaseOrderHeader header;
26

27 Borg.kie.api.definition.type.Position(value = 4)

28 private java.lang.Boolean requiresCFOApproval;

29

30+ public Purchasedrder() {

31 }

32

33+ public Purchasedrder(java.lang.String description, org.jbpm.exanples.purchases PurchaseOrderHeader header, java.util.list<org.jbpm.examples.purchases.PurchaseOrderLines Lines, java.lang.Double total, java.lar
34 this.description - description;

35 this.header - header;

36 this.lines = lines;

37 this.total = total;

38 this.requiresCFOApproval = requiresCFOApproval;

39 1

28

41

42

43+ public java.lang.Double getTotal() {

44 return this.total;

45 1

26

47~ public void setTotal(java.lang.Double total) {

48 this.total = total;

43 }

50

51+ public java.lang.String getDescription() {

52 return this.description;

53 }

54

55+ public void setDescription(Jjava.lang.String description) {
56 this.description - description;

57 }

58 v

Editor Overview

Figure 9.69. Source editor

The "Overview" tab shows the standard metadata and version information as the other workbench
editors.

9.7.7.2. Data Objects

A data model consists of data objects which are a logical representation of some real-world data.
Such data objects have a fixed set of modeller (or application-owned) properties, such as its in-
ternal identifier, a label, description, package etc. Besides those, a data object also has a variable
set of user-defined fields, which are an abstraction of a real-world property of the type of data that
this logical data object represents.

Creating a data object can be achieved using the workbench "New Item - Data Object" menu
option.

242

Workbench (General)

Create new Data Object

* Data Object

Package org.jppm.examples.purchases v

Persistable @

Figure 9.70. New Data Object menu option

Both resource name and location are mandatory parameters. When the "Ok" button is pressed
a new Java file will be created and a new editor instance will be opened for the file edition. The
optional "Persistable" attribute will add by default configurations on the data object in order to
make it a JPA entity. Use this option if your jBPM project needs to store data object's information
in a data base.

9.7.7.3. Properties & relationships

Once the data object has been created, it now has to be completed by adding user-defined prop-
erties to its definition. This can be achieved by pressing the "add field" button. The "New Field" di-
alog will be opened and the new field can be created by pressing the "Create" button. The "Create
and continue" button will also add the new field to the Data Object, but won't close the dialog. In
this way multiple fields can be created avoiding the popup opening multiple times. The following
fields can (or must) be filled out:

» The field's internal identifier (mandatory). The value of this field must be unique per data object,
i.e. if the proposed identifier already exists within current data object, an error message will be
displayed.

» A label (optional): as with the data object definition, the user can define a user-friendly label for
the data object field which is about to be created. This has no further implications on how fields
from objects of this data object will be treated. If a label is defined, then this is how the field will
be displayed throughout the data modeller tool.

» A field type (mandatory): each data object field needs to be assigned with a type.

243

Workbench (General)

This type can be either of the following:

1. A 'primitive java object' type: these include most of the object equivalents of the standard
Java primitive types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal
and Biglnteger.

BigDecimal
Biginteger
Boolean
Byte
Character
Date
Double
Float
Integer
Long
Short

Figure 9.71. Primitive object field types

2. A 'data object' type: any user defined data object automatically becomes a candidate to be
defined as a field type of another data object, thus enabling the creation of relationships
between them. A data object field can be created either in 'single' or in 'multiple’ form, the
latter implying that the field will be defined as a collection of this type, which will be indicated
by selecting "List" checkbox.

Purchase Order (org.jppm.examples. purchases.PurchaseCOrder)
Purchase Order Header (org.jbpm.examples.purchases.PurchaseOrderHeader)
Purchase Order Line (org.jppm.examples.purchases.PurchaseOrderLine)

Figure 9.72. Data object field types

3. A 'primitive java' type: these include java primitive types byte, short, int, long, float, double,
char and boolean.

244

Workbench (General)

boolean
byte
char
double
float

int

long
short

Figure 9.73. Primitive field types

When finished introducing the initial information for a new field, clicking the 'Create' button will add
the newly created field to the end of the data object's fields table below:

Purchase Order (PurchaseOrder) © add field 'newField' - general properties
Identifier Label Type Identifier newField
d ipti Descripti Stri
escription escription ring x Label New Field
header Header 6] Purchase Order %
Header Description
lines Lines 6] Purchase Order %
Line [List] Type String \
requiresCFOApproval Boolean x
total Total Double x

Figure 9.74. New field has been created

The new field will also automatically be selected in the data object's field list, and its properties
will be shown in the Field general properties editor. Additionally the field properties will be loaded
in the different tool windows, in this way the field will be ready for edition in whatever selected
tool window.

At any time, any field (without restrictions) can be deleted from a data object definition by clicking
on the corresponding X' icon in the data object's fields table.

9.7.7.4. Additional options

As stated before, both Data Objects as well as Fields require some of their initial properties to be
set upon creation. Additionally there are three domains of properties that can be configured for
a given Data Object. A domain is basically a set of properties related to a given business area.

245

List

Workbench (General)

Current available domains are, "Drools & jJBPM", "Persistence" and the "Advanced" domain. To
work on a given domain the user should select the corresponding "Tool window" (see below)
on the right side toolbar. Every tool window usually provides two editors, the "Data Object" level
editor and the "Field" level editor, that will be shown depending on the last selected item, the Data
Object or the Field.

9.7.7.4.1. Drools & jBPM domain

The Drools & jBPM domain editors manages the set of Data Object or Field properties related
to drools applications.

9.7.7.4.1.1. Drools & jBPM object editor

The Drools & jBPM object editor manages the object level drools properties

> Drools & JBPM E

=

TypeSafe -) -

ClassReactive 7]

PropertyReactive 7]

Role - 9

Timestamp - 7]

Duration - 9

Expires o

Remotable 7]

Figure 9.75. The data object's properties

» TypeSafe: this property allows to enable/disable the type safe behaviour for current type. By
default all type declarations are compiled with type safety enabled. (See Drools for more infor-
mation on this matter).

246

Workbench (General)

ClassReactive: this property allows to mark this type to be treated as "Class Reactive" by the
Drools engine. (See Drools for more information on this matter).

PropertyReactive: this property allows to mark this type to be treated as "Property Reactive" by
the Drools engine. (See Drools for more information on this matter).

Role: this property allows to configure how the Drools engine should handle instances of this
type: either as regular facts or as events. By default all types are handled as a regular fact, so
for the time being the only value that can be set is "Event” to declare that this type should be
handled as an event. (See Drools Fusion for more information on this matter).

Timestamp: this property allows to configure the "timestamp" for an event, by selecting one of
his attributes. If set the engine will use the timestamp from the given attribute instead of reading
it from the Session Clock. If not, the engine will automatically assign a timestamp to the event.
(See Drools Fusion for more information on this matter).

Duration: this property allows to configure the "duration" for an event, by selecting one of his
attributes. If set the engine will use the duration from the given attribute instead of using the
default event duration = 0. (See Drools Fusion for more information on this matter).

Expires: this property allows to configure the "time offset" for an event expiration. If set, this value
must be a temporal interval in the form: [#d][#h][#m][#s][#[ms]] Where [] means an optional
parameter and # means a numeric value. e.g.: 1d2h, means one day and two hours. (See Drools
Fusion for more information on this matter).

Remotable: If checked this property makes the Data Object available to be used with jBPM
remote services as REST, JMS and WS. (See jBPM for more information on this matter).

9.7.7.4.1.2. Drools & jJBPM field editor

The Drools & jBPM object editor manages the field level drools properties

247

Workbench (General)

3

> Drools & JBPM

Equals 7]

&

Paosition 0

Figure 9.76. The data object's field properties

» Equals: checking this property for a Data Object field implies that it will be taken into account,
at the code generation level, for the creation of both the equals() and hashCode() methods in
the generated Java class. We will explain this in more detail in the following section.

 Position: this field requires a zero or positive integer. When set, this field will be interpreted
by the Drools engine as a positional argument (see the section below and also the Drools
documentation for more information on this subject).

9.7.7.4.2. Persistence domain

The Persistence domain editors manages the set of Data Object or Field properties related to
persistence.

9.7.7.4.2.1. Persistence domain object editor

Persistence domain object editor manages the object level persistence properties

248

Workbench (General)

> Persistence

nE|H

Entity Properties

Persistable e

Table name e

Figure 9.77. The data object's properties

» Persistable: this property allows to configure current Data Object as persistable.

« Table name: this property allows to set a user defined database table name for current Data
Object.

9.7.7.4.2.2. Persistence domain field editor

The persistence domain field editor manages the field level persistence properties and is divided
in three sections.

249

Workbench (General)

> Persistence

nE|H

Identifier Properties
Column Properties

Relationship Properties

Figure 9.78. Persistence domain field editor sections

9.7.7.4.2.2.1. Identifier:

Identifier Properties

Is Identifier

Generation NONE F;
strategy

Sequence NOT_SET 74
Generator

A persistable Data Object should have one and only one field defined as the Data Object identifier.
The identifier is typically a unique number that distinguishes a given Data Object instance from
all other instances of the same class.

« Is Identifier: marks current field as the Data Object identifier. A persistable Data Object should
have one and only one field marked as identifier, and it should be a base java type, like String,
Integer, Long, etc. A field that references a Data Object, or is a multiple field can not be marked
as identifier. And also composite identifiers are not supported in this version. When a persistable
Data Object is created an identifier field is created by default with the properly initializations, it's
strongly recommended to use this identifier.

« Generation Strategy: the generation strategy establishes how the identifier values will be auto-
matically generated when the Data Object instances are created and stored in a database. (e.g.
by the forms associated to jBPM processes human tasks.) When the by default Identifier field
is created, the generation strategy will be also automatically set and it's strongly recommended
to use this configuration.

250

Workbench (General)

* Sequence Generator: the generator represents the seed for the values that will be used by the
Generation Strategy. When the by default Identifier field is created the Sequence Generator will
be also automatically generated and properly configured to be used by the Generation Strategy.

9.7.7.4.2.2.2. Column Properties:

The column properties section enables the customization of some properties of the database
column that will store the field value.

Column Properties

Column name

Unique

Nullable v
Insertable L4
Updatable L4

e Column name: optional value that sets the database column name for the given field.

« Unique: When checked the unique property establishes that current field value should be a
unique key when stored in the database. (if not set the default value is false)

* Nullable: When checked establishes that current field value can be null when stored in a data-
base. (if not set the default value is true)

« Insertable: When checked establishes that column will be included in SQL INSERT statements
generated by the persistence provider. (if not set the default value is true)

» Updatable: When checked establishes that the column will be included SQL UPDATE state-
ments generated by the persistence provider. (if not set the default value is true)

9.7.7.4.2.2.3. Relationship Properties:

Relationship Properties

Relationship Type NOT SELECTED 4

251

Workbench (General)

When the field's type is a Data Object type, or a list of a Data Object type a relationship type should
be set in order to let the persistence provider to manage the relation. Fortunately this relation type
is automatically set when such kind of fields are added to an already marked as persistable Data
Object. The relationship type is set by the following popup.

Relationship configuration

Relationship type

Not set v
Cascade mode
All Persist Merge Remove Refresh Detach

Fetch mode

EAGER v
Optional

Mapped by

Remove Orphans

© ok Cancel

Figure 9.79. Relationship configuration popup

« Relationship type: sets the type of relation from one of the following options:

One to one: typically used for 1:1 relations where "A is related to one instance of B", and B exists
only when A exists. e.g. PurchaseOrder -> PurchaseOrderHeader (a PurchaseOrderHeader
exists only if the PurchaseOrder exists)

One to many: typically used for 1:N relations where "A is related to N instances of B", and the
related instances of B exists only when A exists. e.g. PurchaseOrder -> PurchaseOrderLine (a
PurchaseOrderLine exists only if the PurchaseOrder exists)

252

Workbench (General)

Many to one: typically used for 1:1 relations where "A is related to one instance of B", and B
can exist even without A. e.g. PurchaseOrder -> Client (a Client can exist in the database even
without an associated PurchaseOrder)

Many to many: typically used for N:N relations where "A can be related to N instances of B, and
B can be related to M instances of A at the same time", and both B an A instances can exits in
the database independently of the related instances. e.g. Course -> Student. (Course can be
related to N Students, and a given Student can attend to M courses)

When a field of type "Data Object" is added to a given persistable Data Object, the "Many to
One" relationship type is generated by default.

And when a field of type "list of Data Object" is added to a given persistable Data Object , the
"One to Many" relationship is generated by default.

» Cascade mode: Defines the set of cascadable operations that are propagated to the associated
entity. The value cascade=ALL is equivalent to cascade={PERSIST, MERGE, REMOVE, RE-
FRESH]}. e.g. when A -> B, and cascade "PERSIST or ALL" is set, if A is saved, then B will
be also saved.

The by default cascade mode created by the data modeller is "ALL" and it's strongly recom-
mended to use this mode when Data Objects are being used by jBPM processes and forms.

» Fetch mode: Defines how related data will be fetched from database at reading time.

EAGER: related data will be read at the same time. e.g. If A -> B, when A is read from database
B will be read at the same time.

LAZY: reading of related data will be delayed usually to the moment they are required. e.g.
If PurchaseOrder -> PurchaseOrderLine the lines reading will be postponed until a method
"getLines()" is invoked on a PurchaseOrder instance.

The default fetch mode created by the data modeller is "EAGER" and it's strongly recommended
to use this mode when Data Objects are being used by jBPM processes and forms.

« Optional: establishes if the right side member of a relationship can be null.
» Mapped by: used for reverse relations.

9.7.7.4.3. Advanced domain

The advanced domain enables the configuration of whatever parameter set by the other domains
as well as the adding of arbitrary parameters. As it will be shown in the code generation section
every "Data Object / Field" parameter is represented by a java annotation. The advanced mode
enables the configuration of this annotations.

9.7.7.4.3.1. Advanced domain Data Object / Field editor.

The advanced domain editor has the same shape for both Data Object and Field.

253

Workbench (General)

> Advanced

© add annotation

=« YK

i@org.kie.api.definition.type.Label delete
i@org.kie.api.definition.type.Position delete
{@javax. persistence.OneToMany delete

cascade:

{ edit clear

mappedBy:

(value not set) edit clear

fetch:
javax. persistence.FetchType EAGER = adit clear

targetEntity:

(value not set) edit clear
orphanRemoval:

false edit clear

Figure 9.80. Advanced domain editor.

The following operations are available

delete: enables the deletion of a given Data Object or Field annotation.

« clear: clears a given annotation parameter value.

edit: enables the edition of a given annotation parameter value.

+ add annotation: The add annotation button will start a wizard that will let the addition of whatever
java annotation available in the project dependencies.

254

Workbench (General)

Add annotation wizard step #1: the first step of the wizard requires the entering of a fully qualified
class name of an annotation, and by pressing the "search" button the annotation definition will
be loaded into the wizard. Additionally when the annotation definition is loaded, different wizard
steps will be created in order to enable the completion of the different annotation parameters.
Required parameters will be marked with "*"

Add new Annotation

« Search annotation * Annotation class name

4 -> cascade javax. persistence ManyToOne Q

4 -= fetch
f >t Entit Annotation definition was loaded successiully.
W -> targetEntity

w” -= optional

< Previous Mext » Cancel & Finish

Figure 9.81. Annotation definition loaded into the wizard.

Whenever it's possible the wizard will provide a suitable editor for the given parameters.

255

Workbench (General)

Add new Annotation

«/ Search annotation cascade:

4/ -» cascade ALL

wf - fetch FERSIST

wf -> targetEntity MERGE

w/ -> optional REMOVE
REFRESH
DETACH
{1

< Pravious Mext » Cancel [Finish

Figure 9.82. Automatically generated enum values editor for an
Enumeration annotation parameter.

A generic parameter editor will be provided when it's not possible to calculate a customized
editor

256

Workbench (General)

Add new Annotation

«f Search annotation targetEntity.

4 -> cascade 1

4 = fetch

" == targetEntity

w” -2 optional
‘alidate

Enter an optional value for the annotation value pair and press the validate button

< Pravious Mext » Cancel

Figure 9.83. Generic annotation parameter editor

When all required parameters have been entered and validated, the finish button will be enabled
and the wizard can be completed by adding the annotation to the given Data Object or Field.

9.7.7.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data struc-
tures, for them to interact with the Drools Engine on the one hand, and the jBPM platform on
the other. In order for this to become possible, these high-level visual structures have to be trans-
formed into low-level artifacts that can effectively be consumed by these platforms. These artifacts
are Java POJOs (Plain Old Java Objects), and they are generated every time the data model is
saved, by pressing the "Save" button in the top Data Modeller Menu. Additionally when the user
round trip between the "Editor" and "Source" tab, the code is auto generated to maintain the con-
sistency with the Editor view and vice versa.

257

Workbench (General)

Save Delete Rename | Copy @ Validate Latest Version ™

Figure 9.84. Save the data model from the top menu

The resulting code is generated according to the following transformation rules:

The data object's identifier property will become the Java class's name. It therefore needs to
be a valid Java identifier.

The data object's package property becomes the Java class's package declaration.

The data object's superclass property (if present) becomes the Java class's extension decla-
ration.

The data object's label and description properties will translate into the Java annotations
"@org.kie.api.definition.type.Label" and "@org.kie.api.definition.type.Description”, respective-
ly. These annotations are merely a way of preserving the associated information, and as yet
are not processed any further.

The data object's role property (if present) will be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application plat-
form, in the sense that it marks this Java class as a Drools Event Fact-Type.

The data object's type safe property (if present) will be translated into the
"@org.kie.api.definition.type. TypeSafe Java annotation. (see Drools)

The data object's class reactive property (if present) will be translated into the
"@org.kie.api.definition.type.ClassReactive Java annotation. (see Drools)

The data object's property reactive property (if present) will be translated into the
"@org.kie.api.definition.type.PropertyReactive Java annotation. (see Drools)

The data object's timestamp property (if present) will be translated into the
"@org.kie.api.definition.type.Timestamp Java annotation. (see Drools)

The data object's duration property (if present) will be translated into the
"@org.kie.api.definition.type.Duration Java annotation. (see Drools)

The data object's expires property (if present) will be translated into the
"@org.kie.api.definition.type.Expires Java annotation. (see Drools)

The data object's remotable property (if present) will be translated into the
"@org.kie.api.remote.Remotable Java annotation. (see jBPM)

258

Workbench (General)

A standard Java default (or no parameter) constructor is generated, as well as a full parameter
constructor, i.e. a constructor that accepts as parameters a value for each of the data object's
user-defined fields.

The data object's user-defined fields are translated into Java class fields, each one of them with
its own getter and setter method, according to the following transformation rules:

« The data object field's identifier will become the Java field identifier. It therefore needs to be
a valid Java identifier.

« The data object field's type is directly translated into the Java class's field type. In case the field
was declared to be multiple (i.e. 'List'), then the generated field is of the "java.ultil.List" type.

« The equals property: when it is set for a specific field, then this class property will be anno-
tated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the Drools
Engine, and it will 'participate’ in the generated equals() method, which overwrites the equals()
method of the Object class. The latter implies that if the field is a 'primitive’ type, the equals
method will simply compare its value with the value of the corresponding field in another in-
stance of the class. If the field is a sub-entity or a collection type, then the equals method will
make a method-call to the equals method of the corresponding data object's Java class, or of
the java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the data object's user defined fields, then this also
implies that in addition to the default generated constructors another constructor is generated,
accepting as parameters all of the fields that were marked with Equals. Furthermore, generation
of the equals() method also implies that also the Object class's hashCode() method is overwrit-
ten, in such a manner that it will call the hashCode() methods of the corresponding Java class
types (be it 'primitive’ or user-defined types) for all the fields that were marked with Equals in
the Data Model.

« The position property: this field property is automatically set for all user-defined fields, starting
from 0, and incrementing by 1 for each subsequent new field. However the user can freely
change the position among the fields. At code generation time this property is translated into
the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools
Engine. Also, the established property order determines the order of the constructor parameters
in the generated Java class.

As an example, the generated Java class code for the Purchase Order data object, corresponding
to its definition as shown in the following figure purchase_example.jpg is visualized in the figure at
the bottom of this chapter. Note that the two of the data object's fields, namely 'header' and 'lines'
were marked with Equals, and have been assigned with the positions 2 and 1, respectively).

259

Workbench (General)

@ PurchaseOrder.java - Data Objects Sawe Delete Rename | Copy Valdate | LatestVersin™ %X T A > Drools & JBPM
Purchase Order (PurchaseOrder) @ add field 'Purchase Order (PurchaseOrder)’ - general TypeSafe e
properties
Identifier Label Type ClassReactive
. . . EntiE PurchaseOrder PropertyReactive
description Description String %
Role
- EVENT
header Header (O] Purchase Order ® Label Purchase Order
Header Timestamp
Description
lines Lines @ Purchase Order x Duration
Line [List]
PEEiEER org jbpm examples purc v @ Expires 2d
requiresCFOApproval Boolean »
Superclass java lang Objec M Remotable
total Total Double x

Figure 9.85. Purchase Order configuration

package org.jbpm exanpl es. purchases;

| **

* This class

&y

@rg. ki e.api.
@rg. ki e. api .
@rg. ki e. api .
@rg. ki e. api .
@rg. ki e. api .

public class

{

static final

@rg. ki e. api .
@rg. ki e. api .
private java.

@rg. ki e. api .
@rg. ki e. api.
private java.

@rg. ki e. api .
@rg. ki e. api .
@rg. ki e. api .
private java.

@rg. ki e.api.
@rg. ki e. api.
@rg. ki e. api .

was automatically generated by the data nodel er tool.

definition.type.Label ("Purchase Order")

definition.type. TypeSafe(true)

definition.type.Rol e(org.kie.api.definition.type.Rol e. Type. EVENT)
definition.type. Expires("2d")

renot e. Renot abl e

PurchaseOrder inplenents java.io.Serializable

long serial VersionU D = 1L;

definition.type.Label ("Total")
definition.type.Position(3)
| ang. Doubl e total;

definition.type.Label ("Description")
definition.type.Position(0)
I ang. String description;

definition.type.Label ("Li nes")

definition.type.Position(2)

definition.type. Key

util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne> | i nes;

definition.type. Label ("Header")
definition.type.Position(1)
definition.type. Key

private org.jbpm exanpl es. purchases. Pur chaseOr der Header header;

@rg. ki e. api .
private java.

definition.type. Position(4)
| ang. Bool ean requi r esCFOAppr oval ;

publ i c PurchaseOrder()

260

|

o

Workbench (General)

{

}

public java.lang. Doubl e get Total ()

{

return this.total;

}

public void setTotal (java.lang. Doubl e total)

{

this.total = total;

}

public java.lang. String getDescription()

{

return this.description;

}

public void setDescription(java.lang. String description)

{

this.description = description;

}

public java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne> get Li nes()
{

return this.lines;

}

public void setLines(java.util.List<org.jbpm exanples. purchases. PurchaseOrderLi ne> |ines)
{

this.lines = lines;

}

public org.jbpm exanpl es. purchases. Pur chaseOr der Header get Header ()
{

return this. header;

}

public void setHeader (org.jbpm exanpl es. purchases. Pur chaseOr der Header header)
{

t hi s. header = header;

}

public java.l ang. Bool ean get Requi r esCFOApproval ()

{

return this.requiresCFOApproval ;

}

public void setRequiresCFOApproval (j ava. | ang. Bool ean requi r esCFQAppr oval)
{

t hi s. requi resCFQApproval = requi resCFQApproval ;

}

public PurchaseOrder (java.l ang. Doubl e total, java.lang.String description,
java.util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,

org. j bpm exanpl es. pur chases. Pur chaseOr der Header header,

j ava. | ang. Bool ean requi r esCFQAppr oval)

{

this.total = total;

261

Workbench (General)

this.description = description;

this.lines = lines;

t hi s. header = header;

t hi s. requi resCFQApproval = requiresCFQApproval ;

public PurchaseOrder(java.lang. String description,

org. j bpm exanpl es. pur chases. Pur chaseOr der Header header,
java.util.List<org.jbpm exanpl es. purchases. PurchaseOr derLi ne> |ines,
java.lang. Doubl e total, java.lang.Bool ean requiresCFQApproval)

{

this.description = description;

t hi s. header = header;

this.lines = lines;

this.total = total;

this.requi resCFOApproval = requiresCFQApproval ;
}

public PurchaseOr der(
java.util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,
org.j bpm exanpl es. pur chases. Pur chaseOr der Header header)

{

this.lines = Ilines;

t hi s. header = header;

}

@verride

publ i c bool ean equal s(Obj ect o)
{

if (this == 0)

return true;

if (o ==null || getdass() != o.getC ass())

return fal se;

org. j bpm exanpl es. pur chases. PurchaseOrder that = (org.jbpm exanpl es. purchases. PurchaseOr der) o;

if (lines !'=null ? !lines.equals(that.lines) : that.lines != null)
return fal se;
if (header !'= null ? !header.equal s(that.header) : that.header != null)

return false;
return true;

}

@verride

public int hashCode()

{

int result = 17;

result = 31 * result + (lines != null ? lines.hashCode() : 0);
result = 31 * result + (header != null ? header.hashCode() : 0);
return result;

}

}

262

Workbench (General)

9.7.7.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current
project context. In order to make those POJOs available a dependency to the given JAR should
be added. Once the dependency has been added the external POJOs can be referenced from
current project data model.

There are two ways to add a dependency to an external JAR file:

» Dependency to a JAR file already installed in current local M2 repository (typically associated
the the user home).

« Dependency to a JAR file installed in current KIE Workbench/Drools Workbench "Guvnor M2
repository”. (internal to the application)

9.7.7.6.1. Dependency to a JAR file in local M2 repository
To add a dependency to a JAR file in local M2 repository follow these steps.

9.7.7.6.1.1. Open the Project Editor for current project and select the Dependen-
cies view.

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete | Rename Copy | Build&Deploy™ | x| 7
demo v / Purchases ~ / purchases ~ 2 : -
Dependendies: Dependencies list ~
B <default>
B org
&= jbpm Add Add fr
dendles L1
& examples Depen repository
Bs purchases

@) cumepruLes ~ Group ID Artifact ID Version Delete

g JAVA SOURCE FILES +
Example
PurchaseOrder
PurchaseOrderHeader
PurchaseOrderLine

Figure 9.86. Project editor.

263

Workbench (General)

9.7.7.6.1.2. Click on the "Add" button to add a new dependency line.

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~

Project: [purchase-approval:org.jbpm:1.0]

Save | Delete | Rename | Copy | Build&Deploy™ | | % || <

Project Explorer L]
demo ~ ' Purchases = / purchases 2 B -
Dependendies: Dependencies list ~
B <default>
B org
& jbpm Dependendies Add Add from
& examples repository
Bs purchases
Group ID Artifact ID Version Delete

@ GUIDED RULES ~

g JAVA SOURCE FILES +
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 9.87. New dependency line.

9.7.7.6.1.3. Complete the GAV for the JAR file already installed in local M2 reposi-

tory.

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~

Project Explorer o

demo v / Purchases ~ / purchases ~ 2

B <default>
B org
B jbpm
Bs examples
Bs purchases

@ GUIDED RULES ~

g JAVA SOURCE FILES ~
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Project: [purchase-approval:org.jbpm:1.0]

Dependendies: Dependencies list ~

Dependencies

Group ID Artifact ID

Add

Verslon

Save Delete Rename Copy Build & Deploy ™ x

Add from
repository

Delete

external-model external-model

Figure 9.88. Dependency line edition.

9.7.7.6.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

264

Workbench (General)

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete | Rename | Copy | Build&Deploy™ | x ||~
demo ~ | Purchases ~ / purchases ~ =] . -
Dependendies: Dependencies list ~
B <default>
B org
&= jbpm Add Add fr
dencies om
Bs examples Depm repository
Bs purchases
@) cumepruLes ~ Group ID Attifact ID Version Delete
n
g JAVA SOURCE FILES + external-model external-model 1.0 i
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 9.89. Save project.
9.7.7.6.2. Dependency to a JAR file in current "Guvnor M2 repository"”

To add a dependency to a JAR file in current "Guvnor M2 repository" follow these steps.

9.7.7.6.2.1. Open the Maven Artifact Repository editor.

KIE Workbench

Home Authoring ~
Upload Project Authoring Q
Artifact repository
Administration =
Name Path LastModified Open Download
guvnor-asset-mgmt-project-6.2.0-20141... org/guvnor/guvnor-asset-mgmt-project/... 2014 Oct 14 10:14:25 Open Download

Figure 9.90. Guvnor M2 Repository editor.

265

Workbench (General)

9.7.7.6.2.2. Browse your local file system and select the JAR file to be uploaded

using the Browse button.

Open File
il < wmedvede | development | projects | external-model | target
Location: | external-model-1.0.jar
Places Name ¥ Size Modified
Q Search classes 02/19/2014
‘& Recently Used [generated-sources 02/19/2014
wmedvede maven-archiver 10/01/2013
Desktop surefire 10/24/2013
LI File System & external-model-1.0.jar 2.6 kB 10/24/2013
b =
Cancel Open

Figure 9.91. File browser.

9.7.7.6.2.3. Upload the file using the Upload button.

Artlfact uplo B The page at localhost:8080 says:

Uploaded successfully

C:\fakepath\extern

Figure 9.92. File upload success.
9.7.7.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

266

Workbench (General)

KIE Workbench

Upload Refresh Q
Name Path LastModlfled Open Download
guvnor-asset-mgmt-project-6.2.0-2014... org/guvnor/guvnor-asset-mgmi-project/... 2014 Oct 14 10:14:25 Open Download
external-model-1.0.jar external-model/external-model/1.0/ext. .. 2014 Oct 14 18:43:19 Open Downioad

Figure 9.93. Files list.
9.7.7.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid Maven JAR (don't have a pom.xml file) the system will prompt
the user in order to provide a GAV for the file to be installed.

Artifact) B The page at localhost:8080 says:
The Jar does not contain a valid POM file.

é L g Please specify GAV info manually.
C:\fakep

0K

Figure 9.94. Not valid POM.

Artifact upload

C:\fakepathlexternal-model-1.0.jz Choose File... = Upload

GroupID: external-model

Artifactip: €xternal-model

VersionID:| 1.0

Figure 9.95. Enter GAV manually.

267

Workbench (General)

9.7.7.6.2.6. Add dependency from repository.

Open the project editor (see below) and click on the "Add from repository" button to open the JAR
selector to see all the installed JAR files in current "Guvnor M2 repository”. When the desired file
is selected the project should be saved in order to make the new dependency available.

Name Path LastModlfied

guvnor-asset-mgmt... org/guvnor/guvnor-a... 2014 Oct 14 10:14:25

external-model-1.0.jar external-model/exter... 2014 Oct 14 19:22:53

Figure 9.96. Select JAR from "Maven Artifact Repository".

9.7.7.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the
context of current project data model in the following ways:

» External POJOs can be extended by current model data objects.

« External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order
to be quickly identified.

KIE Workbench

Explore + New Item ~ Repository ~ Q
Project Explorer % 2~ PurchaseOrder.java - Data Objects Save || Delete | | Rename || Copy || Validate || LatestVersion ™ | | x | ~
demo ~ / Purchases ~ / purchases ~ =]
Create new field Data Object Field
& <default>
& org id useExternalType Label
& jbpm Identifier lines
B examples “Type v List © Create
SeRiichieses [Tutorial Example Entity (org jbpm.examples.purchases.Example) ~bel Lines

- ext - externalmodel. Product
- ext - externalmodel. UseExternalBean
Ml - cx1 - extemaimodel UselnnerClasses L
- - exi - externalmodel.UselnnerClasses$1
Open Project Editor Identifie - ext - org kie.external.ClaseExternaAbstracta
- ext - org kie.external.ClaseExternaFinal

descripti - ext - org kie.external. ClaseExternalFinal2 pe Purchase Order Line (o1 v ¥ List
- ext - org kie.external.ClaseExternalinterface
- ext - org kie.external. ExternalClientBean uals td [
g PATA OBJECTS header | _ ext - org.kie.external HelloWorld -
Example . ex‘l - org kie.external MaxFieldsForConstructor1 e 2 °

Figure 9.97. Identifying external objects.

268

Workbench (General)

9.7.7.7. Roundtrip and concurrency

Current version implements roundtrip and code preservation between Data modeller and Java
source code. No matter where the Java code was generated (e.g. Eclipse, Data modeller), the
data modeller will only create/delete/update the necessary code elements to maintain the mod-
el updated, i.e, fields, getter/setters, constructors, equals method and hashCode method. Also
whatever Type or Field annotation not managed by the Data Modeler will be preserved when the
Java sources are updated by the Data modeller.

Aside from code preservation, like in the other workbench editors, concurrent modification sce-
narios are still possible. Common scenarios are when two different users are updating the model
for the same project, e.g. using the data modeller or executing a 'git push command' that modifies
project sources.

From an application context's perspective, we can basically identify two different main scenarios:
9.7.7.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,
without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user
tries to make any kind of change, such as add or remove data objects or properties, or change
any of the existing ones, the following pop-up will be shown:

269

Workbench (General)

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 9.98. External changes warning

The user can choose to either:

« Re-open the data model, thus loading any external changes, and then perform the modification
he was about to undertake, or

 Ignore any external changes, and go ahead with the modification to the model. In this case,
when trying to persist these changes, another pop-up warning will be shown:

270

Workbench (General)

_—— - - - - __________—_—_—_—_——3

Error

User =system > updated current project default: //master@uf-playground
/mortgages data model,

Force Save Re-open Cancel

Figure 9.99. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open™ will
discard any local changes and reload the model.

A Warning

"Force Save" overwrites any external changes!

9.7.7.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user simultane-
ously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset
repository (or e.g. saves the model with the data modeller in a different session), a warning is
issued to the application user:

271

Workbench (General)

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 9.100. External changes warning

As with the previous scenario, the user can choose to either:

» Re-open the data model, thus losing any modifications that where made through the application,
or

« Ignore any external changes, and continue working on the model.
One of the following possibilities can now occur:

» The user tries to persist the changes he made to the model by clicking the "Save" button in
the data modeller top level menu. This leads to the following warning message:

272

Workbench (General)

—— - ______—_——3

Error

User <system= updated current project default: //master@uf-playground
/mortgages data model.

Force Save Re-open Cancel

Figure 9.101. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open” will
discard any local changes and reload the model.

9.7.8. Data Sets

A data set is basically a set of columns populated with some rows, a matrix of data composed
of timestamps, texts and numbers. A data set can be stored in different systems: a database, an
excel file, in memory or in a lot of other different systems. On the other hand, a data set definition
tells the workbench modules how such data can be accessed, read and parsed.

Notice, it's very important to make crystal clear the difference between a data set and its definition
since the workbench does not take care of storing any data, it just provides a standard way to
define access to those data sets regardless where the data is stored.

Let's take for instance the data stored in a remote database. A valid data set could be, for example,
an entire database table or the result of an SQL query. In both cases, the database will return
a bunch of columns and rows. Now, imagine we want to get access to such data to feed some
charts in a new workbench perspective. First thing is to create and register a data set definition
in order to indicate the following:

273

Workbench (General)

» where the data set is stored,
» how can be accessed, read and parsed and
« what columns contains and of which type.

This chapter introduces the available workbench tools for registering and handling data set defin-
itions and how these definitions can be consumed in other workbench modules like, for instance,
the Perspective Editor.

@ Note
For simplicity sake we will be using the term data set to refer to the actual data set
definitions as Data set and Data set definition can be considered synonyms under
the data set authoring context.

9.7.8.1. Data Set Authoring Perspective

Everything related to the authoring of data sets can be found under the Data Set Authoring per-
spective which is accessible from the following top level menu entry: Extensions>Data Sets, as
shown in the following screenshot.

KIE Workbench

Home ~ Authoring ~ Deploy ~

PlugIn Management

Apps

Data Sets Q

Data Set Explorer newbataset | x |~ | ~ Data Set Authoring Home x|[~]||a

@ Expense reports
@ World population There are 3 data sets available

[GIT Contributors Next steps:
1. Define a new data set to fetch your data from an external storage system

2. Create displayers to visualize data from your newly created data sets
3. Create new dashboards to organize and coordinate your data displayers

Figure 9.102. Data Set Authoring Perspective

The center panel, shows a welcome screen, whilst the left panel contains the Data Set Explorer
listing all the data sets available

274

Workbench (General)

9.7.8.2. Data Set Explorer

The Data Set Explorer lists the data sets present in the system. Every time the user clicks on the
data set it shows a brief summary alongside the following information:

Data Set Explorer(j)newpataset A

B Employee summary (Office)
Current status Current size
X Backend cache 6 Rows
v Client cache 2.2K Bytes
X Resfresh (5)

(4)
Edit I
(6) :
@ World Population
(3) (2)

® Expense Reports

A Cluster Metrics

[} Sales Opportunities

Figure 9.103. Data Set Explorer

(1) A button for creating a new Data set

(2) The list of currently available Data sets

(3) An icon that represents the Data set's provider type (Bean, SQL, CSV, etc)

(4) Details of current cache and refresh policy status

(5) Details of current size on backend (unit as rows) and current size on client side (unit in bytes)

(6) The button for editing the Data set. Once clicked the Data set editor screen is opened on
the center panel

275

Workbench (General)

The next sections explain how to create, edit and fine tune data set definitions.

9.7.8.3. Data Set Creation

Clicking on the New Data Set button opens a new screen from which the user is able to create
a new data set definition in three steps:
 Provider type selection
Specify the kind of the remote storage system (BEAN, SQL, CSV, ElasticSearch)
* Provider configuration

Specify the attributes for being able to look up data from the remote system. The configuration
varies depending on the data provider type selected.

» Data set columns & filter
Live data preview, column types and initial filter configuration.
9.7.8.3.1. Step 1: Provider type selection
Allows the user's specify the type of data provider of the data set being created.

This screen lists all the current available data provider types and helper popovers with descrip-
tions. Each data provider is represented with a descriptive image:

Data Set Creation Wizard

Select the provider type:

J —

Next

Figure 9.104. Provider type selection

Four types are currently supported:

« Bean (Java class) - To generate a data set directly from Java

276

Workbench (General)

e SQL - For getting data from any ANSI-SQL compliant database
e CSV - To upload the contents of a remote or local CSV file
 Elastic Search - To query and get documents stored on Elastic Search nodes as data sets

Once a type is selected, click on Next button to continue with the next workflow step.

9.7.8.3.2. Step 2: Configuration

The screenshot below shows a CSV data set configuration form. Once all the required settings
are filled click on Test button. The system will try to fetch a small amount of data before moving
to the next workflow step.

Data Set Creation Wizard

Configuration

uuID d4ccb063-2fa7-480a-86fb-764ci
Name Expense reports
File path & || Choose File | €xpenseReports.csv

Separator char
Quote char

Escape char

Date pattern MM-dd-yyyy HH:mm:ss
Number pattern #
Back REIEES

Figure 9.105. CSV Configuration

The provider type selected in the previous step will determine which configuration settings the
system asks for.

277

Workbench (General)

Data Source java:jboss/datasources/Examplel File path & No file chosen
Separator char
Schema MySchema01
Source O Table ® Query Quote char
jselect * from MyTable Escape char)
Date pattern MM-dd-yyyy HH:mm:ss
Number pattern 1 FHHE iHE
DB Provider CSV Provider
Generator class | org.example. MyDataSetGenerat Server URL http:/flocalhost:9200
Generator Cluster name my_cluster
parameters Key Value Actions
No data Index my_index
Document type my_type
 +Add
Bean Provider Elastic Search Provider

Figure 9.106. Configuration screen per data set type

9.7.8.3.3. Step 3: Data set columns and preview

After clicking on the Test button (see previous step), the system executes a data set lookup test
call in order to check if the remote system is up and the data is available. If everything goes ok
the user will see the following screen:

278

Workbench (General)

Data Set Creation Wizard

Configuration

Data columns

office
department
employee
v date

amount

Back w

Preview

Filter

Advanced

-
-
-
123 v

123 -

office department employee date amount
Barcelona Engineering Roxie Foraker ~ 12.00 120.35
Barcelona Engineering Roxie Foraker | 12.00 1,100.10
Barcelona Engineering Roxie Foraker 11.00 900.10
Barcelona Services Jamie Gilbeau = 10.00 340.34

Barcelona

Barcelona

Figure 9.107. Data set preview

Services

Services

Jamie Gilbeau

Jamie Gilbeau

9.00

8.00

300.00

152.25

W 4 160f50 0»

This screen shows a live data preview along with the columns the user wants to be part of the
resulting data set. The user can also navigate through the data and apply some changes to the
data set structure. Once finished, we can click on the Save button in order to register the new
data set definition.

We can also change the configuration settings at any time just by going back to the configuration
tab. We can repeat the Configuration>Test>Preview cycle as may times as needed until we con-
sider it's ready to be saved.

Columns

In the Columns tab area the user can select what columns are part of the resulting data set de-

finition.

279

Workbench (General)

Data columns Filter
M

..r. ID 123 =
(1) (2)
4 | OFFICE » -
L Y

NOTES B -
£ Ts o
Y | EMPLOYEES 123 -

Figure 9.108. Data set columns

e (1) To add or remove columns. Select only those columns you want to be part of the resulting
data set

* (2) Use the drop down image selector to change the column type

A data set may only contain columns of any of the following 4 types:

« Label - For text values supporting group operations (similar to the SQL "group by" operator)
which means you can perform data lookup calls and get one row per distinct value.

e Text - For text values NOT supporting group operations. Typically for modeling large text
columns such as abstracts, descriptions and the like.

* Number - For numeric values. It does support aggregation functions on data lookup calls: sum,
min, max, average, count, disctinct.

« Date - For date or timestamp values. It does support time based group operations by different
time intervals: minute, hour, day, month, year, ...

No matter which remote system you want to retrieve data from, the resulting data set will always
return a set of columns of one of the four types above. There exists, by default, a mapping between
the remote system column types and the data set types. The user is able to modify the type for
some columns, depending on the data provider and the column type of the remote system. The
system supports the following changes to column types:

« Label <> Text - Useful when we want to enable/disable the categorization (grouping) for the
target column. For instance, imagine a database table called "document" containing a large text

280

Workbench (General)

column called "abstract". As we do not want the system to treat such column as a "label" we
might change its column type to "text". Doing so, we are optimizing the way the system handles
the data set and

e Number <> Label - Useful when we want to treat numeric columns as labels. This can be used
for instance to indicate that a given numeric column is not a numeric value that can be used in
aggregation functions. Despite its values are stored as numbers we want to handle the column
as a "label". One example of such columns are: an item's code, an appraisal id., ...

@ Note
BEAN data sets do not support changing column types as it's up to the developer
to decide which are the concrete types for each column.

Filter

A data set definition may define a filter. The goal of the filter is to leave out rows the user does
not consider necessary. The filter feature works on any data provider type and it lets the user to
apply filter operations on any of the data set columns available.

Data columns Filber
H
OFFICE = London v X4
London
Add Mew

Figure 9.109. Data set filter

While adding or removing filter conditions and operations, the preview table on central area is
updated with live data that reflects the current filter status.

There exists two strategies for filtering data sets and it's also important to note that choosing
between the two have important implications. Imagine a dashboard with some charts feeding from
a expense reports data set where such data set is built on top of an SQL table. Imagine also we
only want to retrieve the expense reports from the "London" office. You may define a data set
containing the filter "office=London" and then having several charts feeding from such data set.
This is the recommended approach. Another option is to define a data set with no initial filter and
then let the individual charts to specify their own filter. It's up to the user to decide on the best
approach.

281

Workbench (General)

Depending on the case it might be better to define the filter at a data set level for reusing across
other modules. The decision may also have impact on the performance since a filtered cached
data set will have far better performance than a lot of individual non-cached data set lookup re-
quests. (See the next section for more information about caching data sets).

@ Note

Notice, for SQL data sets, the user can use both the filter feature introduced or,
alternatively, just add custom filter criteria to the SQL sentence. Although, the first
approach is more appropriated for non technical users since they might not have
the required SQL language skills.

9.7.8.4. Data set editor

To edit an existing data set definition go the data set explorer, expand the desired data set defin-
ition and click on the Edit button. This will cause a new editor panel to be opened and placed on
the center of the screen, as shown in the next screenshot:

KIE Workbench

Data Set Explorer mewpataset » ~ a & Data Set Editor [Expense reports (CSV)] Save | Delete | Copy | Validate| [% | ™ | &

9 Expense reports
Configuration ~ Preview Advanced

Current status Current size
¥ dient cache 50 Rows .
% Data columns Filter
Resfresh 11.3K Bytes
H i=
¥ | office » -
office department employee date amount
? department L
Barcelona Engineering Roxie Foraker = 12.00 120.35
GIT Contributors)
employee - . -
Y A Barcelona Engineering Roxie Foraker = 12.00 1.100.10
9 World population Y date .
: PoF date w Barcelona Engineering Roxie Foraker | 11.00 900.10
* amount @3- Barcelona Services Jamie Gilbeau | 10.00 340.34
Barcelona Services Jamie Gilbeau | 9.00 300.00
Barcelona Services Jamie Gilbeau | 8.00 152.25

@« 4 1-60f50 »

Figure 9.110. Data set definition editor

Every time we edit an item its editor is added to the center panel. We can navigate through the
list of opened editors just by clicking on the down arrow icon placed at the editor's toolbar in the
top right corner.

282

Workbench (General)

Data Set Editor [World population (CSV)] Save || Delete || Copy | | Validate D

Data Set Editor [World population (CSv)]

Data Set Editor [Expense reports (CSV)]

Data columns Filter

| City / Urban area L 4
City / Urban ar Country Population Land area Density

S P [- -

Figure 9.111. Editor selector

The editor provides all the features described in previous sections. We can change the configu-
ration settings, test our data set definition and modify the resulting data set structure. Additionally,
the editor provides some extra buttons in its toolbar:

» Save - To validate the current changes and store the data set definition.

» Delete - To remove permanently from storage the data set definition. Any client module refer-
encing the data set may be affected.

» Validate - To check that all the required parameters exist and are correct, as well as to validate
the data set can be retrieved with no issues.

» Copy - To create a brand new definition as a copy of the current one.

@ Note

Data set definitions are stored in the underlying GIT repository as JSON files. Any
action performed is registered in the repository logs so it is possible to audit the
change log later on.

9.7.8.5. Advanced settings

In the Advanced settings tab area the user can specify caching and refresh settings. Those are
very important for making the most of the system capabilities thus improving the performance and
having better application responsive levels.

283

Workbench (General)

Configuration Preview Advanced

EI) Client Cache 1) 1036 Bytes I
=4 Backend Cache Rows "%
2) 1,011
4 Data refresh every —
(3)
(4)

Refresh on stale data

Figure 9.112. Advanced settings

(1) To enable or disable the client cache and specify the maximum size (bytes).

(2) To enable or disable the backend cache and specify the maximum cache size (number of

rows).
(3) To enable or disable automatic refresh for the Data set and the refresh period.

(4) To enable or disable the refresh on stale data setting.

Let's dig into more details about the meaning of these settings.

9.7.8.6. Caching

The system provides caching mechanisms out-of-the-box for holding data sets and performing
data operations using in-memory strategies. The use of these features brings a lot of advantages,
like reducing the network traffic, remote system payload, processing times etc. On the other hand,
it's up to the user to fine tune properly the caching settings to avoid hitting performance issues.

Two cache levels are supported:

¢ Client level

Backend level

The following diagram shows how caching is involved in any data set operation:

284

Workbench (General)

Client
cache
Backend Client
cache cache @

Backend

SQL Database ‘t::::z::;? ‘Q::::E::;?
Backend n
Backend cache

cache
Client
cache

Figure 9.113. Data set caching

Any data look up call produces a resulting data set, so the use of the caching techniques deter-
mines where the data lookup calls are executed and where the resulting data set is located.

Client cache

If ON then the data set involved in a look up operation is pushed into the web browser so that
all the components that feed from this data set do not need to perform any requests to the
backend since data set operations are resolved at a client side:

e The data set is stored in the web browser's memory
« The client components feed from the data set stored in the browser

« Data set operations (grouping, aggregations, filters and sort) are processed within the web
browser, by means of a Javascript data set operation engine.

If you know beforehand that your data set will remain small, you can enable the client cache. It
will reduce the number of backend requests, including the requests to the storage system. On the
other hand, if you consider that your data set will be quite big, disable the client cache so as to
not hitting with browser issues such as slow performance or intermittent hangs.

Backend cache
Its goal is to provide a caching mechanism for data sets on backend side.

This feature allows to reduce the number of requests to the remote storage system , by
holding the data set in memory and performing group, filter and sort operations using the in-
memory engine.

It's useful for data sets that do not change very often and their size can be considered acceptable
to be held and processed in memory. It can be also helpful on low latency connectivity issues with

285

Workbench (General)

the remote storage. On the other hand, if your data set is going to be updated frequently, it's better
to disable the backend cache and perform the requests to the remote storage on each look up
request, so the storage system is in charge of resolving the data set lookup request.

@ Note
BEAN and CSV data providers relies by default on the backend cache, as in both
cases the data set must be always loaded into memory in order to resolve any data
lookup operation using the in-memory engine. This is the reason why the backend
settings are not visible in the Advanced settings tab.

9.7.8.7. Refresh

The refresh feature allows for the invalidation of any cached data when certain conditions are
meet.

EI Data refresh every (2) 30 Minute =
(1)

(3) ® Refreshon stale data

Figure 9.114. Refresh settings

« (1) To enable or disable the refresh feature.
* (2) To specify the refresh interval.
* (3) To enable or disable data set invalidation when the data is outdated.

The data set refresh policy is tightly related to data set caching, detailed in previous section. This
invalidation mechanism determines the cache life-cycle.

Depending on the nature of the data there exist three main use cases:

e Source data changes predictable - Imagine a database being updated every night. In that
case, the suggested configuration is to use a "refresh interval = 1 day" and disable "refresh on
stale data". That way, the system will always invalidate the cached data set every day. This is
the right configuration when we know in advance that the data is going to change.

e Source data changes unpredictable - On the other hand, if we do not know whether the
database is updated every day, the suggested configuration is to use a "refresh interval = 1 day"
and enable "refresh on stale data". If so the system, before invalidating any data, will check for
modifications. On data modifications, the system will invalidate the current stale data set so that
the cache is populated with fresh data on the next data set lookup call.

286

Workbench (General)

* Real time scenarios - In real time scenarios caching makes no sense as data is going to be
updated constantly. In this kind of scenarios the data sent to the client has to be constantly
updated, so rather than enabling the refresh settings (remember this settings affect the caching,
and caching is not enabled) it's up to the clients consuming the data set to decide when to
refresh. When the client is a dashboard then it's just a matter of modifying the refresh settings
in the Displayer Editor configuration screen and set a proper refresh period, "refresh interval
=1 second" for example.

9.8. User and group management

9.8.1. Introduction

This section describes a feature that allows the administration of the application's users and
groups using an intuitive and friendly user interface that comes integrated in both jBPM and Drools
Workbenches.

KIE Workbench

Home v Authoring Deploy Proc ks Dashboards -

Users explorer Crea #1x| Usersmanagement home v

All users Refresh &

admin
Jjack
krisv
sales-rep
john
katy
mary

salaboy

Figure 9.115.

Before the installation, setup and usage of this feature, this section talks about some previous
concepts that need to be completely understood for the further usage:

» Security management providers and capabilities

« Installation and setup

« Usage

9.8.2. Security management providers

A security environment is usually provided by the use of a realm. Realms are used to restrict the
access for the different application's resources. So realms contains information about the users,
groups, roles, permissions and and any other related information.

In most of the typical scenarios the application's security is delegated to the container's security
mechanism, which consumes a given realm at same time. It's important to consider that there

287

Workbench (General)

exist several realm implementations, for example Wildfly provides a realm based on the appli-
cation-users.properties/application-roles.properties files, Tomcat provides a realm based on the
tomcat-users.xml file, etc. So keep in mind that there is no single security realm to rely on, it can
be different in each installation.

The jBPM and Drools workbenches are not an exception, they're build on top Uberfire framework
(aka UF), which delegates the authorization and authentication to the underlying container's se-
curity environment as well, so the consumed realm is given by the concrete deployment config-
uration.

9.8.2.1. Security management providers

Due to the potential different security environments that have to be supported, the users and
groups management provides a well defined management services API with some default built-in
security management providers. A security management provider is the formal name given to
a concrete user and group management service implementation for a given realm.

At this moment, by default there are two security management providers available:

« Wildfly / EAP security management provider - For Wildfly or EAP realms based on properties
files.

« Tomcat security management provider - For Tomcat realms based on XML files.

If the built-in providers do not fit with the application's security realm, it is easy to build and register
your own security management provider.

9.8.2.2. Secutiry management provider capabilities

Each security realm can provide support different operations. For example consider the use of a
Wildfly's realm based on properties files, The contents for the applications-users.properties is like:

admi n=207b6e0cc556d7084b5e2db7d822555¢
sal aboy=d4af 256e7007f ea2e581d539e05edd1b
maci ej =3c8609f 5e0c908a8c361ca633ed23844
kri s=0bf dOf 47d4817f 2557c91cbab38bb92d

kat y=f d37b5d0b82ce027bf ad677a54f bccee

j ohn=af da4373c6021f 3f 5841cd6c0a027244

j ack=984ba30elldda7b9ed86ba7b73d01481

di rect or =6b7f 87a92b62bedd0a5a94c98bd83e21
user =c5568adea472163df c00c19c6348a665
guest =b5d048a237bf d2874b6928elf 37eel5e

ki ewb=78541b7b451d8012223f 29ba5141bcc2

ki eserver=16c6511893651c9b4b57e0c027a96075

Note that it's based on key-value pairs where the key is the username, and the value is the hashed
value for the user's password. So a user is just defined by the key, by its username, it does not
have a name nor address or any other meta information.

288

Workbench (General)

On the other hand, consider the use of a realm provided by a Keycloak server. The information for
a user is composed by more user meta-data, such as surname, address, etc, as in the following
image:

admin # edi
Attributes
Name Value
user.id 0d7fc687-d326-4716-81c7-429710b0aaac
user.email admin@redhat.com

user.isEmailVerified false
user.enabled true
user.firstName The administrator

user.lastName

4 4 1-60f6 p P

Groups Roles

offline_access

rest-all

Figure 9.116.

So the different services and client side components from the users and group management API
are based on capabilities.Capabilities are used to expose or restrict the available functionality
provided by the different services and client side components. Examples of capabilities are:

* Create a user

» Update a user

* Delete a user

« Update user's attributes

« Create a group

» Update a group

+ Assign groups to a user

* Assign roles to a user

Each security management provider must specify a set of capabilities supported. From the previ-
ous examples you can note that the Wildfly security management provider does not support the

289

Workbench (General)

capability for the management of the attributes for a user - the user is only composed by the user
name. On the other hand the Keycloak provider does support this capability.

The different views and user interface components rely on the capabilities supported by each
provider, so if a capability is not supported by the provider in use, the Ul does not provide the
views for the management of that capability. As an example, consider that a concrete provider
does not support deleting users - the delete user button on the user interface will be not available.

Please take a look at the concrete service provider documentation to check all the supported
capabilities for each one, the default ones can be found here [https://github.com/uberfire/uber-
fire-extensions/tree/master/uberfire-security/uberfire-security-management].

9.8.3. Installation and setup

Before considering the installation and setup steps please note the following Drools and jBPM
distributions come with built-in, pre-installed security management providers by default:

e Wildfly / EAP distribution - Both distributions use the Wildfly security man-
agement provider [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-securi-
ty/uberfire-security-management/uberfire-security-management-wildfly] configured for the use
of the default realm files application-users.properties and application-roles.properties

e Tomcat distribution - It uses the Tomcat security management
provider [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uber-
fire-security-management/uberfire-security-management-tomcat] configured for the use of the
default realm file tomcat-users.xml

Please read each provider's documentation [https://github.com/uberfire/uberfire-extensions/tree/
master/uberfire-security/uberfire-security-management] in order to apply the concrete settings for
the target deployment environment.

On the other hand, if using a custom security management provider or need to include it on an
existing application, consider the following installation options:

« Enable the security management feature on an existing WAR distribution
« Setup and installation in an existing or new project

NOTE: If no security management provider is installed in the application, there will be no available
user interface for managing the security realm. Once a security management provider is installed
and setup, the user and group management user interfaces are automatically enabled and ac-
cessible from the main menu.

9.8.3.1. Enable the security management feature on an existing WAR
distribution

Given an existing WAR distribution of either Drools and jBPM workbenches, follow these steps in
order to install and enable the user management feature:

290

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-wildfly
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management/uberfire-security-management-tomcat
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management

Workbench (General)

» Ensure the following libraries are present on WEB-INF/lib:
» WEB-INF/lib/uberfire-security-management-api-6.4.0.Final..jar
» WEB-INF/lib/uberfire-security-management-backend-6.4.0.Final..jar

« Add the concrete library for the security management provider to use in WEB-INF/lib:
» Eg: WEB-INF/lib/uberfire-security-management-wildfly-6.4.0.Final..jar

« If the concrete provider you're using requires more libraries, add those as well. Please
read each provider's documentation [https://github.com/uberfire/uberfire-extensions/tree/
master/uberfire-security/uberfire-security-management] for more information

* Replace the whole content for file WEB-INF/classes/security-management.properties, or if not
present, create it. The settings present on this file depend on the concrete implementation you're
using. Please read each provider's documentation [https://github.com/uberfire/uberfire-exten-
sions/tree/master/uberfire-security/uberfire-security-management] for more information.

o If you're deploying on Wildfly or EAP, please check if the WEB-INF/jboss-de-
ployment-structure.xml requires any update. Please read each provider's documen-
tation [https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-se-
curity-management] for more information.

9.8.3.2. Setup and installation in an existing or new project

If you're building an Uberfire [http://uberfireframework.org/] based web application and
you want to include the user and group management feature, please read this instruc-
tions [https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-secu-
rity-management/uberfire-security-management-client-wb/README.md].

9.8.3.3. Disabling the security management feature

The security management feature can be disabled, and thus no services or user interface will be
available, by any of:

 Uninstalling the security management provider from the application

When no concrete security management provider installed on the application, the user and
group management feature will be disabled and no services or user interface will be presented
to the user.

* Removing or commenting the security management configuration file

Removing or commenting all the lines in the configuration file located at WEB-INF/classes/se-
curity-management.properties will disable the user and group management feature and no ser-
vices or user interface will be presented to the user.

291

https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
https://github.com/uberfire/uberfire-extensions/tree/master/uberfire-security/uberfire-security-management
http://uberfireframework.org/
http://uberfireframework.org/
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md
https://github.com/uberfire/uberfire-extensions/blob/master/uberfire-security/uberfire-security-management/uberfire-security-management-client-wb/README.md

Workbench (General)

9.8.4. Usage

The user and group management feature is presented using two different perspectives that are
available from the main Home menu (considering that the feature is enabled) as:

KIE Workbench

Home -

Home Fage
Timeline

Feople

User management

Group management

Figure 9.117.
Read the following sections for using both user and group management perspectives.
9.8.4.1. User management

The user management interface is available from the User management menu entry in the Home
menu.

The interface is presented using two main panels: the users explorer on the west panel and the
user editor on the center one:

Users explorer Create newuser | [2% | | Users management home

Al users Refresh &

admin
jack
krisv
sales-rep
john
Katy
mary

salaboy

Figure 9.118.

292

Workbench (General)

The users explorer, on west panel, lists by default all the users present on the application's
security realm:

USEI’SEKD|DI’EI’ Create new user | | o« X

AH users Refresh &5
Q|

admin
jack
krisv
sales-rep
john
katy
mary

salaboy

Figure 9.1109.

In addition to listing all users, the users explorer allows:

» Searching for users

When specifying the search pattern in the search box the users list will be reduced and will
display only the users that match the search pattern.

293

Workbench (General)

Users explorer Create new user | | /| X
Search results for admin Refresh
admin| Q x
admin
Figure 9.120.

Search patterns depend on the concrete security management provider being used by the
application's. Please read each provider's documentation [https://github.com/uberfire/uber-
fire-extensions/tree/master/uberfire-security/uberfire-security-management] for more informa-
tion.

 Creating new users

By click